Insights into the Lysine Acetylome of the Haloarchaeon Haloferax volcanii during Oxidative Stress by Quantitative SILAC-Based Proteomics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Strains, Media, and Growth Conditions
2.3. Generation of Mutant Strains
2.4. Immunoblotting Analysis of the Lysine Acetylome of H. volcanii Cells
2.5. Hypochlorite Exposure for Mass Spectrometry Analysis
2.6. TriZOL Extraction and Trypsin Digestion
2.7. Data Acquisition with Data Dependent Decision Tree
2.8. Data Analysis
3. Results
3.1. Exposure to Sodium Hypochlorite Stimulates an Increase in the Abundance of the Lysine Acetylome of H. volcanii
3.2. LC-MS/MS Analysis of ∆sir2 Mutant Reveals Dramatic Alterations in the Proteome
3.3. Lysine Acetylation Enrichment Analysis Reveals DNA Topology, Metabolism and Translation to Be Regulated
3.4. Label Free Quantification Reveals a Greater Number of Lysine Acetylation Sites during Oxidative Stress in H. volcanii
3.5. Lysine Acetylation Sites of H. volcanii Compared to the Related Species H. mediterranei
3.6. Haloferax Lysine Acetylation and Sampylation Sites
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Halliwell, B. Oxidative stress and cancer: Have we moved forward? Biochem. J. 2007, 401, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef] [PubMed]
- Hwang, O. Role of oxidative stress in Parkinson’s disease. Exp. Neurobiol. 2013, 22, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Senoner, T.; Dichtl, W. Oxidative stress in cardiovascular diseases: Still a therapeutic target? Nutrients 2019, 11, 2090. [Google Scholar] [CrossRef] [PubMed]
- Raymann, K.; Brochier-Armanet, C.; Gribaldo, S. The two-domain tree of life is linked to a new root for the Archaea. Proc. Natl. Acad. Sci. USA 2015, 112, 6670–6675. [Google Scholar] [CrossRef] [PubMed]
- Grohmann, D.; Werner, F. Recent advances in the understanding of archaeal transcription. Curr. Opin. Microbiol. 2011, 14, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Oren, A. Halophilic microbial communities and their environments. Curr. Opin. Biotechnol. 2015, 33, 119–124. [Google Scholar] [CrossRef]
- Panasenko, O.M.; Gorudko, I.V.; Sokolov, A.V. Hypochlorous acid as a precursor of free radicals in living systems. Biochem. Biokhimiia 2013, 78, 1466–1489. [Google Scholar] [CrossRef]
- Block, M.S.; Rowan, B.G. Hypochlorous acid: A review. J. Oral Maxillofac. Surg. 2020, 78, 1461–1466. [Google Scholar] [CrossRef]
- Shen, Y.; Li, J.; Gu, R.; Yue, L.; Wang, H.; Zhan, X.; Xing, B. Carotenoid and superoxide dismutase are the most effective antioxidants participating in ROS scavenging in phenanthrene accumulated wheat leaf. Chemosphere 2018, 197, 513–525. [Google Scholar] [CrossRef]
- Jones, D.L.; Baxter, B.K. DNA repair and photoprotection: Mechanisms of overcoming environmental ultraviolet radiation exposure in halophilic archaea. Front. Microbiol. 2017, 8, 1882. [Google Scholar] [CrossRef] [PubMed]
