Antimicrobial, Antioxidant, and Anti-Inflammatory Properties of Monofloral Honeys from Chile
Abstract
:1. Introduction
2. Material and Methods
3. Biological Properties of Chilean Honeys
3.1. Antimicrobial Properties
3.2. Antioxidant Properties
3.3. Anti-Inflammatory Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schencke, C.; Vásquez, B.; Sandoval, C.; del Sol, M. El rol de la miel en los procesos morfofisiológicos de reparación de heridas. Int. J. Morphol. 2016, 34, 385–395. [Google Scholar] [CrossRef]
- Mejias, E.; Gómez, C.; Garrido, T.; Godoy, P.; Gómez, M.; Montenegro, G. Natural attributes of Chilean honeys modified by the presence of neonicotinoids residues. Agrofor. Syst. 2019, 93, 2257–2266. [Google Scholar] [CrossRef]
- Montenegro, G.; Salas, F.; Peña, R.C.; Pizarro, R. Antibacterial and antifungic activity of the unifloral honeys of Quillaja saponaria, an endemic Chilean species. Phyton 2009, 78, 141–146. [Google Scholar] [CrossRef]
- FAO. Mieles Chilenas para el Mundo: Atributos, propiedades e innovación. In Gloria Montenegro; Universidad Católica de Chile: Santiago, Chile, 2023; in press. [Google Scholar]
- Norma Chilena NCh2981. Miel de Abejas-Denominación de Origen Botánico Mediante Ensayo Melisopalinológico; Instituto Nacional de Normalización: Santiago, Chile, 2005. [Google Scholar]
- Lizama, A.G. Boletín Interactivo Apícola. ODEPA—Oficina de Estudios y Políticas Agrarias. 2023. [Google Scholar]
- Rodríguez, R.; Marticorena, C.; Alarcón, D.; Baeza, C.; Cavieres, L.; Finot, V.L.; Fuentes, N.; Kiessling, A.; Mihoc, M.; Pauchard, A.; et al. Catálogo de las plantas vasculares de Chile. Gayana Botánica 2018, 75, 1–430. [Google Scholar] [CrossRef]
- Larsson, D.J.; Flach, C.F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef]
- Bartlett, J.G.; Gilbert, D.N.; Spellberg, B. Seven ways to preserve the miracle of antibiotics. Clin. Infect. Dis. 2013, 56, 1445–1450. [Google Scholar] [CrossRef]
- Kalidasan, G.; Saranraj, P.; Ragul, V.; Sivasakthi, S. Antibacterial activity of natural and commercial honey—A comparative study. Adv. Biol. Res. 2017, 11, 365–372. [Google Scholar]
- Nolan, V.C.; Harrison, J.; Cox, J.A.G. Dissecting the antimicrobial composition of honey. Antibiotics 2019, 8, 251. [Google Scholar] [CrossRef]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef]
- Vonkeman, H.E.; van de Laar, M.A.F.J. Nonsteroidal anti-inflammatory drugs: Adverse effects and their prevention. Semin. Arthritis Rheum. 2010, 39, 294–312. [Google Scholar] [CrossRef]
- Whitehouse, M.W. Anti-inflammatory glucocorticoid drugs: Reflections after 60 years. Inflammopharmacology 2010, 19, 1–19. [Google Scholar] [CrossRef]
- Pan, M.-H.; Lai, C.-S.; Ho, C.-T. Anti-inflammatory activity of natural dietary flavonoids. Food Funct. 2010, 1, 15. [Google Scholar] [CrossRef]
- Oryan, A.; Alemzadeh, E.; Moshiri, A. Biological properties and therapeutic activities of honey in wound healing: A narrative review and meta-analysis. J. Tissue Viability 2016, 25, 98–118. [Google Scholar] [CrossRef]
- Alfadda, A.A.; Sallam, R.M. Reactive oxygen species in health and disease. J. Biomed. Biotechnol. 2012, 2012, 936486. [Google Scholar] [CrossRef]
- Ciappini, C.; Stoppani, F.; Martinet, R.; Alvarez, M. Actividad antioxidante y contenido de compuestos fenólicos y flavonoides en mieles de tréboles, eucalipto y alfalfa. Rev. Cienc. Tecnol. 2013, 19, 45–51. [Google Scholar]
