Evaluation of the Effect of an Olive Phenolic Extract on the Secondary Shelf Life of a Fresh Pesto
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. OVW Phenol Extract
2.3. Preparation of Phenol-Enriched Pesto Samples
2.4. Experimental Set-Up for Real-Time Storage of Deli Counter Food Products
2.5. Analytical Determination
2.5.1. Extraction and Evaluation of Phenolic Compounds
2.5.2. Determination of Free Acidity, Peroxide Value, Fatty Acid Composition, and α-Tocopherol Content of the Oil Extracted from Pesto
2.5.3. Evaluation of Antioxidant Potential
2.5.4. Evaluation of Volatile Compounds
2.5.5. Measurement of Colour Parameters and pH
2.6. Sensory Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Evolution of Phenolic Compound Content
3.2. Evolution of Free Acidity, Peroxide Value, Fatty Acid Composition, and α-Tocopherol Content of Oil Extracted from Pesto
3.3. Evolution of the Antioxidant Potential of the Pesto
3.4. Evolution of Volatile Compounds of Pesto
3.5. Changes in the Colour and pH of Pesto
3.6. Sensory Analysis
3.7. Multivariate Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Durazzo, A.; Camilli, E.; Marconi, S.; Lisciani, S.; Gabrielli, P.; Gambelli, L.; Aguzzi, A.; Lucarini, M.; Kiefer, J.; Marletta, L. Nutritional composition and dietary intake of composite dishes traditionally consumed in Italy. J. Food Compos. Anal. 2019, 77, 115–124. [Google Scholar] [CrossRef]
- Ciriello, M.; Formisano, L.; El-Nakhel, C.; Kyriacou, M.C.; Soteriou, G.A.; Pizzolongo, F.; Romano, R.; De Pascale, S.; Rouphael, Y. Genotype and successive harvests interaction affects phenolic acids and aroma profile of Genovese basil for pesto sauce production. Foods 2021, 10, 278. [Google Scholar] [CrossRef]
- Masino, F.; Ulrici, A.; Antonelli, A. Extraction and quantification of main pigments in pesto sauces. Eur. Food Res. Technol. 2008, 226, 569–575. [Google Scholar] [CrossRef]
- Turrini, F.; Farinini, E.; Leardi, R.; Grasso, F.; Orlandi, V.; Boggia, R. A Preliminary color study of different basil-based semi-finished products during their storage. Molecules 2022, 27, 2059. [Google Scholar] [CrossRef]
- Commission Regulation (EC) n. 1623/2005. Official Journal of the European Union L259, 15. Available online: http://data.europa.eu/eli/reg/2005/1623/oj (accessed on 20 September 2023).
- Zardetto, S.; Barbanti, D. Shelf life assessment of fresh green pesto using an accelerated test approach. Food Packag. Shelf Life 2020, 25, 100524. [Google Scholar] [CrossRef]
- Gerini, F.; Fantechi, T.; Contini, C.; Casini, L.; Scozzafava, G. Adherence to the Mediterranean Diet and COVID-19: A segmentation analysis of Italian and US Consumers. Sustainability 2022, 14, 3823. [Google Scholar] [CrossRef]
- Angelidi, A.M.; Kokkinos, A.; Katechaki, E.; Ros, E.; Mantzoros, C.S. Mediterranean diet as a nutritional approach for COVID-19. Metabolism. 2021, 114, 154407. [Google Scholar] [CrossRef]
- Nicosia, C.; Fava, P.; Pulvirenti, A.; Antonelli, A.; Licciardello, F. Domestic use simulation and secondary shelf life assessment of industrial pesto alla genovese. Foods 2021, 10, 1948. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef]
- Valko, M.; Rhodes, C.J.B.; Moncol, J.; Izakovic, M.M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem.-Biol. Interact. 2006, 160, 1–40. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A.; Georgescu, C.; Turcus, V.; Olah, N.K.; Mathe, E. An overview of natural antimicrobials role in food. Eur. J. Med. Chem. 2018, 143, 922–935. [Google Scholar] [CrossRef]
- Wanasundara, P.K.J.P.D.; Shahidi, F. Antioxidants: Science, technology, and applications. In Bailey’s Industrial Oil and Fat Products, 6th ed.; Shahidi, F., Ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2005; pp. 431–489. [Google Scholar]
- Zeppa, G.; Turon, C. Valutazione mediante “Central Composite design” della degradazione della Clorofilla durante la pastorizzazione del pesto. Ind. Aliment. 2014, 549, 5–11. [Google Scholar]
- Franceschini, B.; Guerra, G.L.; Previdi, M.P. Influence of chemical-physical parameters on the stability of heat treated Pesto alla Genovese. Ind. Conserve 2011, 86, 143–147. [Google Scholar]
- Casaburi, O.; Brondi, C.; Romano, A.; Marra, F. Ohmic heating of basil-based sauces: Influence of the electric field strength on the electrical conductivity. Chem. Eng. Trans. 2021, 87, 343–348. [Google Scholar] [CrossRef]