- McMillan, L.J.; Hwang, S.; Farah, R.E.; Koh, J.; Chen, S.; Maupin-Furlow, J.A. Multiplex quantitative SILAC for analysis of archaeal proteomes: A case study of oxidative stress responses. Environ. Microbiol. 2018, 20, 385–401. [Google Scholar] [CrossRef] [PubMed]
- Christensen, D.G.; Baumgartner, J.T.; Xie, X.; Jew, K.M.; Basisty, N.; Schilling, B.; Kuhn, M.L.; Wolfe, A.J. Mechanisms, detection, and relevance of protein acetylation in prokaryotes. mBio 2019, 10, e02708-18. [Google Scholar] [CrossRef] [PubMed]
- Marsh, V.L.; Peak-Chew, S.Y.; Bell, S.D. Sir2 and the acetyltransferase, Pat, regulate the archaeal chromatin protein, Alba. J. Biol. Chem. 2005, 280, 21122–21128. [Google Scholar] [CrossRef]
- Bell, S.D.; Botting, C.H.; Wardleworth, B.N.; Jackson, S.P.; White, M.F. The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation. Science 2002, 296, 148–151. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Q.; Jiang, X.; Yang, H.; Zhao, D.; Han, J.; Luo, Y.; Xiang, H. Systematic analysis of lysine acetylation in the halophilic archaeon Haloferax mediterranei. J. Proteome Res. 2017, 16, 3229–3241. [Google Scholar] [CrossRef]
- Cao, J.; Wang, T.; Wang, Q.; Zheng, X.; Huang, L. Functional insights into protein acetylation in the hyperthermophilic archaeon Sulfolobus islandicus. Mol. Cell. Proteom. MCP 2019, 18, 1572–1587. [Google Scholar] [CrossRef]
- Alpha-Bazin, B.; Gorlas, A.; Lagorce, A.; Joulié, D.; Boyer, J.-B.; Dutertre, M.; Gaillard, J.-C.; Lopes, A.; Zivanovic, Y.; Dedieu, A.; et al. Lysine-specific acetylated proteome from the archaeon Thermococcus gammatolerans reveals the presence of acetylated histones. J. Proteom. 2021, 232, 104044. [Google Scholar] [CrossRef]
- Gomez, M.; Leung, W.; Dantuluri, S.; Pillai, A.; Gani, Z.; Hwang, S.; McMillan, L.J.; Kiljunen, S.; Savilahti, H.; Maupin-Furlow, J.A. Molecular factors of hypochlorite tolerance in the hypersaline archaeon Haloferax volcanii. Genes 2018, 9, 562. [Google Scholar] [CrossRef]
- Allers, T.; Ngo, H.P.; Mevarech, M.; Lloyd, R.G. Development of additional selectable markers for the halophilic archaeon Haloferax volcanii based on the leuB and trpA genes. Appl. Environ. Microbiol. 2004, 70, 943–953. [Google Scholar] [CrossRef]
- Zhou, G.; Kowalczyk, D.; Humbard, M.A.; Rohatgi, S.; Maupin-Furlow, J.A. Proteasomal components required for cell growth and stress responses in the haloarchaeon Haloferax volcanii. J. Bacteriol. 2008, 190, 8096–8105. [Google Scholar] [CrossRef]
- Allers, T.; Ngo, H.-P. Genetic analysis of homologous recombination in archaea: Haloferax volcanii as a model organism. Biochem. Soc. Trans. 2003, 31, 706–710. [Google Scholar] [CrossRef] [PubMed]
- Kirkland, P.A.; Busby, J.; Stevens, S.; Maupin-Furlow, J.A. Trizol-based method for sample preparation and isoelectric focusing of halophilic proteins. Anal. Biochem. 2006, 351, 254–259. [Google Scholar] [CrossRef]
- Gierlinski, M.; Gastaldello, F.; Cole, C.; Barton, G.J. Proteus: An R package for downstream analysis of maxquant output. bioRxiv 2018, 416511. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING Database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
