Evaluation of the Involvement of Heme Oxygenase-1 Expression in Discoid Lupus Erythematosus Lesions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Immunohistochemistry Analysis
2.1.1. Patients
2.1.2. Immunohistochemistry
2.1.3. Evaluation of Immunohistochemistry
2.2. In Silico Analysis
2.2.1. Dataset Selection
2.2.2. Deconvolution Analysis
2.2.3. Enrichment Analysis
2.2.4. HMOX1 Perturbation Gene Signature
2.3. Statistical Analysis
3. Results
3.1. Immunohistochemistry Study
3.2. In Silico Analysis
3.2.1. Deconvolution Analysis
3.2.2. Functional Prediction Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maz, M.P.; Martens, J.W.S.; Hannoudi, A.; Reddy, A.L.; Hile, G.A.; Kahlenberg, J.M. Recent Advances in Cutaneous Lupus. J. Autoimmun. 2022, 132, 102865. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, A.; Landmann, A. The Classification and Diagnosis of Cutaneous Lupus Erythematosus. J. Autoimmun. 2014, 48, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Lacarrubba, F.; Verzì, A.E.; Caltabiano, R.; Broggi, G.; Di Natale, A.; Micali, G. Discoid Lupus Erythematosus: Reflectance Confocal Microscopy Features Correlate with Horizontal Histopathological Sections. Ski. Res. Technol. 2019, 25, 242–244. [Google Scholar] [CrossRef] [PubMed]
- Fagone, P.; Patti, F.; Mangano, K.; Mammana, S.; Coco, M.; Touil-Boukoffa, C.; Chikovani, T.; Di Marco, R.; Nicoletti, F. Heme Oxygenase-1 Expression in Peripheral Blood Mononuclear Cells Correlates with Disease Activity in Multiple Sclerosis. J. Neuroimmunol. 2013, 261, 82–86. [Google Scholar] [CrossRef]
- Mangano, K.; Cavalli, E.; Mammana, S.; Basile, M.S.; Caltabiano, R.; Pesce, A.; Puleo, S.; Atanasov, A.G.; Magro, G.; Nicoletti, F.; et al. Involvement of the Nrf2/HO-1/CO Axis and Therapeutic Intervention with the CO-Releasing Molecule CORM-A1, in a Murine Model of Autoimmune Hepatitis. J. Cell. Physiol. 2018, 233, 4156–4165. [Google Scholar] [CrossRef]
- Fagone, P.; Mangano, K.; Mammana, S.; Cavalli, E.; di Marco, R.; Barcellona, M.L.; Salvatorelli, L.; Magro, G.; Nicoletti, F. Carbon Monoxide-Releasing Molecule-A1 (CORM-A1) Improves Clinical Signs of Experimental Autoimmune Uveoretinitis (EAU) in Rats. Clin. Immunol. 2015, 157, 198–204. [Google Scholar] [CrossRef]
- Nikolic, I.; Saksida, T.; Mangano, K.; Vujicic, M.; Stojanovic, I.; Nicoletti, F.; Stosic-Grujicic, S. Pharmacological Application of Carbon Monoxide Ameliorates Islet-Directed Autoimmunity in Mice via Anti-Inflammatory and Anti-Apoptotic Effects. Diabetologia 2014, 57, 980–990. [Google Scholar] [CrossRef]
- Fagone, P.; Mangano, K.; Quattrocchi, C.; Motterlini, R.; di Marco, R.; Magro, G.; Penacho, N.; Romao, C.C.; Nicoletti, F. Prevention of Clinical and Histological Signs of Proteolipid Protein (PLP)-Induced Experimental Allergic Encephalomyelitis (EAE) in Mice by the Water-Soluble Carbon Monoxide-Releasing Molecule (CORM)-A1. Clin. Exp. Immunol. 2011, 163, 368–374. [Google Scholar] [CrossRef]