- Severini, C.; Corbo, M.R.; Derossi, A.; Bevilacqua, A.; Giuliani, R. Use of humectants for the stabilization of pesto sauce. Int. J. Food Sci. Technol. 2008, 43, 1041–1046. [Google Scholar] [CrossRef]
- Fabiano, B.; Perego, P.; Pastorino, R.; Del Borghi, M. The extension of the shelf life of “pesto” sauce by a combination of modified atmosphere packaging and refrigeration. Int. J. Food Sci. Technol. 2000, 35, 293–303. [Google Scholar] [CrossRef]
- Carocho, M.; Barreiro, M.F.; Morales, P.; Ferreira, I.C.F.R. Adding molecules to food, pros and cons: A review of synthetic and natural food additives. Compr. Rev. Food Sci. Food Saf. 2014, 201413, 377–399. [Google Scholar] [CrossRef]
- Carocho, M.; Morales, P.; Ferreira, I.C.F.R. Natural food additives: Quo vadis? Trends Food Sci. Technol. 2015, 45, 284–295. [Google Scholar] [CrossRef]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of natural plant origins: From sources to food industry applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef]
- EC (European Community). Commission regulation (EC) No. 1333/2008. On food additives. Off. J. 2008, 354, 16. [Google Scholar]
- Etienne, J.; Chirico, S.; McEntaggart, K.; Papoutsis, S.; Millstone, E. EU Insights–Consumer perceptions of emerging risks in the food chain. EFSA Support. Publ. 2018, 15, 1394. [Google Scholar] [CrossRef]
- Pressman, P.; Clemens, R.; Hayes, W.; Reddy, C. Food additive safety: A review of toxicologic and regulatory issues. Toxicol. Res. Appl. 2017, 1. [Google Scholar] [CrossRef]
- Asioli, D.; Aschemann-Witzel, J.; Caputo, V.; Vecchio, R.; Annunziata, A.; Næs, T.; Varela, P. Making sense of the “clean label” trends: A review of consumer food choice behavior and discussion of industry implications. Food Res. Int. 2017, 99 Pt 1, 58–71. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Food Additives and Flavourings (FAF); Younes, M.; Aquilina, G.; Castle, L.; Engel, K.; Fowler, P.; Frutos Fernandez, M.; Fürst, P.; Gürtler, R.; Gundert-Remy, U.; et al. Opinion on the Follow-Up of the Re-Evaluation of Sorbic Acid (E200) and Potassium Sorbate (E202) as Food Additives. EFSA J. 2019, 17, 5625. [Google Scholar] [CrossRef] [PubMed]
- Franco, R.; Navarro, G.; Martínez-Pinilla, E. Antioxidants versus food antioxidant additives and food preservatives. Antioxidants 2019, 8, 542. [Google Scholar] [CrossRef] [PubMed]
- Brewer, M.S. Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Faustino, M.; Veiga, M.; Sousa, P.; Costa, E.M.; Silva, S.; Pintado, M. Agro-food byproducts as a new source of natural food additives. Molecules 2019, 24, 1056. [Google Scholar] [CrossRef]
- Servili, M.; Sordini, B.; Esposto, S.; Urbani, S.; Veneziani, G.; Di Maio, I.; Selvaggini, R.; Taticchi, A. Biological activities of phenolic compounds of extra virgin olive oil. Antioxidants 2014, 3, 1–23. [Google Scholar] [CrossRef]
- Servili, M.; Esposto, S.; Veneziani, G.; Urbani, S.; Taticchi, A.; Di Maio, I.; Selvaggini, R.; Sordini, B.; Montedoro, G.F. Improvement of bioactive phenol content in virgin olive oil with an olive-vegetation water concentrate produced by membrane treatment. Food Chem. 2011, 124, 1308–1315. [Google Scholar] [CrossRef]
- Esposto, S.; Taticchi, A.; Di Maio, I.; Urbani, S.; Veneziani, G.; Selvaggini, R.; Sordini, B.; Servili, M. Effect of an olive phenolic extract on the quality of vegetable oils during frying. Food Chem. 2015, 176, 184–192. [Google Scholar] [CrossRef]
- Miraglia, D.; Castrica, M.; Menchetti, L.; Esposto, S.; Branciari, R.; Ranucci, D.; Urbani, S.; Sordini, B.; Veneziani, G.; Servili, M. Effect of an olive vegetation water phenolic extract on the physico-chemical, microbiological and sensory traits of shrimp (Parapenaeus longirostris) during the shelf life. Foods 2020, 9, 1647. [Google Scholar] [CrossRef] [PubMed]
- Troise, A.D.; Fiore, A.; Colantuono, A.; Kokkinidou, S.; Peterson, D.G.; Fogliano, V. Effect of olive mill wastewater phenol compounds on reactive carbonyl species and maillard reaction end-products in ultrahigh-temperature-treated milk. J. Agric. Food Chem. 2014, 62, 10092–10100. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, S.; Mercatante, D.; Balzan, S.; Esposto, S.; Cardenia, V.; Servili, M.; Novelli, E.; Taticchi, A.; Rodriguez-Estrada, M.T. Improved oxidative stability and sensory quality of beef hamburgers enriched with a phenolic extract from olive vegetation water. Antioxidants 2021, 10, 1969. [Google Scholar] [CrossRef] [PubMed]