- Seol, Y.; Neuman, K.C. The dynamic interplay between DNA topoisomerases and DNA topology. Biophys. Rev. 2016, 8, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Rawls, K.S.; Martin, J.H.; Maupin-Furlow, J.A. Activity and transcriptional regulation of bacterial protein-like glycerol-3-phosphate dehydrogenase of the haloarchaea in Haloferax volcanii. J. Bacteriol. 2011, 193, 4469–4476. [Google Scholar] [CrossRef] [PubMed]
- Caron, C.; Boyault, C.; Khochbin, S. Regulatory cross-talk between lysine acetylation and ubiquitination: Role in the control of protein stability. BioEssays News Rev. Mol. Cell. Dev. Biol. 2005, 27, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Miranda, H.V.; Antelmann, H.; Hepowit, N.; Chavarria, N.E.; Krause, D.J.; Pritz, J.R.; Bäsell, K.; Becher, D.; Humbard, M.A.; Brocchieri, L.; et al. Archaeal ubiquitin-like SAMP3 is isopeptide-linked to proteins via a UbaA-dependent mechanism. Mol. Cell. Proteom. 2014, 13, 220–239. [Google Scholar] [CrossRef]
- Humbard, M.A.; Miranda, H.V.; Lim, J.M.; Krause, D.J.; Pritz, J.R.; Zhou, G.; Chen, S.; Wells, L.; Maupin-Furlow, J.A. Ubiquitin-like small archaeal modifier proteins (SAMPs) in Haloferax volcanii. Nature 2010, 463, 54–60. [Google Scholar] [CrossRef]
- Fu, X.; Adams, Z.; Liu, R.; Hepowit, N.L.; Wu, Y.; Bowmann, C.F.; Moskovitz, J.; Maupin-Furlow, J.A. Methionine sulfoxide reductase A (MsrA) and its function in ubiquitin-like protein modification in Archaea. mBio 2017, 8, e01169-17. [Google Scholar] [CrossRef]
- Dantuluri, S.; Wu, Y.; Hepowit, N.L.; Chen, H.; Chen, S.; Maupin-Furlow, J.A. Proteome targets of ubiquitin-like samp1ylation are associated with sulfur metabolism and oxidative stress in Haloferax volcanii. Proteomics 2016, 16, 1100–1110. [Google Scholar] [CrossRef]
- Chavarria, N.E.; Hwang, S.; Cao, S.; Fu, X.; Holman, M.; Elbanna, D.; Rodriguez, S.; Arrington, D.; Englert, M.; Uthandi, S.; et al. Archaeal Tuc1/Ncs6 homolog required for wobble uridine tRNA thiolation is associated with ubiquitin-proteasome, translation, and RNA processing system homologs. PLoS ONE 2014, 9, e99104. [Google Scholar] [CrossRef] [PubMed]
- Hepowit, N.L.; de Vera, I.M.S.; Cao, S.; Fu, X.; Wu, Y.; Uthandi, S.; Chavarria, N.E.; Englert, M.; Su, D.; Söll, D.; et al. Mechanistic insight into protein modification and sulfur mobilization activities of noncanonical E1 and associated ubiquitin-like proteins of Archaea. FEBS J. 2016, 283, 3567–3586. [Google Scholar] [CrossRef] [PubMed]
- Singh, C.K.; Chhabra, G.; Ndiaye, M.A.; Garcia-Peterson, L.M.; Mack, N.J.; Ahmad, N. The role of sirtuins in antioxidant and redox signaling. Antioxid. Redox Signal. 2018, 28, 643–661. [Google Scholar] [CrossRef]
- Lin, C.; Zeng, H.; Lu, J.; Xie, Z.; Sun, W.; Luo, C.; Ding, J.; Yuan, S.; Geng, M.; Huang, M. Acetylation at lysine 71 inactivates superoxide dismutase 1 and sensitizes cancer cells to genotoxic agents. Oncotarget 2015, 6, 20578–20591. [Google Scholar] [CrossRef]