- Fagone, P.; Mazzon, E.; Bramanti, P.; Bendtzen, K.; Nicoletti, F. Gasotransmitters and the Immune System: Mode of Action and Novel Therapeutic Targets. Eur. J. Pharmacol. 2018, 834, 92–102. [Google Scholar] [CrossRef]
- Fagone, P.; Mangano, K.; Coco, M.; Perciavalle, V.; Garotta, G.; Romao, C.C.; Nicoletti, F. Therapeutic Potential of Carbon Monoxide in Multiple Sclerosis. Clin. Exp. Immunol. 2012, 167, 179–187. [Google Scholar] [CrossRef]
- Motterlini, R.; Otterbein, L.E. The Therapeutic Potential of Carbon Monoxide. Nat. Rev. Drug Discov. 2010, 9, 728–743. [Google Scholar] [CrossRef]
- Motterlini, R.; Foresti, R. Heme Oxygenase-1 as a Target for Drug Discovery. Antioxid. Redox Signal. 2014, 20, 1810–1826. [Google Scholar] [CrossRef] [PubMed]
- Motterlini, R.; Mann, B.E.; Foresti, R. Therapeutic Applications of Carbon Monoxide-Releasing Molecules. Expert Opin. Investig. Drugs 2005, 14, 1305–1318. [Google Scholar] [CrossRef] [PubMed]
- Motterlini, R.; Sawle, P.; Hammad, J.; Bains, S.; Alberto, R.; Foresti, R.; Green, C.J. CORM-A1: A New Pharmacologically Active Carbon Monoxide-Releasing Molecule. FASEB J. 2004, 19, 284–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motterlini, R.; Mann, B.E.; Johnson, T.R.; Clark, J.E.; Foresti, R.; Green, C.J. Bioactivity and Pharmacological Actions of Carbon Monoxide-Releasing Molecules. Curr. Pharm. Des. 2003, 9, 2525–2539. [Google Scholar] [CrossRef]
- Caltabiano, R.; De Pasquale, R.; Piombino, E.; Campo, G.; Nicoletti, F.; Cavalli, E.; Mangano, K.; Fagone, P. Macrophage Migration Inhibitory Factor (MIF) and Its Homologue d-Dopachrome Tautomerase (DDT) Inversely Correlate with Inflammation in Discoid Lupus Erythematosus. Molecules 2021, 26, 184. [Google Scholar] [CrossRef]
- Liu, J.; Berthier, C.C.; Kahlenberg, J.M. Enhanced Inflammasome Activity in Systemic Lupus Erythematosus Is Mediated via Type I Interferon-Induced Up-Regulation of Interferon Regulatory Factor 1. Arthritis Rheumatol. 2017, 69, 1840–1849. [Google Scholar] [CrossRef] [Green Version]
- Billi, A.C.; Gharaee-Kermani, M.; Fullmer, J.; Tsoi, L.C.; Hill, B.D.; Gruszka, D.; Ludwig, J.; Xing, X.; Estadt, S.; Wolf, S.J.; et al. The Female-Biased Factor VGLL3 Drives Cutaneous and Systemic Autoimmunity. JCI Insight 2019, 4, e127291. [Google Scholar] [CrossRef] [Green Version]
- Tsoi, L.C.; Hile, G.A.; Berthier, C.C.; Sarkar, M.K.; Reed, T.J.; Liu, J.; Uppala, R.; Patrick, M.; Raja, K.; Xing, X.; et al. Hypersensitive IFN Responses in Lupus Keratinocytes Reveal Key Mechanistic Determinants in Cutaneous Lupus. J. Immunol. 2019, 202, 2121–2130. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, M.K.; Hile, G.A.; Tsoi, L.C.; Xing, X.; Liu, J.; Liang, Y.; Berthier, C.C.; Swindell, W.R.; Patrick, M.T.; Shao, S.; et al. Photosensitivity and Type I IFN Responses in Cutaneous Lupus Are Driven by Epidermal-Derived Interferon Kappa. Ann. Rheum. Dis. 2018, 77, 1653–1664. [Google Scholar] [CrossRef]