- Roila, R.; Sordini, B.; Esposto, S.; Ranucci, D.; Primavilla, S.; Valiani, A.; Taticchi, A.; Branciari, R.; Servili, M. Effect of the application of a green preservative strategy on minced meat products: Antimicrobial efficacy of olive mill wastewater polyphenolic extract in improving beef burger shelf-life. Foods 2022, 11, 2447. [Google Scholar] [CrossRef] [PubMed]
- De Bruno, A.; Romeo, R.; Gattuso, A.; Piscopo, A.; Poiana, M. Functionalization of a vegan mayonnaise with high value ingredient derived from the agro-industrial sector. Foods 2021, 10, 2684. [Google Scholar] [CrossRef] [PubMed]
- Galanakis, C.M.; Tsatalas, P.; Charalambous, Z.; Galanakis, I.M. Polyphenols recovered from olive mill wastewater as natural preservatives in extra virgin olive oils and refined olive kernel oils. Environ. Technol. Innov. 2018, 10, 62–70. [Google Scholar] [CrossRef]
- Taticchi, A.; Esposto, S.; Urbani, S.; Veneziani, G.; Selvaggini, R.; Sordini, B.; Servili, M. Effect of an olive phenolic extract added to the oily phase of a tomato sauce, on the preservation of phenols and carotenoids during domestic cooking. LWT Food Sci. Technol. 2017, 84, 572–578. [Google Scholar] [CrossRef]
- Selvaggini, R.; Esposto, S.; Taticchi, A.; Urbani, S.; Veneziani, G.; Di Maio, I.; Sordini, B.; Servili, M. Optimization of the temperature and oxygen concentration conditions in the malaxation during the oil mechanical extraction process of four italian olive cultivars. J. Agric. Food Chem. 2014, 62, 3813–3822. [Google Scholar] [CrossRef]
- Lee, J.; Chan, B.L.S.; Mitchell, A.E. Identification quantification of free and bound phenolic acids in peel and pulp of apples (Malus domestica) using high resolution mass spectrometry (HRMS). Food Chem. 2017, 215, 301–310. [Google Scholar] [CrossRef]
- Esposto, S.; Veneziani, G.; Taticchi, A.; Urbani, S.; Selvaggini, R.; Sordini, B.; Daidone, L.; Gironi, G.; Servili, M. Chemical Composition, antioxidant activity, and sensory characterization of commercial pomegranate juices. Antioxidants 2021, 10, 1381. [Google Scholar] [CrossRef]
- Prinsi, B.; Morgutti, S.; Negrini, N.; Faoro, F.; Espen, L. Insight into composition of bioactive phenolic compounds in leaves and flowers of green and purple basil. Plants 2020, 9, 22. [Google Scholar] [CrossRef] [PubMed]
- AOCS Press. AOCS Official Methods: Acid value. In Official Methods and Recommended Practices of the American Oil Chemists’ Society, 5th ed.; AOCS Press: Champaign, IL, USA, 1998. [Google Scholar]
- AOCS Press. AOCS Official Methods: Peroxide value. In Official Methods and Recommended Practices of the American Oil Chemists’ Society, 5th ed.; AOCS Press: Champaign, IL, USA, 1998. [Google Scholar]
- Commission Delegated Regulation (EU) 2022/2104 of 29 July 2022 supplementing Regulation (EU) No 1308/2013 of the European Parliament and of the Council as regards marketing standards for olive oil, and repealing Commission Regulation (EEC) No 2568/91 and Commission Implementing Regulation (EU) No 29/2012. Official Journal of the European Union L 284, 4.11.2022, 1–22. Available online: http://data.europa.eu/eli/reg_del/2022/2104/oj (accessed on 10 June 2023).
- Psomiadou, E.; Tsimidou, M. Simultaneous HPLC determination of tocopherols, carotenoids, and chlorophylls for monitoring their effect on virgin olive oil oxidation. J. Agric. Food Chem. 1998, 46, 5132–5138. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Xiao, L.; Lee, J.; Gong, Z.; Ebeler, S.E.; Wickramasinghe, N.; Seiber, J.; Mitchell, A.E. HS-SPME GC/MS characterization of volatiles in raw and dry-roasted almonds (Prunus dulcis). Food Chem. 2014, 151, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Moyano, M.J.; Heredia, F.J.; Meléndez-Martínez, A.J. The color of olive oils: The pigments and their likely health benefits and visual and instrumental methods of analysis. Compr. Rev. Food Sci. Food Saf. 2010, 9, 278–291. [Google Scholar] [CrossRef] [PubMed]
- ISO 8586:2012; Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. International Organization for Standardization: Geneva, Switzerland, 2012.
