Unraveling Biotic and Abiotic Factors Shaping Sugarcane Straw Polyphenolic Richness: A Gateway to Artificial Intelligence-Driven Crop Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Plan
2.2. Polyphenolic Extract Production from Sugarcane Straw
2.3. Phenolic Compounds and Organic Acid Analysis by LC-ESI-UHR-QqTOF-MS
2.4. Antioxidant Activity
2.5. Response Surface Methodology (RSM)
2.6. Artificial Neural Networks (ANNs)
2.7. Comparison of the Prediction Ability of RSM and ANN
3. Results and Discussion
3.1. Individual Polyphenols Content
3.2. RSM Modeling
3.3. Artificial Neural Network (ANN) Modeling
3.4. Comparison between RSM and ANN
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Da Silva, P.A.; De Lima, B.H.; La Scala, N., Jr.; Peruzzi, N.J.; Chavarette, F.R.; Panosso, A.R. Spatial Variation of Soil Carbon Stability in Sugarcane Crops, Central-South of Brazil. Soil. Tillage Res. 2020, 202, 104667. [Google Scholar] [CrossRef]
- Cherubin, M.R.; Bordonal, R.O.; Castioni, G.A.; Guimaraes, E.M.; Lisboa, I.P.; Moraes, L.A.A.; Menandro, L.M.S.; Tenelli, S.; Cerri, C.E.P.; Karlen, D.L. Soil Health Response to Sugarcane Straw Removal in Brazil. Ind. Crops Prod. 2021, 163, 113315. [Google Scholar] [CrossRef]
- Oliveira, A.L.S.; Carvalho, M.J.; Oliveira, D.L.; Costa, E.; Pintado, M.; Madureira, A.R. Sugarcane Straw Polyphenols as Potential Food and Nutraceutical Ingredient. Foods 2022, 11, 4025. [Google Scholar] [CrossRef] [PubMed]
- Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant Polyphenols: Chemical Properties, Biological Activities, and Synthesis. Angew. Chem. Int. Ed. 2011, 50, 586–621. [Google Scholar] [CrossRef] [PubMed]
- Adebooye, O.C.; Alashi, A.M.; Aluko, R.E. A Brief Review on Emerging Trends in Global Polyphenol Research. J. Food Biochem. 2018, 42, e12519. [Google Scholar] [CrossRef]
- Zillich, O.V.; Schweiggert-Weisz, U.; Eisner, P.; Kerscher, M. Polyphenols as Active Ingredients for Cosmetic Products. Int. J. Cosmet. Sci. 2015, 37, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Farage, M.A.; Miller, K.W.; Elsner, P.; Maibach, H.I. Intrinsic and Extrinsic Factors in Skin Ageing: A Review. Int. J. Cosmet. Sci. 2008, 30, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Allied Market Research. Polyphenol Market by Product Type (Apple, Green Tea, Grape Seeds and Others), Type (Flavonoid, Resveratrol, Phenolic Acid and Lignin), and Application (Functional Foods, Functional Beverages, Dietary Supplements, and Others): Global Opportunity Analysis and Industry Forecast 2021–2030. Available online: https://www.alliedmarketresearch.com/polyphenol-market (accessed on 6 June 2023).