- Abernathy-Close, L.; Lazar, S.; Stannard, J.; Tsoi, L.C.; Eddy, S.; Rizvi, S.M.; Yee, C.M.; Myers, E.M.; Namas, R.; Lowe, L.; et al. B Cell Signatures Distinguish Cutaneous Lupus Erythematosus Subtypes and the Presence of Systemic Disease Activity. Front. Immunol. 2021, 12, 4969. [Google Scholar] [CrossRef] [PubMed]
- Steen, C.B.; Liu, C.L.; Alizadeh, A.A.; Newman, A.M. Profiling Cell Type Abundance and Expression in Bulk Tissues with CIBERSORTx. Methods Mol. Biol. 2020, 2117, 135–157. [Google Scholar] [CrossRef] [PubMed]
- Bader, G.D.; Hogue, C.W.V. An Automated Method for Finding Molecular Complexes in Large Protein Interaction Networks. BMC Bioinform. 2003, 4, 2–27. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene Set Enrichment Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape Provides a Biologist-Oriented Resource for the Analysis of Systems-Level Datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, A.; Narayan, R.; Corsello, S.M.; Peck, D.D.; Natoli, T.E.; Lu, X.; Gould, J.; Davis, J.F.; Tubelli, A.A.; Asiedu, J.K.; et al. A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles. Cell 2017, 171, 1437–1452.e17. [Google Scholar] [CrossRef]
- Himmelstein, D.S.; Lizee, A.; Hessler, C.; Brueggeman, L.; Chen, S.L.; Hadley, D.; Green, A.; Khankhanian, P.; Baranzini, S.E. Systematic Integration of Biomedical Knowledge Prioritizes Drugs for Repurposing. Elife 2017, 6, e26726. [Google Scholar] [CrossRef] [PubMed]
- Surbek, M.; Sukseree, S.; Sachslehner, A.P.; Copic, D.; Golabi, B.; Nagelreiter, I.M.; Tschachler, E.; Eckhart, L. Heme Oxygenase-1 Is Upregulated during Differentiation of Keratinocytes but Its Expression Is Dispensable for Cornification of Murine Epidermis. J. Dev. Biol. 2023, 11, 12. [Google Scholar] [CrossRef]
- Asano, M.; Yamasaki, K.; Yamauchi, T.; Terui, T.; Aiba, S. Epidermal Iron Metabolism for Iron Salvage. J. Dermatol. Sci. 2017, 87, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Tesch, G.H.; Maifert, S.; Schwarting, A.; Rollins, B.J.; Kelley, V.R. Monocyte Chemoattractant Protein 1-Dependent Leukocytic Infiltrates Are Responsible for Autoimmune Disease in MRL-Fas(Lpr) Mice. J. Exp. Med. 1999, 190, 1813–1824. [Google Scholar] [CrossRef] [Green Version]
- Menke, J.; Hsu, M.-Y.; Byrne, K.T.; Lucas, J.A.; Rabacal, W.A.; Croker, B.P.; Zong, X.-H.; Stanley, E.R.; Kelley, V.R. Sunlight Triggers Cutaneous Lupus through a CSF-1-Dependent Mechanism in MRL-Fas(Lpr) Mice. J. Immunol. 2008, 181, 7367–7379. [Google Scholar] [CrossRef] [Green Version]