- Galanakis, C.M. Phenols recovered from olive mill wastewater as additives in meat products. Trends Food Sci. Technol. 2018, 79, 98–105. [Google Scholar] [CrossRef]
- Filip, S. Basil (Ocimum basilicum L.) a source of valuable phytonutrients. Int. J. Clin. Nutr. Diet. 2017, 3, 118. [Google Scholar] [CrossRef]
- Lee, J.; Scagel, C.F. Chicoric acid found in basil (Ocimum basilicum L.) leaves. Food Chem. 2009, 115, 650–656. [Google Scholar] [CrossRef]
- Shen, J.; Griffiths, P.T.; Campbell, S.J.; Utinger, B.; Kalberer, M.; Paulsonet, S.E. Ascorbate oxidation by iron, copper and reactive oxygen species: Review, model development, and derivation of key rate constants. Sci. Rep. 2021, 11, 7417. [Google Scholar] [CrossRef]
- Brenes, M.; García, A.; Dobarganes, M.C.; Velasco, J.; Romero, J. Influence of thermal treatments simulating cooking processes on the polyphenol content in virgin olive oil. J. Agric. Food Chem. 2002, 50, 5962–5967. [Google Scholar] [CrossRef]
- Esposto, S.; Taticchi, A.; Urbani, S.; Selvaggini, R.; Veneziani, G.; Di Maio, I.; Sordini, B.; Servili, M. Effect of light exposure on the quality of extra virgin olive oils according to their chemical composition. Food Chem. 2017, 229, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Esposto, S.; Taticchi, A.; Servili, M.; Urbani, S.; Sordini, B.; Veneziani, G.; Daidone, L.; Selvaggini, R. Overall quality evolution of extra virgin olive oil exposed to light for 10 months in different containers. Food Chem. 2021, 351, 129297. [Google Scholar] [CrossRef] [PubMed]
- Charvat, T.T.; Lee, D.J.; Robinson, W.E.; Chamberlin, A.R. Design, synthesis, and biological evaluation of chicoric acid analogs as inhibitors of HIV-a integrase. Bioorg Med. Chem. 2006, 14, 4552–4567. [Google Scholar] [CrossRef] [PubMed]
- Dalby-Brown, L.; Barsett, H.; Landbo, A.K.R.; Meyer, A.S.; Mølgaard, P. Synergistic antioxidative effects of alkamides, caffeic acid derivatives, and polysaccharide fractions from Echinacea purpurea on in vitro oxidation of human low-density lipoproteins. J. Agric. Food Chem. 2005, 53, 9413–9423. [Google Scholar] [CrossRef] [PubMed]
- Mølgaard, P.; Johnsen, S.; Christensen, P.; Cornett, C. HPLC method validated for the simultaneous analysis of cichoric acid and alkamides in Echinacea purpurea plants and products. J. Agric. Food Chem. 2003, 51, 6922–6933. [Google Scholar] [CrossRef] [PubMed]
- Commision Regulation EU n° 432/2012 establishing a list of permitted health claims made on foods, other than those referring to the reduction of disease risk and to children’s development and health. Off. J. Eur. Union. 2012, 136, 1–38.
- Waraho, T.; McClements, D.; Decker, E.A. Impact of free fatty acid concentration and structure on lipid oxidation in oil-in-water emulsions. Food Chem. 2011, 129, 854–859. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Mechanisms and factors for edible oil oxidation. Compr. Rev. Food Sci. Food Saf. 2006, 5, 169–186. [Google Scholar] [CrossRef]
- Azzi, A. Molecular mechanism of α-tocopherol action. Free Radic. Biol. Med. 2007, 43, 16–21. [Google Scholar] [CrossRef]
- Munné-Bosch, S. Alpha-tocopherol: A multifaceted molecule in plants. Vitam. Horm. 2007, 76, 375–392. [Google Scholar] [CrossRef]
- Angerosa, F.; Servili, M.; Selvaggini, R.; Taticchi, A.; Esposto, S.; Montedoro, G.F. Volatile compounds in virgin olive oil: Occurrence and their relationship with the quality. J. Chromatogr. A. 2004, 1054, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Panya, A.; Laguerre, M.; Bayrasy, C.; Lecomte, J.; Villeneuve, P.; McClements, D.J.; Decker, E.A. An Investigation of the versatile antioxidant mechanisms of action of rosmarinate alkyl esters in Oil-in-Water Emulsions. J. Agric. Food Chem. 2012, 60, 2692–2700. [Google Scholar] [CrossRef] [PubMed]