- Carvalho, M.J.; Costa, J.R.; Pedrosa, S.S.; Pintado, M.; Oliveira, A.L.S.; Madureira, A.R. Sugarcane Straw Extracts: Production and Purification by Amberlite XAD-2. Food Bioprod. Process. 2023, 140, 189–199. [Google Scholar] [CrossRef]
- Talhaoui, N.; Taamalli, A.; Gómez-Caravaca, A.M.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Phenolic Compounds in Olive Leaves: Analytical Determination, Biotic and Abiotic Influence, and Health Benefits. Food Res. Int. 2015, 77, 92–108. [Google Scholar] [CrossRef]
- Bilgin, M.; Şahin, S. Effects of Geographical Origin and Extraction Methods on Total Phenolic Yield of Olive Tree (Olea europaea) Leaves. J. Taiwan Inst. Chem. Eng. 2013, 44, 8–12. [Google Scholar] [CrossRef]
- Di Donna, L.; Mazzotti, F.; Naccarato, A.; Salerno, R.; Tagarelli, A.; Taverna, D.; Sindona, G. Secondary Metabolites of Olea europaea Leaves as Markers for the Discrimination of Cultivars and Cultivation Zones by Multivariate Analysis. Food Chem. 2010, 121, 492–496. [Google Scholar] [CrossRef]
- Bannerjee, G.; Sarkar, U.; Das, S.; Ghosh, I. Artificial Intelligence in Agriculture: A Literature Survey. Int. J. Sci. Res. Comput. Sci. Appl. Manag. Stud. 2018, 7, 1–6. [Google Scholar]
- Malabadi, R.B.; Nethravathi, T.L.; Kolkar, K.P.; Chalannavar, R.K.; Mudigoudra, B.S.; Lavanya, L.; Abdi, G.; Baijnath, H. Cannabis sativa: Applications of Artificial Intelligence and Plant Tissue Culture for Micropropagation. Int. J. Res. Innov. Appl. Sci. IJRIAS 2023, 8, 117–142. [Google Scholar] [CrossRef]
- Zielińska, S.; Kępczyńska, E. Neural Modeling of Plant Tissue Cultures: A Review. BioTechnologia 2013, 94, 253–268. [Google Scholar] [CrossRef]
- Kai, P.M.; de Oliveira, B.M.; da Costa, R.M. Deep Learning-Based Method for Classification of Sugarcane Varieties. Agronomy 2022, 12, 2722. [Google Scholar] [CrossRef]
- Oliveira, C.M.; Barros, A.S.; Silva Ferreira, A.C.; Silva, A.M.S. Influence of the Temperature and Oxygen Exposure in Red Port Wine: A Kinetic Approach. Food Res. Int. 2015, 75, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, B.; Falco, V.; Moutinho-Pereira, J.; Bacelar, E.; Peixoto, F.; Correia, C. Effects of Elevated CO2 on Grapevine (Vitis vinifera L.): Volatile Composition, Phenolic Content, and in Vitro Antioxidant Activity of Red Wine. J. Agric. Food Chem. 2009, 57, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Campos, L.; Granell, P.; Tárraga, S.; López-Gresa, P.; Conejero, V.; Bellés, J.M.; Rodrigo, I.; Lisón, P. Salicylic Acid and Gentisic Acid Induce RNA Silencing-Related Genes and Plant Resistance to RNA Pathogens. Plant Physiol. Biochem. 2014, 77, 35–43. [Google Scholar] [CrossRef]
- Rodrigues, N.P.; Brochier, B.; de Medeiros, J.K.; Marczak, L.D.F.; Mercali, G.D. Phenolic Profile of Sugarcane Juice: Effects of Harvest Season and Processing by Ohmic Heating and Ultrasound. Food Chem. 2021, 347, 129058. [Google Scholar] [CrossRef]
- Coutinho, I.D.; Baker, J.M.; Ward, J.L.; Beale, M.H.; Creste, S.; Cavalheiro, A.J. Metabolite Profiling of Sugarcane Genotypes and Identification of Flavonoid Glycosides and Phenolic Acids. J. Agric. Food Chem. 2016, 64, 4198–4206. [Google Scholar] [CrossRef]