- Sontheimer, C.; Liggitt, D.; Elkon, K.B. Ultraviolet B Irradiation Causes Stimulator of Interferon Genes-Dependent Production of Protective Type I Interferon in Mouse Skin by Recruited Inflammatory Monocytes. Arthritis Rheumatol. 2017, 69, 826–836. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, M.; Nakajima, A.; Kayagaki, N.; Honda, M.; Yagita, H.; Okumura, K. Expression of Fas Ligand and Its Receptor in Cutaneous Lupus: Implication in Tissue Injury. Clin. Immunol. Immunopathol. 1997, 83, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Hoi, A.Y.; Hickey, M.J.; Hall, P.; Yamana, J.; O’Sullivan, K.M.; Santos, L.L.; James, W.G.; Kitching, A.R.; Morand, E.F. Macrophage Migration Inhibitory Factor Deficiency Attenuates Macrophage Recruitment, Glomerulonephritis, and Lethality in MRL/Lpr Mice. J. Immunol. 2006, 177, 5687–5696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merk, M.; Mitchell, R.A.; Endres, S.; Bucala, R. D-Dopachrome Tautomerase (D-DT or MIF-2): Doubling the MIF Cytokine Family. Cytokine 2012, 59, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Gilliver, S.C.; Emmerson, E.; Bernhagen, J.; Hardman, M.J. MIF: A Key Player in Cutaneous Biology and Wound Healing. Exp. Dermatol. 2011, 20, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Morand, E.F.; Leech, M.; Bernhagen, J. MIF: A New Cytokine Link between Rheumatoid Arthritis and Atherosclerosis. Nat. Rev. Drug Discov. 2006, 5, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Kang, I.; Bucala, R. The Immunobiology of MIF: Function, Genetics and Prospects for Precision Medicine. Nat. Rev. Rheumatol. 2019, 15, 427–437. [Google Scholar] [CrossRef]
- Jankauskas, S.S.; Wong, D.W.L.; Bucala, R.; Djudjaj, S.; Boor, P. Evolving Complexity of MIF Signaling. Cell. Signal. 2019, 57, 76–88. [Google Scholar] [CrossRef]
- Stosic-Grujicic, S.; Stojanovic, I.; Nicoletti, F. MIF in Autoimmunity and Novel Therapeutic Approaches. Autoimmun. Rev. 2009, 8, 244–249. [Google Scholar] [CrossRef]
- Benedek, G.; Meza-Romero, R.; Jordan, K.; Zhang, Y.; Nguyen, H.; Kent, G.; Li, J.; Siu, E.; Frazer, J.; Piecychna, M.; et al. MIF and D-DT Are Potential Disease Severity Modifiers in Male MS Subjects. Proc. Natl. Acad. Sci. USA 2017, 114, E8421–E8429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernhagen, J.; Krohn, R.; Lue, H.; Gregory, J.L.; Zernecke, A.; Koenen, R.R.; Dewor, M.; Georgiev, I.; Schober, A.; Leng, L.; et al. MIF Is a Noncognate Ligand of CXC Chemokine Receptors in Inflammatory and Atherogenic Cell Recruitment. Nat. Med. 2007, 13, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Kleemann, R.; Hausser, A.; Geiger, G.; Mischke, R.; Burger-Kentischer, A.; Flieger, O.; Johannes, F.J.; Roger, T.; Calandra, T.; Kapurniotu, A.; et al. Intracellular Action of the Cytokine MIF to Modulate AP-1 Activity and the Cell Cycle through Jab1. Nature 2000, 408, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.; Reiss, K.; Shah, D.; Manjula, R.; Allen, B.; Murphy, E.L.; Murphy, J.W.; Batista, V.S.; Bhandari, V.; Lolis, E.J.; et al. A Structurally Preserved Allosteric Site in the MIF Superfamily Affects Enzymatic Activity and CD74 Activation in D-Dopachrome Tautomerase. J. Biol. Chem. 2021, 297, 101061. [Google Scholar] [CrossRef] [PubMed]
