Artifacts Introduced by Sample Handling in Chemiluminescence Assays of Nitric Oxide Metabolites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Experimental Animals
2.3. Sample Collection and Processing
2.4. Analytical Methods
2.5. Statistics
3. Results
3.1. Effects of Room Temperature Placement on Plasma and Blood NOx
3.2. Effects of Liquid Nitrogen Snap Freezing on Plasma NOx
3.3. Liquid Nitrogen Treatments Decrease NOx in Aorta of Stressed Animals
3.4. Effects of Stop Solution and Deproteinization on Whole Blood NOx
3.5. Effects of Several Reagents on the Stability of GSNO, BDNIC, MDNIC, and Heme-NO
3.6. Effects of Blood on NOx Measurement with VitC/AcOH Assay
4. Discussion
4.1. Artifacts Introduced by Liquid Nitrogen Treatments of Samples
4.2. Artifacts Introduced by Chemical Pretreatments of Samples
4.3. Limitations of Our Four-Assay Method
5. Perspectives
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thomas, D.D.; Liu, X.; Kantrow, S.P.; Lancaster, J.R. The Biological Lifetime of Nitric Oxide: Implications for the Perivascular Dynamics of NO and O2. Proc. Natl. Acad. Sci. USA 2001, 98, 355–360. [Google Scholar] [CrossRef]
- Liu, T.; Mukosera, G.T.; Blood, A.B. The Role of Gasotransmitters in Neonatal Physiology. Nitric Oxide 2020, 95, 29–44. [Google Scholar] [CrossRef]
- Liu, T.; Schroeder, H.; Power, G.G.; Blood, A.B. A Physiologically Relevant Role for NO Stored in Vascular Smooth Muscle Cells: A Novel Theory of Vascular NO Signaling. Redox Biol. 2022, 53, 102327. [Google Scholar] [CrossRef]
- Jia, L.; Bonaventura, C.; Bonaventura, J.; Stamler, J.S. S-Nitrosohaemoglobin: A Dynamic Activity of Blood Involved in Vascular Control. Nature 1996, 380, 221–226. [Google Scholar] [CrossRef]
- Cosby, K.; Partovi, K.S.; Crawford, J.H.; Patel, R.P.; Reiter, C.D.; Martyr, S.; Yang, B.K.; Waclawiw, M.A.; Zalos, G.; Xu, X.; et al. Nitrite Reduction to Nitric Oxide by Deoxyhemoglobin Vasodilates the Human Circulation. Nat. Med. 2003, 9, 1498–1505. [Google Scholar] [CrossRef]
- Gladwin, M.T.; Schechter, A.N. NO Contest: Nitrite versus S-Nitroso-Hemoglobin. Circ. Res. 2004, 94, 851–855. [Google Scholar] [CrossRef]
- Stamler, J.S.; Jaraki, O.; Osborne, J.; Simon, D.I.; Keaney, J.; Vita, J.; Singel, D.; Valeri, C.R.; Loscalzo, J. Nitric Oxide Circulates in Mammalian Plasma Primarily as an S-Nitroso Adduct of Serum Albumin. Proc. Natl. Acad. Sci. USA 1992, 89, 7674–7677. [Google Scholar] [CrossRef]
- Gow, A.; Doctor, A.; Mannick, J.; Gaston, B. S-Nitrosothiol Measurements in Biological Systems. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007, 851, 140–151. [Google Scholar] [CrossRef]
- Samouilov, A.; Zweier, J.L. Development of Chemiluminescence-Based Methods for Specific Quantitation of Nitrosylated Thiols. Anal. Biochem. 1998, 258, 322–330. [Google Scholar] [CrossRef]
- Bryan, N.S.; Grisham, M.B. Methods to Detect Nitric Oxide and Its Metabolites in Biological Samples. Free Radic. Biol. Med. 2007, 43, 645–657. [Google Scholar] [CrossRef]
- Di Fenza, R.; Yu, B.; Carroll, R.W.; Berra, L. Chemiluminescence-Based Assays for Detection of Nitric Oxide and Its Derivatives from Autoxidation and Nitrosated Compounds. J. Vis. Exp. 2022, 16, e63107. [Google Scholar] [CrossRef]
- Gladwin, M.T.; Wang, X.; Reiter, C.D.; Yang, B.K.; Vivas, E.X.; Bonaventura, C.; Schechter, A.N. S-Nitrosohemoglobin Is Unstable in the Reductive Erythrocyte Environment and Lacks O2/NO-Linked Allosteric Function. J. Biol. Chem. 2002, 277, 27818–27828. [Google Scholar] [CrossRef]