- Williams, C.A. Flavone and Flavonol O-Glycosides. In Flavonoids: Chemistry, Biochemistry and Applications; CRC: Boca Raton, FL, USA, 2006; pp. 749–856. [Google Scholar]
- Sun, J.; He, X.-M.; Zhao, M.-M.; Li, L.; Li, C.-B.; Dong, Y. Antioxidant and Nitrite-Scavenging Capacities of Phenolic Compounds from Sugarcane (Saccharum officinarum L.) Tops. Molecules 2014, 19, 13147–13160. [Google Scholar] [CrossRef] [PubMed]
- Sampietro, D.A.; Vattuone, M.A.; Isla, M.I. Plant Growth Inhibitors Isolated from Sugarcane (Saccharum officinarum) Straw. J. Plant Physiol. 2006, 163, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Vila, F.C.; Colombo, R.; Lira, T.O.D.; Yariwake, J.H. HPLC Microfractionation of Flavones and Antioxidant (Radical Scavenging) Activity of Saccharum officinarum L. J. Braz. Chem. Soc. 2008, 19, 903–908. [Google Scholar] [CrossRef]
- Payet, B.; Shum Cheong Sing, A.; Smadja, J. Comparison of the Concentrations of Phenolic Constituents in Cane Sugar Manufacturing Products with Their Antioxidant Activities. J. Agric. Food Chem. 2006, 54, 7270–7276. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.J.; Oliveira, A.L.; Pedrosa, S.S.; Pintado, M.; Madureira, A.R. Potential of Sugarcane Extracts as Cosmetic and Skincare Ingredients. Ind. Crops Prod. 2021, 169, 113625. [Google Scholar] [CrossRef]
- Yao, Y.; Yang, Y.; Li, C.; Huang, D.; Zhang, J.; Wang, C.; Li, W.; Wang, N.; Deng, Y.; Liao, W. Research Progress on the Functions of Gasotransmitters in Plant Responses to Abiotic Stresses. Plants 2019, 8, 605. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules 2019, 24, 2452. [Google Scholar] [CrossRef] [PubMed]
- Mei, Y.; Sun, H.; Du, G.; Wang, X.; Lyu, D. Exogenous Chlorogenic Acid Alleviates Oxidative Stress in Apple Leaves by Enhancing Antioxidant Capacity. Sci. Hortic. 2020, 274, 109676. [Google Scholar] [CrossRef]
- Atkinson, N.J.; Dew, T.P.; Orfila, C.; Urwin, P.E. Influence of Combined Biotic and Abiotic Stress on Nutritional Quality Parameters in Tomato (Solanum lycopersicum). J. Agric. Food Chem. 2011, 59, 9673–9682. [Google Scholar] [CrossRef]
- Chen, Y.; Yi, N.; Yao, S.B.; Zhuang, J.; Fu, Z.; Ma, J.; Yin, S.; Jiang, X.; Liu, Y.; Gao, L.; et al. CsHCT-Mediated Lignin Synthesis Pathway Involved in the Response of Tea Plants to Biotic and Abiotic Stresses. J. Agric. Food Chem. 2021, 69, 10069–10081. [Google Scholar] [CrossRef]
- Fayos, J.; Bellés, J.M.; López-Gresa, M.P.; Primo, J.; Conejero, V. Induction of Gentisic Acid 5-O-β-d-Xylopyranoside in Tomato and Cucumber Plants Infected by Different Pathogens. Phytochemistry 2006, 67, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.; Costa, E.M.; Costa, M.R.; Pereira, M.F.; Pereira, J.O.; Soares, J.C.; Pintado, M.M. Aqueous Extracts of Vaccinium Corymbosum as Inhibitors of Staphylococcus aureus. Food Control 2015, 51, 314–320. [Google Scholar] [CrossRef]
- Aguiar, A.; Milessi, T.S.; Mulinari, D.R.; Lopes, M.S.; da Costa, S.M.; Candido, R.G. Sugarcane Straw as a Potential Second Generation Feedstock for Biorefinery and White Biotechnology Applications. Biomass Bioenergy 2021, 144, 105896. [Google Scholar] [CrossRef]