- Jayasinghe, C.; Gotoh, N.; Aoki, T.; Wada, S. Phenolics composition and antioxidant activity of Sweet Basil (Ocimum basilicum L.). J. Agric. Food Chem. 2003, 51, 4442–4449. [Google Scholar] [CrossRef]
- Baldioli, M.; Servili, M.; Perretti, G.; Montedoro, G.F. Antioxidant activity of tocopherols and phenolic compounds of virgin olive oil. J. Am. Oil Chem. Soc. 1996, 73, 1589–1593. [Google Scholar] [CrossRef]
- Nguyen, P.H.M.; Kwee, E.M.; Niemeyer, E.D. Potassium rate alters the antioxidant capacity and phenolic concentration of basil (Ocimum basilicum L.) leaves. Food Chem. 2010, 123, 1235–1241. [Google Scholar] [CrossRef]
- Morelló, J.R.; Vuorela, S.; Romero, M.P.; Motilva, M.J.; Heinonen, M. Antioxidant activity of olive pulp and olive oil phenolic compounds of the arbequina cultivar. J. Agric. Food Chem. 2005, 53, 2002–2008. [Google Scholar] [CrossRef] [PubMed]
- Salvadeo, P.; Boggia, R.; Evangelisti, F.; Zunin, P. Analysis of the volatile fraction of Pesto Genovese by headspace sorptive extraction (HSSE). Food Chem. J. 2007, 105, 1228–1235. [Google Scholar] [CrossRef]
- Zunin, P.; Salvadeo, P.; Boggia, R.; Lantieri, S. Study of different kinds of “Pesto Genovese” by the analysis of their volatile fraction and chemometric methods. Food Chem. J. 2009, 114, 306–309. [Google Scholar] [CrossRef]
- Klimankova, E.; Holadova, K.; Hajslova, J.; Cajka, T.; Poustka, J.; Koudela, M. Aroma profiles of five basil (Ocimum basilicum L.) cultivars grown under conventional and organic conditions. Food Chem. 2008, 107, 464–472. [Google Scholar] [CrossRef]
- Qian, M.; Reineccius, G. Identification of aroma compounds in Parmigiano-Reggiano cheese by gas chromatography/olfactometry. J. Dairy. Sci. 2002, 85, 1362–1369. [Google Scholar] [CrossRef]
- Romano, R.; Giordano, A.; Le Grottaglie, L.; Manzo, N.; Paduano, A.; Sacchi, R.; Santini, A. Volatile compounds in intermittent frying by gas chromatography and nuclear magnetic resonance. Eur. J. Lipid Sci. Technol. 2013, 115, 764–773. [Google Scholar] [CrossRef]
- Frankel, E.N. Volatile lipid oxidation products. Prog. Lipid Res. 1983, 22, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Koelsch, C.M.; Downes, T.W.; Labuza, T.P. Hexanal formation via lipid oxidation as a function of oxygen concentration: Measurement and kinetics. J. Food Sci. 1991, 56, 816–820. [Google Scholar] [CrossRef]
- Jayasinghe, C.; Gotoh, N.; Wada, S. Pro-oxidant/antioxidant behaviours of ascorbic acid, tocopherol, and plant extracts in n-3 highly unsaturated fatty acid rich oil-in-water emulsions. Food Chem. 2013, 141, 3077–3084. [Google Scholar] [CrossRef] [PubMed]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.J. Colour measurement and analysis in fresh and processed foods: A review. Food Bioprocess. Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Wrolstad, R.E.; Smith, D.E. Color Analysis. In Food Analysis; Part of Food Science Text Series; Nielsen, S.S., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 545–555. [Google Scholar] [CrossRef]
- Manolopoulou, E.; Varzakas, T. Effect of Temperature in Color Changes of Green Vegetables. Curr. Res. Nutr. Food Sci. 2016, 1, 10–17. [Google Scholar] [CrossRef]