- Piknova, B.; Schechter, A.N. Measurement of Nitrite in Blood Samples Using the Ferricyanide-Based Hemoglobin Oxidation Assay. Methods Mol. Biol. 2011, 704, 39–56. [Google Scholar]
- Feelisch, M.; Rassaf, T.; Mnaimneh, S.; Singh, N.; Bryan, N.S.; Jourd’Heuil, D.; Kelm, M. Concomitant S-, N-, and Heme-nitros(yl)ation in Biological Tissues and Fluids: Implications for the Fate of NO in Vivo. FASEB J. 2002, 16, 1775–1785. [Google Scholar] [CrossRef] [PubMed]
- Bryan, N.S.; Rassaf, T.; Rodriguez, J.; Feelisch, M. Bound NO in Human Red Blood Cells: Fact or Artifact? Nitric Oxide 2004, 10, 221–228. [Google Scholar] [CrossRef]
- Giustarini, D.; Milzani, A.; Colombo, R.; Dalle-Donne, I.; Rossi, R. Nitric Oxide, S-Nitrosothiols and Hemoglobin: Is Methodology the Key? Trends Pharmacol. Sci. 2004, 25, 311–316. [Google Scholar] [CrossRef]
- Wang, X.; Bryan, N.S.; MacArthur, P.H.; Rodriguez, J.; Gladwin, M.T.; Feelisch, M. Measurement of Nitric Oxide Levels in the Red Cell: Validation of Tri-Iodide-Based Chemiluminescence with Acid-Sulfanilamide Pretreatment. J. Biol. Chem. 2006, 281, 26994–27002. [Google Scholar] [CrossRef]
- Luchsinger, B.P.; Rich, E.N.; Gow, A.J.; Williams, E.M.; Stamler, J.S.; Singel, D.J. Routes to S-Nitroso-Hemoglobin Formation with Heme Redox and Preferential Reactivity in the β Subunits. Proc. Natl. Acad. Sci. USA 2003, 100, 461–466. [Google Scholar] [CrossRef]
- Rogers, S.C.; Khalatbari, A.; Gapper, P.W.; Frenneaux, M.P.; James, P.E. Detection of Human Red Blood Cell-Bound Nitric Oxide. J. Biol. Chem. 2005, 280, 26720–26728. [Google Scholar] [CrossRef]
- Hausladen, A.; Rafikov, R.; Angelo, M.; Singel, D.J.; Nudler, E.; Stamler, J.S. Assessment of Nitric Oxide Signals by Triiodide Chemiluminescence. Proc. Natl. Acad. Sci. USA 2007, 104, 2157–2162. [Google Scholar] [CrossRef]
- Mukosera, G.T.; Liu, T.; Ishtiaq Ahmed, A.S.; Li, Q.; Sheng, M.H.-C.; Tipple, T.E.; Baylink, D.J.; Power, G.G.; Blood, A.B. Detection of Dinitrosyl Iron Complexes by Ozone-Based Chemiluminescence. Nitric Oxide 2018, 79, 57–67. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, M.; Mourkus, A.; Schroeder, H.; Zhang, L.; Power, G.G.; Blood, A.B. Chronic High-Altitude Hypoxia Alters Iron and Nitric Oxide Homeostasis in Fetal and Maternal Sheep Blood and Aorta. Antioxidants 2022, 11, 1821. [Google Scholar] [CrossRef]
- Blood, A.B.; Power, G.G. In vitro and in vivo kinetic handling of nitrite in blood: Effects of varying hemoglobin oxygen saturation. Am. J. Physiol. -Heart Circ. Physiol. 2007, 293, H1508–H1517. [Google Scholar] [CrossRef]
- Blood, A.B.; Tiso, M.; Verma, S.T.; Lo, J.; Joshi, M.S.; Azarov, I.; Longo, L.D.; Gladwin, M.T.; Kim-Shapiro, D.B.; Power, G.G. Increased nitrite reductase activity of fetal versus adult ovine hemogblobin. Am. J. Physiol.-Heart Circ. Physiol. 2009, 296, H237–H246. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, M.; Terry, M.H.; Schroeder, H.; Wilson, S.M.; Power, G.G.; Li, Q.; Tipple, T.E.; Borchardt, D.; Blood, A.B. Nitrite Potentiates the Vasodilatory Signaling of S-Nitrosothiols. Nitric Oxide 2018, 75, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Schroeder, H.J.; Zhang, M.; Wilson, S.M.; Terry, M.H.; Longo, L.D.; Power, G.G.; Blood, A.B. S-Nitrosothiols Dilate the Mesenteric Artery More Potently than the Femoral Artery by a cGMP and L-Type Calcium Channel-Dependent Mechanism. Nitric Oxide 2016, 58, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, M.; Terry, M.H.; Schroeder, H.; Wilson, S.M.; Power, G.G.; Li, Q.; Tipple, T.E.; Borchardt, D.; Blood, A.B. Hemodynamic Effects of Glutathione-Liganded Binuclear Dinitrosyl Iron Complex: Evidence for Nitroxyl Generation and Modulation by Plasma Albumin. Mol. Pharmacol. 