- Cetin-Karaca, H.; Newman, M.C. Antimicrobial Efficacy of Plant Phenolic Compounds against Salmonella and Escherichia coli. Food Biosci. 2015, 11, 8–16. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, M.; Zhao, Z.; Yu, S. The Antibiotic Activity and Mechanisms of Sugarcane (Saccharum officinarum L.) Bagasse Extract against Food-Borne Pathogens. Food Chem. 2015, 185, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Leardi, R. Experimental Design in Chemistry: A Tutorial. Anal. Chim. Acta 2009, 652, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Alara, O.R.; Abdurahman, N.H.; Afolabi, H.K.; Olalere, O.A. Efficient Extraction of Antioxidants from Vernonia Cinerea Leaves: Comparing Response Surface Methodology and Artificial Neural Network. Beni Suef Univ. J. Basic. Appl. Sci. 2018, 7, 276–285. [Google Scholar] [CrossRef]
- Sinha, K.; Saha, P.D.; Datta, S. Response Surface Optimization and Artificial Neural Network Modeling of Microwave Assisted Natural Dye Extraction from Pomegranate Rind. Ind. Crops Prod. 2012, 37, 408–414. [Google Scholar] [CrossRef]
- Dadgar, M.; Hosseini Varkiyani, S.M.; Merati, A.A. Comparison between Artificial Neural Network and Response Surface Methodology in the Prediction of the Parameters of Heat Set Polypropylene Yarns. J. Text. Inst. 2015, 106, 417–430. [Google Scholar] [CrossRef]
- Riffel, A.; Oliveira, J.; Ribeiro, T.; Santos, D.; Pimenta, A.; Santana, A.E.G. The Interaction between Diatraea saccharalis (Lepidoptera, Crambidae) and Sugarcane: Changes in Plant’s Proteome. In Proceedings of the International Chemical Ecology Conference, Melbourne, VIC, Australia, 19–23 August 2013. [Google Scholar]
- Kundu, A.; Vadassery, J. Chlorogenic Acid-mediated Chemical Defence of Plants against Insect Herbivores. Plant Biol. 2019, 21, 185–189. [Google Scholar] [CrossRef]
- Sabino, A.R.; Tavares, S.S.; Riffel, A.; Li, J.V.; Oliveira, D.J.A.; Feres, C.I.M.A.; Henrique, L.; Oliveira, J.S.; Correia, G.D.S.; Sabino, A.R.; et al. 1H NMR Metabolomic Approach Reveals Chlorogenic Acid as a Response of Sugarcane Induced by Exposure to Diatraea saccharalis. Ind. Crops Prod. 2019, 140, 111651. [Google Scholar] [CrossRef]
- De Rossato, J.A.S., Jr.; Costa, G.H.G.; Madaleno, L.L.; Mutton, M.J.R.; Higley, L.G.; Fernandes, O.A. Characterization and Impact of the Sugarcane Borer on Sugarcane Yield and Quality. Agron. J. 2013, 105, 643–648. [Google Scholar] [CrossRef]
- Marin, F.R.; Rattalino Edreira, J.I.; Andrade, J.; Grassini, P. On-Farm Sugarcane Yield and Yield Components as Influenced by Number of Harvests. Field Crops Res. 2019, 240, 134–142. [Google Scholar] [CrossRef]
- Aquino-Bolaños, E.N.; Mercado-Silva, E. Effects of Polyphenol Oxidase and Peroxidase Activity, Phenolics and Lignin Content on the Browning of Cut Jicama. Postharvest Biol. Technol. 2004, 33, 275–283. [Google Scholar] [CrossRef]
- INMET—Instituto Nacional de Meteorologia. Dados Meteorológicos—Banco de Dados Meteorológicos. 2020. Available online: https://portal.inmet.gov.br/dadoshistoricos (accessed on 6 June 2023).