- Günther, S.; Fagone, P.; Jalce, G.; Atanasov, A.G.; Guignabert, C.; Nicoletti, F. Role of MIF and D-DT in Immune-Inflammatory, Autoimmune, and Chronic Respiratory Diseases: From Pathogenic Factors to Therapeutic Targets. Drug Discov. Today 2019, 24, 428–439. [Google Scholar] [CrossRef]
- Li, J.; Stein, T.D.; Johnson, J.A. Genetic Dissection of Systemic Autoimmune Disease in Nrf2-Deficient Mice. Physiol. Genom. 2004, 18, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Bayo Jimenez, M.T.; Frenis, K.; Hahad, O.; Steven, S.; Cohen, G.; Cuadrado, A.; Münzel, T.; Daiber, A. Protective Actions of Nuclear Factor Erythroid 2-Related Factor 2 (NRF2) and Downstream Pathways against Environmental Stressors. Free. Radic. Biol. Med. 2022, 187, 72–91. [Google Scholar] [CrossRef]
- Bomprezzi, R. Dimethyl Fumarate in the Treatment of Relapsing-Remitting Multiple Sclerosis: An Overview. Ther. Adv. Neurol. Disord. 2015, 8, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Tsianakas, A.; Herzog, S.; Landmann, A.; Patsinakidis, N.; Perusquía Ortiz, A.M.; Bonsmann, G.; Luger, T.A.; Kuhn, A. Successful Treatment of Discoid Lupus Erythematosus with Fumaric Acid Esters. J. Am. Acad. Dermatol. 2014, 71, E15–E17. [Google Scholar] [CrossRef]
- Saracino, A.M.; Orteu, C.H. Severe Recalcitrant Cutaneous Manifestations in Systemic Lupus Erythematosus Successfully Treated with Fumaric Acid Esters. Br. J. Dermatol. 2017, 176, 472–480. [Google Scholar] [CrossRef]
- Jiang, L.; Fei, D.; Gong, R.; Yang, W.; Yu, W.; Pan, S.; Zhao, M.; Zhao, M. CORM-2 Inhibits TXNIP/NLRP3 Inflammasome Pathway in LPS-Induced Acute Lung Injury. Inflamm. Res. 2016, 65, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.-Z.; Yang, B.-S.; Li, H.; Zhang, Y.-F.; Pei, F.-H.; Zhu, A.-C.; Wang, X.-R.; Liu, B.-R. The Therapeutic Effect of CORM-3 on Acute Liver Failure Induced by Lipopolysaccharide/D-Galactosamine in Mice. Hepatobiliary Pancreat. Dis. Int. 2016, 15, 73–80. [Google Scholar] [CrossRef]
- Maicas, N.; Ferrándiz, M.L.; Devesa, I.; Motterlini, R.; Koenders, M.I.; van den Berg, W.B.; Alcaraz, M.J. The CO-Releasing Molecule CORM-3 Protects against Articular Degradation in the K/BxN Serum Transfer Arthritis Model. Eur. J. Pharmacol. 2010, 634, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, L.; Alcaraz, M.J.; Maicas, N.; Guede, D.; Caeiro, J.R.; Motterlini, R.; Ferrándiz, M.L. Downregulation of the Inflammatory Response by CORM-3 Results in Protective Effects in a Model of Postmenopausal Arthritis. Calcif. Tissue Int. 2012, 91, 69–80. [Google Scholar] [CrossRef] [PubMed]
Patient | Skin | Inflammatory Infiltrate | Annexes | Inflammatory Score |
---|---|---|---|---|
16/3436 | 1 | 2 | 2 | 3 |
15/161 | 2 | 3 | 1 | 2 |
15/1175 | 1 | 1 | 1 | 3 |
15/5303 | 1 | 1 | 1 | 1 |
15/5218 | 1 | 1 | 1 | 2 |
153162 | 1 | 1 | 1 | 1 |
15/4589 | 1 | 1 | 1 | 2 |
15/4494 | 1 | 1 | 1 | 2 |
14/4788 | 3 | 3 | 3 | 2 |
16/3949 | 3 | 3 | 3 | 1 |