- Zeb, A. Concept, mechanism, and applications of phenolic antioxidants in foods. J. Food Biochem. 2020, 44, e13394. [Google Scholar] [CrossRef]
- Alvarez-Suarez, J.M.; Gasparrini, M.; Forbes-Hernández, T.Y.; Mazzoni, L.; Giampieri, F. The composition and biological activity of honey: A focus on manuka honey. Foods 2014, 3, 420–432. [Google Scholar] [CrossRef]
- Olate-Olave, V.R.; Guzmán, L.; López-Cortés, X.A.; Cornejo, R.; Nachtigall, F.M.; Doorn, M.; Santos, L.S.; Bejarano, A. Comparison of Chilean honeys through MALDI-TOF-MS profiling and evaluation of their antioxidant and antibacterial potential. Ann. Agric. Sci. 2021, 66, 152–161. [Google Scholar] [CrossRef]
- Bridi, R.; Montenegro, G. The value of Chilean honey: Floral origin related to their antioxidant and antibacterial activities. In Honey Analysis; InTech: Houston, TX, USA, 2017; pp. 63–79. [Google Scholar] [CrossRef]
- Velásquez, P.; Montenegro, G.; Leyton, F.; Ascar, L.; Ramirez, O.; Giordano, A. Bioactive compounds and antibacterial properties of monofloral ulmo honey. CYTA—J. Food 2019, 18, 11–19. [Google Scholar] [CrossRef]
- Montenegro, G.; Santander, F.; Jara, C.; Núñez, G.; Fredes, C. Antioxidant and antimicrobial activity of unifloral honeys of plants native to Chile. Bol. Latinoam. Caribe Plant. Med. Aromat. 2013, 12, 257–268. [Google Scholar]
- Sherlock, O.; Dolan, A.; Athman, R.; Power, A.; Gethin, G.; Cowman, S.; Humphreys, H. Comparison of the antimicrobial activity of ulmo honey from Chile and manuka honey against methicillin-resistant Staphylococcus aureus, Escherichia coli and Pseudo-monas aeruginosa. BMC Complement. Altern. Med. 2010, 10, 47. [Google Scholar] [CrossRef] [PubMed]
- Bridi, R.; Nuñez-Quijada, G.; Aguilar, P.; Martínez, P.; Lissi, E.; Giordano Villatoro, A.; Montenegro Rizzardini, G. Differences between phenolic content and antioxidant capacity of quillay Chilean honeys and their separated phenolic extracts. Cienc. Inv. Agr. 2017, 44, 250–251. [Google Scholar] [CrossRef]
- Leos-Rivas, C.; Rivas-Morales, C.; García-Hernández, D.G. Actividad antioxidante y toxicidad. In Investigación en Plantas de Importancia Médica; OmniaScience: Barcelona, Spain, 2016; pp. 41–76. [Google Scholar] [CrossRef]
- Giordano, A.; Retamal, M.; Leyton, F.; Martínez, P.; Bridi, R.; Velásquez, P.; Montenegro, G. Bioactive polyphenols and antioxidant capacity of Azara petiolaris and Azara integrifolia honeys. CYTA—J. Food 2018, 16, 484–489. [Google Scholar] [CrossRef]
- Van den Berg, A.; Van den Worm, E.; Quarles van Ufford, H.; Halkes, S.; Hoekstra, M.; Beukelman, C. An in vitro examination of the antioxidant and anti-inflammatory properties of buckwheat honey. J. Wound Care 2008, 17, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Ferrero-Miliani, L.; Nielsen, O.H.; Andersen, P.S.; Girardin, S.E. Chronic inflammation: Importance of NOD2 and NALP3 in interleukin-1β generation. Clin. Exp. Immunol. 2006, 147, 227–235. [Google Scholar] [CrossRef]
- Molan, P.; Rhodes, T. Honey: A Biologic Wound Dressing. Wounds 2015, 27, 141–151. [Google Scholar]
- Yang, Z.; Min, Z.; Yu, B. Reactive oxygen species and immune regulation. Int. Rev. Immunol. 2020, 39, 292–298. [Google Scholar] [CrossRef]