- Hernández, I.; Alegre, L.; Van Breusegem, F.; Munné-Bosch, S. How Relevant Are Flavonoids as Antioxidants in Plants? Trends Plant Sci. 2009, 14, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Gazaffi, R.; Cursi, D.E.; Chapola, R.G.; Santos, J.M.; Fernandes, A.R., Jr.; Carneiro, M.S.; Barbosa, G.V.; Hoffmann, H.P. RB Varieties: A Major Contribution to the Sugarcane Industry in Brazil. In Proceedings of the International Society of Sugar Cane Technologists, Makay, QLD, Australia, 27–29 April 2016; Volume 29, pp. 1677–1682. [Google Scholar]
- Galvao, L.S.; Formaggio, A.R.; Tisot, D.A. Discrimination of Sugarcane Varieties in Southeastern Brazil with EO-1 Hyperion Data. Remote Sens. Environ. 2005, 94, 523–534. [Google Scholar] [CrossRef]
- Talhaoui, N.; Gómez-Caravaca, A.M.; León, L.; De la Rosa, R.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Determination of Phenolic Compounds of ‘Sikitita’ Olive Leaves by HPLC-DAD-TOF-MS. Comparison with Its Parents ‘Arbequina’ and ‘Picual’ Olive Leaves. LWT—Food Sci. Technol. 2014, 58, 28–34. [Google Scholar] [CrossRef]
- Mansour-Gueddes, S.B.; Saidana-Naija, D.; Flamini, G.; Cheraief, I.; Braham, M. Assessment of the Climatic Condition’s Impact on Volatiles, Polyphenols and Mineral Contents in Tunisian Olive Tree (Olea europaea L.). Pol. J. Environ. Stud. 2022, 31, 219–230. [Google Scholar] [CrossRef]
- Aishah, M.A.S.; Rohana, T.; Masni, M.A.; Jalifah, L. Growth and Phenolic Constituents Production of Roselle (Hibiscus sabdariffa Var. UKMR-2) in Response to Soil Media. J. Phys. Conf. Ser. 2019, 1358, 12003. [Google Scholar] [CrossRef]
- Bitencourt, D.P.; Ruas, Á.C.; Maia, P.A. Análise Da Contribuição Das Variáveis Meteorológicas No Estresse Térmico Associada à Morte de Cortadores de Cana-de-Açúcar. Cad. Saude Publica 2012, 28, 65–74. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Friant, P.; Chone, X.; Tregoat, O.; Koundouras, S.; Dubourdieu, D. Influence of Climate, Soil, and Cultivar on Terroir. Am. J. Enol. Vitic. 2004, 55, 207–217. [Google Scholar] [CrossRef]
Compound Name | Formula | [M-H]− | Fragments MS2 |
---|---|---|---|
Hydroxybenzoic acids | |||
1-O-Vanilloyl-β-d-glucose | C14H18O9 | 329 | 167 |
Vanillic acid | C8H8O4 | 167.0350 | 108, 119, 152 |
Protocatechuic acid | C7H6O4 | 153.0193 | 109, 153 |
2,5-Dihydrobenzoic acid | C7H6O4 | 153.0193 | 109, 153 |
Gentisic acid 2-O-β-glucoside | C13H15O9 | 315.0709 | 108, 152 |
Gentisic acid 5-O-β-glucoside | C13H15O9 | 315.0709 | 109, 153 |
Protocatechuic acid 4-β-glucoside | C13H15O9 | 315.0709 | 109, 153 |
4-Hydroxybenzoic acid | C7H5O3 | 137.0221 | 137 |
3,4-Dihydroxybenzaldehyde | C7H5O3 | 137.0221 | 93, 137 |
4-Hydroxybenzaldehyde | C7H5O2 | 121.0276 | 121 |
Hydroxybenzoic-4-β-glucoside | C13H15O8 | 299.0717 | 137 |
Hydroxycinnamic acids | |||
Neochlorogenic acid | C16H18O9 | 353.08781 | 135, 179, 191 |
Chlorogenic acid | C16H18O9 | 353.08781 | 191 |
4-Caffeoylquinic acid | C16H18O9 | 353.08781 | 135, 173, 179, 191 |
cis-5-O-p-Coumaroylquinic acid | C16H18O8 | 337.09289 | 93, 163, 173, 191 |
5-O-Feruloylquinic acid | C17H20O9 | 367.0971 | 134, 193 |
trans-3-Feruloylquinic acid | C17H19O9 | 367.0596 | 173 |
Feruloylquinic acid isomers | C17H20O9 | 367.0961 | 173, 191 |
Caffeic acid | C9H8O4 | 179.0317 | 135, 179 |
Ferulic acid derivatives | C10H10O4 | 193.05063 | 134, 191 |
Coumaric acid derivatives | C9H8O3 | 163.04007 | 119, 163 |
Caffeoylquinic acid | C16H18O9 | 515.11 | 515 |