2018, 93, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Jung, P.; Ha, E.; Zhang, M.; Fall, C.; Hwang, M.; Taylor, E.; Stetkevich, S.; Bhanot, A.; Wilson, C.G.; Figueroa, J.D.; et al. Neuroprotective Role of Nitric Oxide Inhalation and Nitrite in a Neonatal Rat Model of Hypoxic-Ischemic Injury. PLoS ONE 2022, 17, e0268282. [Google Scholar] [CrossRef]
- Goyal, R.; Longo, L.D. Metabolic Profiles in Ovine Carotid Arteries with Developmental Maturation and Long-Term Hypoxia. PLoS ONE 2015, 10, e0130739. [Google Scholar] [CrossRef]
- Ducsay, C.A.; Goyal, R.; Pearce, W.J.; Wilson, S.; Hu, X.-Q.; Zhang, L. Gestational Hypoxia and Developmental Plasticity. Physiol. Rev. 2018, 98, 1241–1334. [Google Scholar] [CrossRef]
- Dejam, A.; Hunter, C.J.; Pelletier, M.M.; Hsu, L.L.; Machado, R.F.; Shiva, S.; Power, G.G.; Kelm, M.; Gladwin, M.T.; Schechter, A.N. Erythrocytes Are the Major Intravascular Storage Sites of Nitrite in Human Blood. Blood 2005, 106, 734–739. [Google Scholar] [CrossRef] [PubMed]
- Mazzilli, F.; Rossi, T.; Sabatini, L.; Pulcinelli, F.M.; Rapone, S.; Dondero, F.; Gazzaniga, P.P. Human Sperm Cryopreservation and Reactive Oxygen Species (ROS) Production. Acta Eur. Fertil. 1995, 26, 145–148. [Google Scholar] [PubMed]
- Kolhe, P.; Amend, E.; Singh, S.K. Impact of Freezing on pH of Buffered Solutions and Consequences for Monoclonal Antibody Aggregation. Biotechnol. Prog. 2010, 26, 727–733. [Google Scholar] [CrossRef]
- Haukaas, T.H.; Moestue, S.A.; Vettukattil, R.; Sitter, B.; Lamichhane, S.; Segura, R.; Giskeødegård, G.F.; Bathen, T.F. Impact of Freezing Delay Time on Tissue Samples for Metabolomic Studies. Front. Oncol. 2016, 6, 17. [Google Scholar] [CrossRef] [PubMed]
- Rafikova, O.; Rafikov, R.; Nudler, E. Catalysis of S-Nitrosothiols Formation by Serum Albumin: The Mechanism and Implication in Vascular Control. Proc. Natl. Acad. Sci. USA 2002, 99, 5913–5918. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Liu, J.-C.; Xu, M.; Zhao, Y.; Ma, X.-L.; Dong, J.; Zheng, X.; Zheng, J.; Allen, C.S.; Danaie, M.; et al. Molecular Nitrogen Promotes Catalytic Hydrodeoxygenation. Nat. Catal. 2019, 2, 1078–1087. [Google Scholar] [CrossRef]
- McWilliams, S.F.; Broere, D.L.J.; Halliday, C.J.V.; Bhutto, S.M.; Mercado, B.Q.; Holland, P.L. Coupling Dinitrogen and Hydrocarbons through Aryl Migration. Nature 2020, 584, 221–226. [Google Scholar] [CrossRef]
- Mukosera, G.T.; Principe, P.; Mata-Greenwood, E.; Liu, T.; Schroeder, H.; Parast, M.; Blood, A.B. Iron Nitrosyl Complexes Are Formed from Nitrite in the Human Placenta. J. Biol. Chem. 2022, 298, 102078. [Google Scholar] [CrossRef]
- Blood, A.B.; Liu, T.; Mukosera, G.; Hanson, S.F.; Terry, M.H.; Schroeder, H.; Power, G.G. Evidence for Placental-Derived Iron-Nitrosyls in the Circulation of the Fetal Lamb and against a Role for Nitrite in Mediating the Cardiovascular Transition at Birth. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2020, 319, R401–R411. [Google Scholar] [CrossRef]
- Ghasemi, A.; Hedayati, M.; Biabani, H. Protein Precipitation Methods Evaluated for Determination of Serum Nitric Oxide End Products by the Griess Assay. J. Manag. Spiritual. Relig. 2007, 2, 29–32. [Google Scholar]