- Daitoku, H.; Sakamaki, J.-I.; Fukamizu, A. Regulation of FoxO transcription factors by acetylation and protein-protein interactions. Biochim. Biophys. Acta 2011, 1813, 1954–1960. [Google Scholar] [CrossRef]
- Sorolla, M.A.; Nierga, C.; Rodríguez-Colman, M.J.; Reverter-Branchat, G.; Arenas, A.; Tamarit, J.; Ros, J.; Cabiscol, E. Sir2 is induced by oxidative stress in a yeast model of Huntington disease and its activation reduces protein aggregation. Arch. Biochem. Biophys. 2011, 510, 27–34. [Google Scholar] [CrossRef]
- Rodriguez-Colman, M.J.; Reverter-Branchat, G.; Sorolla, M.A.; Tamarit, J.; Ros, J.; Cabiscol, E. The forkhead transcription factor Hcm1 promotes mitochondrial biogenesis and stress resistance in yeast. J. Biol. Chem. 2010, 285, 37092–37101. [Google Scholar] [CrossRef] [PubMed]
- Bi, J.; Gou, Z.; Zhou, F.; Chen, Y.; Gan, J.; Liu, J.; Wang, H.; Zhang, X. Acetylation of lysine 182 inhibits the ability of Mycobacterium tuberculosis DosR to bind DNA and regulate gene expression during hypoxia. Emerg. Microbes Infect. 2018, 7, 108. [Google Scholar] [CrossRef]
- Liu, W.; Tan, Y.; Cao, S.; Zhao, H.; Fang, H.; Yang, X.; Wang, T.; Zhou, Y.; Yan, Y.; Han, Y.; et al. Protein acetylation mediated by YfiQ and CobB is involved in the virulence and stress response of Yersinia pestis. Infect. Immun. 2018, 86, e00224-18. [Google Scholar] [CrossRef]
- Chen, X.; Sun, Y.; Zhang, T.; Shu, L.; Roepstorff, P.; Yang, F. Quantitative proteomics using isobaric labeling: A practical guide. Genom. Proteom. Bioinform. 2021, 19, 689–706. [Google Scholar] [CrossRef] [PubMed]
- Schilling, B.; Meyer, J.G.; Wei, L.; Ott, M.; Verdin, E. High-resolution mass spectrometry to identify and quantify acetylation protein targets. Methods Mol. Biol. 2019, 1983, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.W.; Bae, M.K.; Ahn, M.Y.; Kim, S.H.; Sohn, T.K.; Bae, M.H.; Yoo, M.A.; Song, E.J.; Lee, K.J.; Kim, K.W. Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell 2002, 111, 709–720. [Google Scholar] [CrossRef] [PubMed]
- Nimmanapalli, R.; Fuino, L.; Bali, P.; Gasparetto, M.; Glozak, M.; Tao, J.; Moscinski, L.; Smith, C.; Wu, J.; Jove, R.; et al. Histone deacetylase inhibitor LAQ824 both lowers expression and promotes proteasomal degradation of Bcr-Abl and induces apoptosis of imatinib mesylate-sensitive or -refractory chronic myelogenous leukemia-blast crisis cells. Cancer Res. 2003, 63, 5126–5135. [Google Scholar]
- Fu, X.; Liu, R.; Sanchez, I.; Silva-Sanchez, C.; Hepowit, N.L.; Cao, S.; Chen, S.; Maupin-Furlow, J. Ubiquitin-like proteasome system represents a eukaryotic-like pathway for targeted proteolysis in Archaea. mBio 2016, 7, e00379-16. [Google Scholar] [CrossRef]
- Valette, O.; Tran, T.T.T.; Cavazza, C.; Caudeville, E.; Brasseur, G.; Dolla, A.; Talla, E.; Pieulle, L. Biochemical Function, Molecular structure and evolution of an atypical thioredoxin reductase from Desulfovibrio vulgaris. Front. Microbiol. 2017, 8, 1855. [Google Scholar] [CrossRef]