- Schencke, C.; Vasconcellos, A.; Sandoval, C.; Torres, P.; Acevedo, F.; del Sol, M. Morphometric evaluation of wound healing in burns treated with ulmo (Eucryphia cordifolia) honey alone and supplemented with ascorbic acid in guinea pig (Cavia porcellus). Burns Trauma 2016, 4, 25. [Google Scholar] [CrossRef]
- Sánchez, E.; Piovano, M.; Valdés, E.; Young, M.E.; Acevedo, C.A.; Osorio, M. Determination of antioxidant properties of 26 Chilean honeys and a mathematical association study with their volatile profile. Nat. Prod. Commun. 2012, 7, 951–954. [Google Scholar] [CrossRef]
- Acevedo, F.; Torres, P.; Oomah, B.D.; de Alencar, S.M.; Massarioli, A.P.; Martín-Venegas, R.; Albarral-Ávila, V.; Burgos-Díaz, C.; Ferrer, R.; Rubilar, M. Volatile and non-volatile/semi-volatile compounds and in vitro bioactive properties of Chilean ulmo (Eucryphia cordifolia Cav.) honey. Food Res. Int. 2017, 94, 20–28. [Google Scholar] [CrossRef]
- Khatkar, A.; Nanda, A.; Kumar, P.; Narasimhan, B. Synthesis, antimicrobial evaluation and QSAR studies of gallic acid derivatives. Arab. J. Chem. 2017, 10, S2870–S2880. [Google Scholar] [CrossRef]
- Viteri, R.; Giordano, A.; Montenegro, G.; Zacconi, F.C. Flavonoids and triterpenes isolated from Eucryphia cordifolia (Cunoniaceae). Biochem. Syst. Ecol. 2022, 104, 104476. [Google Scholar] [CrossRef]
- Delporte, C.; Rodríguez-Díaz, M.; Cassels, B.K. Quillaja saponaria Molina. In Medicinal and Aromatic Plants of South America Vol. 2. Medicinal and Aromatic Plants of the World; Máthé, Á., Bandoni, A., Eds.; Springer: Cham, Switzerland, 2021; pp. 461–473. [Google Scholar] [CrossRef]
- Montenegro, G.; Díaz-Forestier, J.; Fredes, C.; Rodríguez, S. Phenolic profiles of nectar and honey of Quillaja saponaria Mol. (Quillajaceae) as potential chemical markers. Biol. Res. 2013, 46, 177–182. [Google Scholar] [CrossRef]
- Mandal, M.D.; Mandal, S. Honey: Its medicinal property and antibacterial activity. Asian Pac. J. Trop. Biomed. 2011, 1, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Montenegro, G.; Velásquez, P.; Viteri, R.; Giordano, A. Changes in the antibacterial capacity of ulmo honey in relation to the contribution of Eucryphia cordifolia pollen. J. Food Nutr. Res. 2021, 60, 279–283. [Google Scholar]
- Viteri, R.; Zacconi, F.; Montenegro, G.; Giordano, A. Bioactive compounds in Apis mellifera monofloral honeys. J. Food Sci. 2021, 86, 1552–1582. [Google Scholar] [CrossRef] [PubMed]
- Merckoll, P.; Jonassen, T.Ø.; Vad, M.E.; Jeansson, S.L.; Melby, K.K. Bacteria, biofilm and honey: A study of the effects of honey on “planktonic” and biofilm-embedded chronic wound bacteria. Scand. J. Infect. Dis. 2009, 41, 341–347. [Google Scholar] [CrossRef]
Honey Type | Antimicrobial Activity | Antioxidant Activity | Anti-Inflammatory Activity | Proposed Chemical Markers | References |
---|---|---|---|---|---|
Eucryphia cordifolia (ulmo) | Pseudomonas aeruginosa, Streptococcus pneumoniae type β, Vibrio cholerae, Candida albicans, Escherichia coli, Salmonella typhi, Staphylococcus aureus, Haemolitic Streptococcus | Determined by TPC, DPPH, and FRAP assays | Reported wound healing properties in association with anti-inflammatory mechanisms | Gallic acid, caffeic acid, p-coumaric acid, pinocembrin, chrysin, quercetin, luteolin, apigenin, chlorogenic acid, salicilic acid, esculetin, escopoletin, isoforone, cetoisoforone, trans β-damascenone, rutin | [23,24,25,33] |