- Romitelli, F.; Santini, S.A.; Chierici, E.; Pitocco, D.; Tavazzi, B.; Amorini, A.M.; Lazzarino, G.; Di Stasio, E. Comparison of Nitrite/nitrate Concentration in Human Plasma and Serum Samples Measured by the Enzymatic Batch Griess Assay, Ion-Pairing HPLC and Ion-Trap GC–MS: The Importance of a Correct Removal of Proteins in the Griess Assay. J. Chromatogr. 2007, 851, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Keszler, A.; Diers, A.R.; Ding, Z.; Hogg, N. Thiolate-Based Dinitrosyl Iron Complexes: Decomposition and Detection and Differentiation from S-Nitrosothiols. Nitric Oxide 2017, 65, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hickok, J.R.; Sahni, S.; Shen, H.; Arvind, A.; Antoniou, C.; Fung, L.W.M.; Thomas, D.D. Dinitrosyliron Complexes Are the Most Abundant Nitric Oxide-Derived Cellular Adduct: Biological Parameters of Assembly and Disappearance. Free Radic. Biol. Med. 2011, 51, 1558–1566. [Google Scholar] [CrossRef] [PubMed]
- Vanin, A.F. Dinitrosyl Iron Complexes with Thiol-Containing Ligands as a “Working Form” of Endogenous Nitric Oxide. Nitric Oxide 2016, 54, 15–29. [Google Scholar] [CrossRef]
- Spolitak, T.; Hollenberg, P.F.; Ballou, D.P. Oxidative Hemoglobin Reactions: Applications to Drug Metabolism. Arch. Biochem. Biophys. 2016, 600, 33–46. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, M.; Mukosera, G.T.; Borchardt, D.; Li, Q.; Tipple, T.E.; Ishtiaq Ahmed, A.S.; Power, G.G.; Blood, A.B. L-NAME Releases Nitric Oxide and Potentiates Subsequent Nitroglycerin-Mediated Vasodilation. Redox Biol. 2019, 26, 101238. [Google Scholar] [CrossRef]
- Swift, H.R.; Williams, D.L.H. Decomposition of S-Nitrosothiols by Mercury(II) and Silver Salts. J. Chem. Soc. Perkin Trans. 1997, 2, 1933–1935. [Google Scholar] [CrossRef]
- Mukosera, G.T.; Liu, T.; Manaen, M.; Zhu, L.; Power, G.; Schroeder, H.; Blood, A.B. Deferoxamine Produces Nitric Oxide under Ferricyanide Oxidation, Blood Incubation, and UV-Irradiation. Free Radic. Biol. Med. 2020, 160, 458–470. [Google Scholar] [CrossRef]
Reagents | GSNO | BDNIC | MDNIC | Heme-NO |
---|---|---|---|---|
HgCl2 (2.5 mM) | + | + | + | − |
AS (0.125% w/v) | − | + | + | + |
HgCl2 + AS | + | + | + | + |
NEM (100 μM) | − | ? | ? | − |
K3[Fe(CN)6] (0.5 mM) | + | + | + | + |
EDTA (25 mM) | + | + | + | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Zhang, M.; Duot, A.; Mukosera, G.; Schroeder, H.; Power, G.G.; Blood, A.B. Artifacts Introduced by Sample Handling in Chemiluminescence Assays of Nitric Oxide Metabolites. Antioxidants 2023, 12, 1672. https://doi.org/10.3390/antiox12091672
Liu T, Zhang M, Duot A, Mukosera G, Schroeder H, Power GG, Blood AB. Artifacts Introduced by Sample Handling in Chemiluminescence Assays of Nitric Oxide Metabolites. Antioxidants. 2023; 12(9):1672. https://doi.org/10.3390/antiox12091672
Chicago/Turabian StyleLiu, Taiming, Meijuan Zhang, Abraham Duot, George Mukosera, Hobe Schroeder, Gordon G. Power, and Arlin B. Blood. 2023. "Artifacts Introduced by Sample Handling in Chemiluminescence Assays of Nitric Oxide Metabolites" Antioxidants 12, no. 9: 1672. https://doi.org/10.3390/antiox12091672
APA StyleLiu, T., Zhang, M., Duot, A., Mukosera, G., Schroeder, H., Power, G. G., & Blood, A. B. (2023). Artifacts Introduced by Sample Handling in Chemiluminescence Assays of Nitric Oxide Metabolites. Antioxidants, 12(9), 1672. https://doi.org/10.3390/antiox12091672