- Boubriak, I.; Ng, W.L.; DasSarma, P.; DasSarma, S.; Crowley, D.J.; McCready, S.J. Transcriptional responses to biologically relevant doses of UV-B radiation in the model archaeon, Halobacterium sp. NRC-1. Saline Syst. 2008, 4, 13. [Google Scholar] [CrossRef]
- Kaur, A.; Van, P.T.; Busch, C.R.; Robinson, C.K.; Pan, M.; Pang, W.L.; Reiss, D.J.; Diruggiero, J.; Baliga, N.S. Coordination of frontline defense mechanisms under severe oxidative stress. Mol. Syst. Biol. 2010, 6, 393. [Google Scholar] [CrossRef]
- Khaire, A.; Rathod, R.; Kale, A.; Joshi, S. Vitamin B12 and omega-3 fatty acids together regulate lipid metabolism in wistar rats. Prostaglandins Leukot. Essent. Fatty Acids 2015, 99, 7–17. [Google Scholar] [CrossRef]
- Klug, G. Beyond Catalysis: Vitamin B12 as a cofactor in gene regulation. Mol. Microbiol. 2014, 91, 635–640. [Google Scholar] [CrossRef]
- Koprinarova, M.; Schnekenburger, M.; Diederich, M. Role of histone acetylation in cell cycle regulation. Curr. Top. Med. Chem. 2016, 16, 732–744. [Google Scholar] [CrossRef] [PubMed]
- Thao, S.; Chen, C.-S.; Zhu, H.; Escalante-Semerena, J.C. NΕ–Lysine Acetylation of a Bacterial transcription factor inhibits its DNA-binding activity. PLoS ONE 2010, 5, e15123. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zheng, S.; Yang, J.S.; Chen, Y.; Cheng, Z. Comprehensive profiling of protein lysine acetylation in Escherichia coli. J. Proteome Res. 2013, 12, 844–851. [Google Scholar] [CrossRef]
- Zhou, Q.; Gomez Hernandez, M.E.; Fernandez-Lima, F.; Tse-Dinh, Y.-C. Biochemical basis of E. coli topoisomerase I Relaxation activity reduction by nonenzymatic lysine acetylation. Int. J. Mol. Sci. 2018, 19, 1439. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Zhou, Y.N.; Jin, D.J.; Tse-Dinh, Y.-C. Deacetylation of topoisomerase I is an important physiological function of E. coli CobB. Nucleic Acids Res. 2017, 45, 5349–5358. [Google Scholar] [CrossRef]
- Tse-Dinh, Y.-C. Increased sensitivity to oxidative challenges associated with topA deletion in Escherichia coli. J. Bacteriol. 2000, 182, 829–832. [Google Scholar] [CrossRef]
- Chiani, F.; Felice, F.D.; Camilloni, G. SIR2 Modifies histone H4-K16 acetylation and affects superhelicity in the ARS Region of plasmid chromatin in Saccharomyces cerevisiae. Nucleic Acids Res. 2006, 34, 5426–5437. [Google Scholar] [CrossRef]
- Starai, V.J.; Escalante-Semerena, J.C. Identification of the protein acetyltransferase (Pat) enzyme that acetylates acetyl-CoA synthetase in Salmonella enterica. J. Mol. Biol. 2004, 340, 1005–1012. [Google Scholar] [CrossRef]
- You, D.; Yao, L.; Huang, D.; Escalante-Semerena, J.C.; Ye, B.-C. Acetyl coenzyme A synthetase is acetylated on multiple lysine residues by a protein acetyltransferase with a single Gcn5-type N-acetyltransferase (GNAT) domain in Saccharopolyspora erythraea. J. Bacteriol. 2014, 196, 3169–3178. [Google Scholar] [CrossRef]