- Lucera, A.; Conte, A.; Del Nobile, M.A. Shelf life of fresh-cut green beans as affected by packaging systems. Int. J. Food Sci. Technol. 2011, 46, 2351–2357. [Google Scholar] [CrossRef]
- Zhang, X.; Meng, W.; Chen, Y.; Peng, Y. Browning inhibition of plant extracts on fresh-cut fruits and vegetables—A review. J. Food Process Preserv. 2022, 46, e16532. [Google Scholar] [CrossRef]
- Martínez, J.A.; Melgosa, M.; Pérez, M.M.; Hita, E.; Negueruela, A.I. Note. Visual and Instrumental Color Evaluation in Red Wines. Food Sci. Technol. Int. 2001, 7, 439–444. [Google Scholar] [CrossRef]
- EC (European Community). Commission regulation (EC) No. 2073/2005; Microbiological Criteria for Foodstuffs. Off. J. 2005, 338, 1–26. [Google Scholar]
- Granato, D.; Santos, J.S.; Escher, G.B.; Ferreira, B.L.; Maggio, R.M. Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends Food Sci. 2018, 72, 83–90. [Google Scholar] [CrossRef]
Days of Storage after Opening | 0 | 1 | 2 | 3 | 6 | 7 |
---|---|---|---|---|---|---|
Compound/Sample | CTRL | |||||
Salvianic acid * | 39.6 ± 0.8 Ba | 38.0 ± 1.9 Ba | 34.1 ± 0.3 Cb | 29.8 ± 1.6 Cc | 28.0 ± 0.3 Bcd | 25.2 ± 0.3 Bd |
Caftaric acid | 16.7 ± 0.3 Ba | 13.1 ± 0.1 Bb | 8.2 ± 0.2 Bc | 7.9 ± 0.7 Bc | 8.1 ± 0.4 Bc | 7.1 ± 0.2 Ac |
Fertaric acid | 3.0 ± 0.2 Ca | 2.7 ± 0.2 Ba | 2.1 ± 0.1 Bb | 2.0 ± 0.2 Bc | 2.7 ± 0.1 Aa | 1.6 ± 0.1 Ad |
Caffeic acid | 84.7 ± 1.5 Ba | 85.1 ± 3.8 ABa | 84.4 ± 0.5 Ba | 83.1 ± 2.1 Aa | 81.2 ± 0.5 Aa | 75.9 ± 0.5 Bb |
Chicoric acid | 48.3 ± 1.5 Ba | 48.2 ± 4.5 Aab | 44.5 ± 0.3 Cb | 40.3 ± 1.8 Bc | 38.2 ± 0.3 Cc | 30.6 ± 0.6 Cd |
Rosmarinic acid | 169.6 ± 2.4 Aa | 168.4 ± 7 Aa | 166.7 ± 0.2 Ba | 164.6 ± 2.8 Ba | 123.9 ± 1 Cb | 117.5 ± 1.1 Cc |
Kaempferol | 2.5 ± 0.2 Aa | 2.1 ± 0.4 Aa | 2.5 ± 0.2 Aa | 2.2 ± 0.1 Aa | 2.2 ± 0.1 Aa | 2.1 ± 0.2 Aa |
Sum of phenols from basil | 364.4 ± 3.3 Ba | 357.6 ± 9.4 Aa | 342.5 ± 0.7 Cb | 329.8 ± 4.3 Cc | 284.3 ± 1.2 Cd | 259.8 ± 1.4 Ce |
Hydroxytyrosol (3,4-DHPEA) | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Tyrosol (p-HPEA) | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Verbascoside | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Oleacein (3,4-DHPEA-EDA) | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Oleochantal (p-HPEA-EDA) | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Sum of hydrophilic phenols from PE | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Total phenols | 364.4 ± 3.3 Ca | 357.6 ± 9.4 Ca | 342.5 ± 0.7 Cb | 329.8 ± 4.3 Cc | 284.3 ± 1.2 Cd | 259.8 ± 1.4 Ce |
PEP1 | ||||||
Salvianic acid | 41.2 ± 0.8 Aa | 42.1 ± 0.6 Aa | 36.8 ± 0.4 Bb | 34.0 ± 0.8 Bc | 33.4 ± 1.6 Ac | 33.4 ± 1.0 Ac |
Caftaric acid | 11.9 ± 0.2 Ca | 12.5 ± 0.4 Ba | 7.4 ± 0.2 Cb | 6.2 ± 0.2 Cc | 6.5 ± 0.2 Cc | 5.6 ± 0.2 Ac |
Fertaric acid | 2.3 ± 0.2 Ba | 2.7 ± 0.1 Ba | 2.0 ± 0.1 Bb | 1.6 ± 0.1 Bc | 1.6 ± 0.2 Cc | 1.4 ± 0.2 Ac |
Caffeic acid | 92.4 ± 1.4 Aa | 87.7 ± 1.1 Aa | 93.1 ± 0.1 Aa | 80.6 ± 3.8 Ab | 80.6 ± 0.3 Ab | 80.3 ± 1.7 Ab |
Chicoric acid | 50.1 ± 0.4 ABab | 50.4 ± 0.2 Aa | 49.8 ± 0.3 Bab | 49.2 ± 0.2 Abc | 48.5 ± 0.4 Bc | 45.3 ± 0.8 Bd |
Rosmarinic acid | 162.6 ± 1.8 Ba | 163.0 ± 0.2 Aa | 162.2 ± 1.1 Ca | 160.8 ± 4.8 Ca | 141.5 ± 0.8 Bb | 135.4 ± 2.1 Bc |
Kaempferol | 2.2 ± 0.2 Aa | 2.1 ± 0.1 Aa | 2.3 ± 0.1 Aa | 2.0 ± 0.3 Aa | 2.0 ± 0.1 Aa | 2.0 ± 0.2 Aa |
Sum of phenols from basil | 362.9 ± 2.4 Ba | 360.5 ± 1.3 Aab | 353.7 ± 1.2 Bb | 334.4 ± 6.1 Bc | 314 ± 1.9 Bd | 303.5 ± 3 Be |
Hydroxytyrosol (3,4-DHPEA) | 43.6 ± 2.5 Bb | 45.7 ± 0.8 Bab | 47.1 ± 0.6 Ba | 33.3 ± 0.4 Bc | 26.1 ± 0.2 Bd | 35.5 ± 0.6 Bc |