V 14/1412 | 2 | 1 | 2 | 3 |
V 14/1812 | 1 | 2 | 1 | 3 |
V 14/1967 | 3 | 3 | 3 | 2 |
V 14/2544 | 2 | 3 | 3 | 1 |
V 14/3529 | 2 | 2 | 2 | 1 |
V 14/3962 | 2 | 2 | 1 | 1 |
V 14/3979 | 3 | 3 | 3 | 1 |
V 15/2561 | 1 | 1 | 2 | 2 |
V 16/2768 | 2 | 2 | 1 | 2 |
V 15/2561 | 1 | 1 | 2 | 2 |
V 16/2768 | 2 | 2 | 1 | 2 |
V 16/2820 | 3 | 3 | 2 | 1 |
V 16/6534 | 1 | 1 | 1 | 3 |
V 13/6726 | 1 | 2 | 1 | 3 |
V 13/6499 | 1 | 2 | 1 | 3 |
V 14/211 | 2 | 2 | 2 | 2 |
V 14/3691 | 1 | 2 | 1 | 2 |
V 14/4134 | 1 | 1 | 1 | 2 |
V 14/4804 | 1 | 1 | 1 | 3 |
V 16/7906 | 2 | 2 | 1 | 3 |
V 14/5895 | 1 | 2 | 1 | 2 |
V 14/7815 | 0 | 0 | 0 | 3 |
V 15/1041 | 2 | 1 | 2 | 3 |
V 15/4192 | 1 | 2 | 1 | 3 |
V 16/2033 | 2 | 1 | 1 | 2 |
V 16/1972 | 1 | 1 | 1 | 3 |
V 16/1891 | 1 | 2 | 1 | 3 |
V 14/7513 | 1 | 1 | 1 | 3 |
V 16/7695 | 1 | 1 | 1 | 3 |
Network | Annotation |
---|---|
_FINAL_SUB1_MCODE_1 | R-HSA-6809371|Formation of the cornified envelope|−11.8; GO:0030216|keratinocyte differentiation|−11.5; GO:0009913|epidermal cell differentiation|−10.5 |
_FINAL_SUB1_MCODE_2 | R-HSA-9637690|Response of Mtb to phagocytosis|−6.6; R-HSA-9635486|Infection with Mycobacterium tuberculosis|−6.4; M210|PID IL8 CXCR2 PATHWAY|−6.1 |
_FINAL_SUB1_MCODE_3 | R-HSA-5617472|Activation of anterior HOX genes in hindbrain development during early embryogenesis|−4.7;R-HSA-5619507|Activation of HOX genes during differentiation|−4.7; GO:0009267|cellular response to starvation|−4.2 |
_FINAL_SUB1_MCODE_4 | R-HSA-450531|Regulation of mRNA stability by proteins that bind AU-rich elements|−5.4; R-HSA-4086400|PCP/CE pathway|−5.4; GO:0042176|regulation of protein catabolic process|−5.2 |
_FINAL_SUB1_MCODE_5 | hsa04727|GABAergic synapse|−11.4; hsa04914|Progesterone-mediated oocyte maturation|−8.4; hsa04915|Estrogen signaling pathway|−7.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fagone, P.; Piombino, E.; Mangano, K.; De Pasquale, R.; Nicoletti, F.; Caltabiano, R. Evaluation of the Involvement of Heme Oxygenase-1 Expression in Discoid Lupus Erythematosus Lesions. Antioxidants 2023, 12, 1352. https://doi.org/10.3390/antiox12071352
Fagone P, Piombino E, Mangano K, De Pasquale R, Nicoletti F, Caltabiano R. Evaluation of the Involvement of Heme Oxygenase-1 Expression in Discoid Lupus Erythematosus Lesions. Antioxidants. 2023; 12(7):1352. https://doi.org/10.3390/antiox12071352
Chicago/Turabian StyleFagone, Paolo, Eliana Piombino, Katia Mangano, Rocco De Pasquale, Ferdinando Nicoletti, and Rosario Caltabiano. 2023. "Evaluation of the Involvement of Heme Oxygenase-1 Expression in Discoid Lupus Erythematosus Lesions" Antioxidants 12, no. 7: 1352. https://doi.org/10.3390/antiox12071352
APA StyleFagone, P., Piombino, E., Mangano, K., De Pasquale, R., Nicoletti, F., & Caltabiano, R. (2023). Evaluation of the Involvement of Heme Oxygenase-1 Expression in Discoid Lupus Erythematosus Lesions. Antioxidants, 12(7), 1352. https://doi.org/10.3390/antiox12071352