- Galdieri, L.; Zhang, T.; Rogerson, D.; Lleshi, R.; Vancura, A. Protein acetylation and acetyl coenzyme a metabolism in budding yeast. Eukaryot. Cell 2014, 13, 1472–1483. [Google Scholar] [CrossRef]
- Pan, J.; Ye, Z.; Cheng, Z.; Peng, X.; Wen, L.; Zhao, F. Systematic analysis of the lysine acetylome in Vibrio parahemolyticus. J. Proteome Res. 2014, 13, 3294–3302. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, C.; Kumar, C.; Gnad, F.; Nielsen, M.L.; Rehman, M.; Walther, T.C.; Olsen, J.V.; Mann, M. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009, 325, 834–840. [Google Scholar] [CrossRef] [PubMed]
- van den Heuvel, R.H.H.; Curti, B.; Vanoni, M.A.; Mattevi, A. Glutamate synthase: A fascinating pathway from L-glutamine to L-glutamate. Cell. Mol. Life Sci. CMLS 2004, 61, 669–681. [Google Scholar] [CrossRef] [PubMed]
- Giménez, M.I.; Cerletti, M.; De Castro, R.E. Archaeal membrane-associated proteases: Insights on Haloferax volcanii and other haloarchaea. Front. Microbiol. 2015, 6, 39. [Google Scholar]
- Hase, T.; Wakabayashi, S.; Matsubara, H.; Kerscher, L.; Oesterhelt, D.; Rao, K.K.; Hall, D.O. Complete amino acid sequence of Halobacterium halobium ferredoxin containing an Nepsilon-acetyllysine residue. J. Biochem. 1978, 83, 1657–1670. [Google Scholar] [CrossRef]
- Hase, T.; Wakabayashi, S.; Matsubara, H.; Mevarech, M.; Werber, M.M. Amino Acid sequence of 2Fe-2S ferredoxin from an extreme halophile, Halobacterium of the Dead Sea. Biochim. Biophys. Acta 1980, 623, 139–145. [Google Scholar] [CrossRef]
- Perez-Riverol, Y.; Bai, J.; Bandla, C.; García-Seisdedos, D.; Hewapathirana, S.; Kamatchinathan, S.; Kundu, D.J.; Prakash, A.; Frericks-Zipper, A.; Eisenacher, M.; et al. The PRIDE database resources in 2022: A Hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022, 50, D543–D552. [Google Scholar] [CrossRef]
Strain, Plasmid or Primer | Description | Source or Ref. |
---|---|---|
Strains: | ||
E. coli | ||
TOP10 | F− mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacX74 recA1 araD139 Δ(ara leu) 7697 galU galK rpsL (Strr) endA1 nupG λ- | Invitrogen |
GM2163 | F− ara-14 leuB6 fhuA31 lacY1 tsx78 glnV44 galK2 galT22 mcrA dcm-6 hisG4 rfbD1 rpsL136 dam13::Tn9 xylA5 mtl-1 thi-1 mcrB1 hsdR2 | New England Biolabs |
H. volcanii | ||
DS70 | DS2 cured of plasmid pHV2 | [20] |
H26 | DS70 ∆pyrE2 | [20] |
JM503 | H26 ∆sir2 | This study |
JM506 | H26 ∆pat1 ∆pat2 | This study |
LM08 | H26 ∆lysA ∆argH | [12] |
RC04 | LM08 ∆sir2 | This study |
Plasmids: | ||
pTA131 | Apr; pBluescript II containing Pfdx-pyrE2 | [20] |
pJAM202c | Apr; Nvr; pJAM202-derived control | [21] |
pJAM4009 | Apr; pTA131 carries pat1 and ~500 bp flanking sequence (pre-deletion plasmid) | This study |
pJAM4010 | Apr; pTA131 carries pat2 and ~500 bp flanking sequence (pre-deletion plasmid) | This study |
pJAM4011 | Apr; pTA131 carries sir2 and ~500 bp flanking sequence (pre-deletion plasmid) | This study |
pJAM4013 | Apr; pJAM4009 Δpat1 (deletion plasmid) | This study |