Tyrosol (p-HPEA) | 4.1 ± 0.1 Ba | 4.1 ± 0.2 Ba | 4.0 ± 0.3 Ba | 4.0 ± 0.2 Ba | 4.1 ± 0.1 Ba | 4.1 ± 0.3 Ba |
Verbascoside | 3.2 ± 0.3 Ba | 3.1 ± 0.3 Ba | 3.2 ± 0.1 Ba | 3.1 ± 0.3 Ba | 3.2 ± 0.1 Ba | 3.2 ± 0.2 Ba |
Oleacein (3,4-DHPEA-EDA) | 185.8 ± 0.6 Ba | 180.4 ± 2.8 Bab | 176.0 ± 4.5 Bbc | 168.7 ± 2 Bc | 135.8 ± 3.9 Bd | 102.7 ± 1.3 Be |
Oleochantal (p-HPEA-EDA) | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Sum of hydrophilic phenols from PE | 236.6 ± 2.6 Ba | 233.3 ± 3 Ba | 230.3 ± 4.6 Ba | 209.2 ± 2.1 Bb | 169.1 ± 3.9 Bc | 145.5 ± 1.5 Bd |
Total phenols | 599.5 ± 3.6 Ba | 593.8 ± 3.2 Bab | 584 ± 4.8 Bb | 543.5 ± 6.5 Bc | 483.1 ± 4.4 Bd | 449.0 ± 3.3 Be |
PEP2 | ||||||
Salvianic acid | 42.0 ± 0.7 Aa | 41.4 ± 0.7 Aa | 42.0 ± 0.6 Aa | 39.8 ± 0.6 Aa | 32.5 ± 0.4 Ab | 35.3 ± 2.0 Ab |
Caftaric acid | 21.4 ± 1 Aab | 22 ± 1.4 Aa | 18.8 ± 0.3 Abc | 18 ± 0.5 Ac | 9.4 ± 0.1 Ad | 7.2 ± 2.6 Ae |
Fertaric acid | 4.2 ± 0.2 Aa | 4.1 ± 0.3 Aa | 3.2 ± 0.1 Ab | 3.2 ± 0.2 Ab | 2.1 ± 0.1 Bc | 1.6 ± 0.4 Ac |
Caffeic acid | 79.3 ± 1.6 Ca | 79.1 ± 4.1 Ba | 79.5 ± 0.7 Ca | 80.9 ± 1.1 Aa | 79.0 ± 1.7 Aa | 78.1 ± 0.3 Aa |
Chicoric acid | 51.9 ± 0.9 Aab | 52.4 ± 2.1 Aa | 51.4 ± 0.7 Aab | 50.7 ± 0.7 Aab | 50.5 ± 0.3 Aab | 49.2 ± 0.5 Ab |
Rosmarinic acid | 172.5 ± 1.7 Aa | 171.0 ± 5.5 Aab | 170 ± 0.3 Aab | 168.9 ± 0.2 Aab | 169.1 ± 1.3 Aab | 165 ± 1.1 Ab |
Kaempferol | 2.1 ± 0.2 Aa | 2.0 ± 0.3 Aa | 1.9 ± 0.1 Ba | 2.0 ± 0.3 Aa | 1.9 ± 0.1 Aa | 1.9 ± 0.1 Aa |
Sum of phenols from basil | 373.3 ± 2.8 Aa | 371.9 ± 7.3 Aab | 366.8 ± 1.2 Aab | 363.6 ± 1.6 Ab | 344.5 ± 2.2 Ac | 338.2 ± 3.6 Ac |
Hydroxytyrosol (3,4-DHPEA) | 76.0 ± 1.1 Aa | 73.9 ± 0.7 Aa | 75.4 ± 0.8 Aa | 49.0 ± 0.6 Ac | 53.5 ± 1.1 Ab | 50.5 ± 0.8 Abc |
Tyrosol (p-HPEA) | 7.5 ± 0.3 Aa | 7.6 ± 0.2 Aa | 7.7 ± 0.1 Aa | 7.7 ± 0.2 Aa | 7.6 ± 0.1 Aa | 7.5 ± 0.1 Aa |
Verbascoside | 6.5 ± 0.5 Aa | 6.3 ± 0.2 Aa | 6.3 ± 0.4 Aa | 6.4 ± 0.3 Aa | 6.4 ± 0.1 Aa | 6.2 ± 0.4 Aa |
Oleacein (3,4-DHPEA-EDA) | 343.0 ± 4.4 Aa | 334.0 ± 4.1 Ab | 330.8 ± 2 Abc | 324.3 ± 0.7 Ac | 306.8 ± 1 Ad | 257.9 ± 3.7 Ae |
Oleochantal (p-HPEA-EDA) | 2.4 ± 0.2 Aa | 2.3 ± 0.1 Aa | 2.2 ± 0.3 Aa | 2.3 ± 0.1 Aa | 2.3 ± 0.2 Aa | 2.2 ± 0.1 Aa |
Sum of hydrophilic phenols from PE | 435.5 ± 4.6 Aa | 424.1 ± 4.1 Ab | 422.4 ± 2.2 Ab | 389.7 ± 1 Ac | 376.5 ± 1.5 Ad | 324.3 ± 3.8 Ae |
Total phenols | 808.8 ± 5.3 Aa | 796.0 ± 8.4 Aab | 789.2 ± 2.5 Ab | 753.3 ± 1.9 Ac | 721.1 ± 2.7 Ad | 662.5 ± 5.2 Ae |
Days of Storage after Opening | CTRL | PEP1 | PEP2 |
---|---|---|---|
Free acidity (%) | |||
0 | 0.56 ± 0.02 Ab | 0.57 ± 0.05 Aa | 0.58 ± 0.02 Aa |
1 | 0.58 ± 0.01 Aab | 0.56 ± 0.02 Aa | 0.56 ± 0.03 Aa |
2 | 0.60 ± 0.01 Aab | 0.56 ± 0.01 Aa | 0.55 ± 0.01 Ba |
3 | 0.60 ± 0.02 Aab | 0.57 ± 0.01 Aa | 0.58 ± 0.02 Aa |
6 | 0.63 ± 0.02 Aa | 0.59 ± 0.02 Aa | 0.56 ± 0.01 Aa |
7 | 0.60 ± 0.01 Aab | 0.57 ± 0.01 Aa | 0.57 ± 0.02 Aa |
Peroxide values (meq O2/Kg oil) | |||
0 | 8.6 ± 0.3 Abc | 8.2 ± 0.3 Ad | 8.9 ± 0.3 Abc |
1 | 8.7 ± 0.3 Abc | 8.8 ± 0.4 Acd | 8.7 ± 0.2 Abc |
2 | 8.1 ± 0.3 Ac | 7.6 ± 0.2 Ad | 7.3 ± 0.1 Ad |
3 | 10.8 ± 0.3 Ab | 10.3 ± 0.5 Ac | 8.3 ± 0.3 Bc |
6 | 15.4 ± 0.5 Aa | 13.9 ± 0.5 Ab | 9.2 ± 0.5 Bb |
7 | 16.4 ± 0.4 Aa | 15.5 ± 0.4 Aa | 12.7 ± 0.2 Ba |
Days of Storage after Opening | CTRL | PEP1 | PEP2 |
---|---|---|---|
α-Tocopherol content (mg/kg) | |||
0 | 438.5 ± 2.2 Aa | 439.6 ± 4.7 Aa | 439.9 ± 5.1 Aa |
1 | 438.8 ± 3.9 Aa | 439.4 ± 4.3 Aa | 439.1 ± 4.7 Aa |
2 | 430.0 ± 2.8 Aabc | 438.0 ± 0.9 Aa | 437.7 ± 1.2 Aa |
3 | 431.6 ± 1.2 Aab | 432.1 ± 0.4 Aab | 434.1 ± 3.1 Aa |