Quillaja saponaria (quillay) | Pseudomonas aeruginosa, Streptococcus pneumoniae type β, Vibrio cholerae, Candida albicans, Escherichia coli, Salmonella typhi, Staphylococcus aureus, Haemolitic Streptococcus | Determined by TPC, DPPH, FRAP, and ORAC assays | None reportem | chlorogenic acid, caffeic acid, syringic acid, rutin, escopoletin, p-coumaric acid, vanillic acid, salicilic acid, gallic acid, ferulic acid, abscisic acid, kaempferol, quercetin, naringerin, hisperidin, miricetin, quercetin, esculetin, pinocembrin Megastigmatrienone, 2-p-hydroxiphenylalcohol, β-pinene, linalool oxide | [3,24,26,34] |
Gevuina avellana (Chilean hazelnut) | Escherichia coli, P. aeruginosa, S. aureus, Streptococcus pyogenes | Determined by TPC and FRAP assays | None reported | Acetofenone | [24] |
Escallonia pulverulenta (corontillo) | None reported | None reported | None reported | Derivatives from catechin gallic acid, protocatehuic acid, 2,4-di-hydroxibenzoic acid, catechin, epicatechin, p-coumaric acid quercetin, kaempferol safranal, hotrienol, trans β-damascenone | [4] |
Caldcluvia paniculata (tiaca) | Escherichia coli, P. aeruginosa, S. aureus, Streptococcus pyogenes | Determined by TPC and FRAP assays | None reported | Rutin, caffeic acid, pinocembrin, chrysin | [24] |
Trevoa trinervis (tebo o tevo) | None reported | Determined by TPC and DPPH assays | None reported | Acetone, isoamyl alcohol, acetic acid, furfural, benzaldehyde, isophorone, furfuryl alcohol, rutin, caffeic acid, pinocembrin, chrysin | [4] |
Azara petiolaris/ Azara integrifolia (corcolén) | None reported | Determined by TPC and ORAC assays | None reported | None reported | [28] |
(Cryptocarya Alba) Peumo | None reported | None reported | None reported | Gallic acid, benzoic acid derivatives, protocatehuic acid, 2,4-di-hydroxybenzoic acid, catechin, epicatechin, rutin, ellagic acid, miricetin, quercetin, kaempferol | [4] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poulsen-Silva, E.; Gordillo-Fuenzalida, F.; Velásquez, P.; Llancalahuen, F.M.; Carvajal, R.; Cabaña-Brunod, M.; Otero, M.C. Antimicrobial, Antioxidant, and Anti-Inflammatory Properties of Monofloral Honeys from Chile. Antioxidants 2023, 12, 1785. https://doi.org/10.3390/antiox12091785
Poulsen-Silva E, Gordillo-Fuenzalida F, Velásquez P, Llancalahuen FM, Carvajal R, Cabaña-Brunod M, Otero MC. Antimicrobial, Antioxidant, and Anti-Inflammatory Properties of Monofloral Honeys from Chile. Antioxidants. 2023; 12(9):1785. https://doi.org/10.3390/antiox12091785
Chicago/Turabian StylePoulsen-Silva, Erick, Felipe Gordillo-Fuenzalida, Patricia Velásquez, Felipe M. Llancalahuen, Rodrigo Carvajal, Mauricio Cabaña-Brunod, and María Carolina Otero. 2023. "Antimicrobial, Antioxidant, and Anti-Inflammatory Properties of Monofloral Honeys from Chile" Antioxidants 12, no. 9: 1785. https://doi.org/10.3390/antiox12091785
APA StylePoulsen-Silva, E., Gordillo-Fuenzalida, F., Velásquez, P., Llancalahuen, F. M., Carvajal, R., Cabaña-Brunod, M., & Otero, M. C. (2023). Antimicrobial, Antioxidant, and Anti-Inflammatory Properties of Monofloral Honeys from Chile. Antioxidants, 12(9), 1785. https://doi.org/10.3390/antiox12091785