pJAM4014 | Apr; pJAM4010 Δpat2 (deletion plasmid) | This study |
pJAM4015 | Apr; pJAM4011 Δsir2 (deletion plasmid) | This study |
Primers: | ||
1756_500_BamHI | 5′ ATCGGATCCGCGTTGCCGAGGTAGAAGAACGTC 3′ | This study |
1756_500_HindIII | 5′ TTTAAGCTTCGAACGCGGACTGAGCGCCTCGGA 3′ | This study |
1821_500_BamHI | 5′ TTTGGATCCGGACTCGTCTGTCATACCGCGGGC 3′ | This study |
1821_500_HindIII | 5′ TTTAAGCTTCGCGCCCGCTCTCTATCGACCTCG 3′ | This study |
KO_HVO_1756R | 5′ GGCTCCAGCTTGCCCCTCGGCTTTCGGTG 3′ | This study |
KO_HVO_1756F | 5′ ACCCGCAGTTCGAAAAGTGACCGGACTCCCGGCGAACCT 3′ | This study |
KO_HVO_1821R | 5′ GGCTCCAGCTTGCGCCGCCCTCGTCGTCCGGCG 3′ | This study |
KO_HVO_1821F | 5′ ACCCGCAGTTCGAAAAGT GAGGGCGGCGGCGAGCC 3′ | This study |
BamHI-HVO_2194 | 5′ TTCGGATCCCCTCGTCGGGCCACTCGTCC 3′ | This study |
KpnI-HVO_2194 | 5′ TTGGTACCCTCCGAACTCCGATAGCGGGCGACCG 3′ | This study |
delta_sir2_RV | 5′ AGCCCAACGGACGGGCCAGCC 3′ | This study |
delta_sir2_FW | 5′ GCGCGACCGGTGCCGCC 3′ | This study |
hvo_2194_Check_FW | 5′ GAGGGAGGTCGGGCACCTGCG 3′ | This study |
hvo_2194_Check_RV | 5′ATTCGATGTCGCCGGAAACGCGG 3′ | This study |
Pathway | Detected a | Background b | Strength c | FDR d |
---|---|---|---|---|
DNA topological change | 5 | 5 | 1.19 | 0.0026 |
Division septum assembly | 3 | 3 | 1.19 | 0.0479 |
Cobalamin biosynthetic process | 9 | 17 | 0.91 | 0.00032 |
Purine ribonucleoside monophosphate biosynthetic process | 10 | 23 | 0.83 | 0.00039 |
Tetrapyrrole biosynthetic process | 13 | 30 | 0.82 | 2.71 × 10−5 |
DNA-dependent DNA replication | 6 | 14 | 0.82 | 0.013 |
Chromosome organization | 13 | 37 | 0.73 | 0.00016 |
DNA conformation change | 10 | 29 | 0.73 | 0.0014 |
Ribonucleoside monophosphate biosynthetic process | 12 | 36 | 0.71 | 0.00044 |
Pigment biosynthetic process | 7 | 21 | 0.71 | 0.016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Couto-Rodríguez, R.L.; Koh, J.; Chen, S.; Maupin-Furlow, J.A. Insights into the Lysine Acetylome of the Haloarchaeon Haloferax volcanii during Oxidative Stress by Quantitative SILAC-Based Proteomics. Antioxidants 2023, 12, 1203. https://doi.org/10.3390/antiox12061203
Couto-Rodríguez RL, Koh J, Chen S, Maupin-Furlow JA. Insights into the Lysine Acetylome of the Haloarchaeon Haloferax volcanii during Oxidative Stress by Quantitative SILAC-Based Proteomics. Antioxidants. 2023; 12(6):1203. https://doi.org/10.3390/antiox12061203
Chicago/Turabian StyleCouto-Rodríguez, Ricardo L., Jin Koh, Sixue Chen, and Julie A. Maupin-Furlow. 2023. "Insights into the Lysine Acetylome of the Haloarchaeon Haloferax volcanii during Oxidative Stress by Quantitative SILAC-Based Proteomics" Antioxidants 12, no. 6: 1203. https://doi.org/10.3390/antiox12061203
APA StyleCouto-Rodríguez, R. L., Koh, J., Chen, S., & Maupin-Furlow, J. A. (2023). Insights into the Lysine Acetylome of the Haloarchaeon Haloferax volcanii during Oxidative Stress by Quantitative SILAC-Based Proteomics. Antioxidants, 12(6), 1203. https://doi.org/10.3390/antiox12061203