6 | 424.1 ± 3.9 Abc | 427.8 ± 4.8 Aab | 432.1 ± 2.0 Aa |
7 | 420.0 ± 2.0 Ac | 424.3 ± 0.9 Ab | 428.1 ± 3.1 Aa |
Days of Storage after Opening | CTRL | PEP1 | PEP2 |
---|---|---|---|
Antioxidant activity (µmol TE/g f.w.) | |||
0 | 4.59 ± 0.08 Aa | 4.67 ± 0.04 Aa | 4.78 ± 0.1 Aa |
1 | 4.60 ± 0.00 Ca | 4.64 ± 0.00 Ba | 4.72 ± 0.01 Aa |
2 | 4.12 ± 0.12 Bb | 4.60 ± 0.01 Aa | 4.75 ± 0.01 Aa |
3 | 4.47 ± 0.01 Ba | 4.41 ± 0.12 Bb | 4.69 ± 0.01 Aa |
6 | 2.34 ± 0.00 Cc | 4.01 ± 0.01 Bc | 4.52 ± 0.01 Ab |
7 | 2.14 ± 0.11 Cc | 3.81 ± 0.01 Bc | 4.17 ± 0.01 Ac |
L* | |||
Days of storage after opening | CTRL | PEP1 | PEP2 |
0 | 87.55 ± 0.00 Aa | 86.40 ± 0.01 Ba | 86.77 ± 0.01 Ca |
3 | 86.62 ± 0.04 Ab | 88.59 ± 0.00 Bb | 86.41 ± 0.02 Cb |
7 | 85.36 ± 0.01 Ac | 85.90 ± 0.01 Bc | 88.70 ± 0.01 Cc |
a* | |||
Days of storage after opening | CTRL | PEP1 | PEP2 |
0 | −12.94 ± 0.01 Aa | −12.34 ± 0.02 Ba | −12.83 ± 0.01 Ca |
3 | −13.06 ± 0.01 Ab | −12.12 ± 0.00 Bb | −13.03 ± 0.01 Ab |
7 | −13.41 ± 0.01 Ac | −12.42 ± 0.00 Bc | −12.58 ± 0.00 Cc |
b* | |||
Days of storage after opening | CTRL | PEP1 | PEP2 |
0 | 53.06 ± 0.11 Aa | 51.49 ± 0.00 Ba | 51.69 ± 0.00 Ba |
3 | 52.76 ± 0.02 Ab | 49.62 ± 0.00 Bb | 52.62 ± 0.05 Ab |
7 | 54.10 ± 0.02 Ac | 52.08 ± 0.03 Bc | 49.18 ± 0.00 Cc |
C* | |||
Days of storage after opening | CTRL | PEP1 | PEP2 |
0 | 54.61 ± 0.10 Aa | 52.95 ± 0.00 Ba | 53.26 ± 0.01 Ca |
3 | 54.35 ± 0.02 Ab | 51.08 ± 0.00 Bb | 54.21 ± 0.04 Cb |
7 | 55.74 ± 0.02 Ac | 53.54 ± 0.03 Bc | 50.74 ± 0.04 Cc |
h | |||
Days of storage after opening | CTRL | PEP1 | PEP2 |
0 | 103.70 ± 0.03 Aa | 103.48 ± 0.02 Ba | 103.94 ± 0.02 Ca |
3 | 103.91 ± 0.00 Ab | 103.72 ± 0.00 Bb | 103.91 ± 0.00 Aa |
7 | 103.92 ± 0.01 Ab | 103.41 ± 0.01 Bc | 104.36 ± 0.01 Cb |
CTRL | PEP1 | PEP2 | |
ΔE | 2.47 ± 0.09 B | 0.78 ± 0.04 C | 3.17 ± 0.01 A |
BI | 79.06 ± 4.12 B | 74.62 ± 1.57 AB | 64.63 ± 0.27 B |
Days of Storage after Opening | CTRL | PEP1 | PEP2 |
---|---|---|---|
0 | 5.26 ± 0.05 Aa | 5.22 ± 0.06 Aa | 5.37 ± 0.05 Aa |
1 | 5.25 ± 0.02 Aa | 5.38 ± 0.06 Aa | 5.33 ± 0.02 Aa |
2 | 5.24 ± 0.03 Aa | 5.42 ± 0.11 Aa | 5.33 ± 0.04 Aa |
3 | 5.30 ± 0.10 Aa | 5.30 ± 0.04 Aa | 5.31 ± 0.02 Aa |
6 | 5.26 ± 0.08 Aa | 5.35 ± 0.02 Aa | 5.32 ± 0.06 Aa |
7 | 5.23 ± 0.07 Aa | 5.35 ± 0.02 Aa | 5.31 ± 0.04 Aa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sordini, B.; Urbani, S.; Esposto, S.; Selvaggini, R.; Daidone, L.; Veneziani, G.; Servili, M.; Taticchi, A. Evaluation of the Effect of an Olive Phenolic Extract on the Secondary Shelf Life of a Fresh Pesto. Antioxidants 2024, 13, 128. https://doi.org/10.3390/antiox13010128
Sordini B, Urbani S, Esposto S, Selvaggini R, Daidone L, Veneziani G, Servili M, Taticchi A. Evaluation of the Effect of an Olive Phenolic Extract on the Secondary Shelf Life of a Fresh Pesto. Antioxidants. 2024; 13(1):128. https://doi.org/10.3390/antiox13010128
Chicago/Turabian StyleSordini, Beatrice, Stefania Urbani, Sonia Esposto, Roberto Selvaggini, Luigi Daidone, Gianluca Veneziani, Maurizio Servili, and Agnese Taticchi. 2024. "Evaluation of the Effect of an Olive Phenolic Extract on the Secondary Shelf Life of a Fresh Pesto" Antioxidants 13, no. 1: 128. https://doi.org/10.3390/antiox13010128
APA StyleSordini, B., Urbani, S., Esposto, S., Selvaggini, R., Daidone, L., Veneziani, G., Servili, M., & Taticchi, A. (2024). Evaluation of the Effect of an Olive Phenolic Extract on the Secondary Shelf Life of a Fresh Pesto. Antioxidants, 13(1), 128. https://doi.org/10.3390/antiox13010128