4,5-Dicaffeoylquinic acid | C25H24O12 | 515.11 | 173, 179, 191, 353 |
Caffeoylshikimic acid | C16H16O8 | 335.071 | 135, 161, 179 |
Flavones | |||
Apigenin-8-C-glucoside | C21H20O10 | 431.09837 | 311, 341, 431 |
Isovitexin 2″-O-arabinoside | C26H27O14 | 563.14063 | 353, 443 |
Isoschaftoside | C26H27O14 | 563.14063 | 353, 473 |
Neoschaftoside | C26H27O14 | 563.14063 | 399, 473 |
Apigenin-6-C-glucosyl-8-C-arabinoside | C26H28O14 | 563.14063 | 353, 443 |
Luteolin-6-C-glucoside | C21H20O11 | 447.09329 | 327, 357 |
Luteolin-8-C-glucoside | C21H20O11 | 447.09329 | 327, 357 |
Apigenin 7-O-neohesperidoside | C27H29O14 | 577.1563 | 293, 413 |
Luteolin | C15H10O6 | 285.04046 | 285 |
6-Methoxyluteolin 7-rhamnoside | C22H21O11 | 461.1089 | 461 |
Diosmetin | C16H12O6 | 299.0502 | 284, 299 |
Tricin-O-neohesperoside isomer | C29H33O16 | 637.1638 | 329 |
Tricin-7-O-glucoside | C25H31O10 | 491.1826 | 329 |
Tricin-7-O-rhamnosyl-glucuronide | C36H27O12 | 651.144 | 329 |
Tricin-4-(O-erythro) ether glucoside | C33H35O16 | 687.1786 | 195, 329, 491, 525 |
Tricin | C17H13O7 | 329.0667 | 299 |
(a) | ||||||||
Identified Compound | 4 June 2020 | 3 July 2020 | 24 July 2020 | 8 August 2020 | ||||
CTC9001 | CTC9001 | RB966928 | RB966928 | RB985476 | CTC4 | |||
BHI | BLI | BHI | BLI | BHI | BLI | BHI | BLI | |
1st H | 1st H | 1st H | 7th H | 1stH | 1st H | 1st H | 3rd H | |
Hydroxybenzoic acids | µg/g DW extract | |||||||
1-O-Vanilloyl-β-d-glucose | - | - | - | - | - | - | 301.1 ± 31.9 | 122.1 ± 78.3 |
Vanillic acid | - | - | - | - | - | - | 72.9 ± 9.9 | 40.7 ± 19.2 |
2,5-Dihydrobenzoic acid | 38.8 ± 0.4 | 122.0 ± 4.6 | 100.8 ± 8.7 | 43.5 ± 6.8 | 245.5 ± 17.3 | 171.3 ± 1.0 | 156.7 ± 5.5 | 135.4 ± 6.2 |
Gentisic acid 2-O-β-glucoside | - | - | 4.6 ± 0.2 | 3.9 ± 0.7 | 32.2 ± 1.0 | 46.3 ± 3.8 | 32.3 ± 5.1 | 19.8 ± 0.1 |
Gentisic acid 5-O-β-glucoside | 1.4 ± 0.1 | 3.2 ± 0.2 | 5.3 ± 0.3 | 3.8 ± 0.1 | 30.2 ± 0.8 | 67.3 ± 7.1 | 26.1 ± 2.2 | 14.3 ± 0.6 |
4-Hydroxybenzoic acid | 0.2 ± 0.0 | 1.8 ± 0.1 | 7.7 ± 2.5 | 17.1 ± 0.9 | 48.5 ± 1.5 | 37.6 ± 4.8 | 28.2 ± 2.7 | 32.7 ± 0.2 |
4-Hydroxybenzaldehyde | 16.4 ± 0.8 | 16.3 ± 0.8 | 36.9 ± 1.0 | 20.1 ± 1.9 | 20.8 ± 1.0 | 26.8 ± 1.0 | 22.6 ± 1.5 | 37.3 ± 2.2 |
Hydroxybenzoic-4-β-glucoside | - | - | - | - | 9.4 ± 0.5 | 26.6 ± 0.9 | 5.0 ± 0.1 | 5.8 ± 0.3 |
Hydroxycinnamic acids | µg/g DW extract | |||||||
Neochlorogenic acid | 0.8 ± 0.2 | 2.2 ± 0.1 | 1.4 ± 0.5 | 0.2 ± 0.0 | 52.3 ± 0.6 | 22.5 ± 0.3 | 55.1 ± 6.4 | 62.8 ± 1.0 |
Chlorogenic acid | 1.9 ± 0.2 | 3.6 ± 0.1 | 4.8 ± 0.7 | 3.5 ± 1.9 | 165.7 ± 19.1 | 85.4 ± 0.5 | 106.0 ± 8.4 | 131.5 ± 4.1 |
4-Caffeoylquinic acid | 1.2 ± 0.1 | 2.2 ± 0.1 | 0.8 ± 0.4 | 0.2 ± 0.0 | 26.5 ± 0.8 | 15.1 ± 0.5 | 28.0 ± 2.5 | 34.4 ± 1.4 |
5-O-Feruloylquinic acid | 14.8 ± 1.3 | 54.5 ± 1.7 | 124.4 ± 10.3 | 18.2 ± 5.8 | 333.5 ± 26.9 | 200.1 ± 2.6 | 186.2 ± 6.9 | 240.3 ± 11.4 |
trans-3-Feruloylquinic acid | - | - | 88.8 ± 4.4 | 17.9 ± 1.9 | 44.3 ± 1.7 | 27.1 ± 0.3 | 87.4 ± 5.8 | 121.9 ± 2.5 |
Feruloylquinic acid isomer | 9.2 ± 1.2 | 25.1 ± 0.1 | - | - | 169.5 ± 11.7 | 108.7 ± 1.7 | 11.7 ± 0.7 | 12.2 ± 0.2 |
Caffeic acid | 1.7 ± 0.2 | 3.3 ± 0.1 | 8.1 ± 0.5 | 2.1 ± 1.7 | 17.8 ± 1.1 | 12.8 ± 0.2 | 11.5 ± 0.3 | 13.9 ± 1.4 |
Ferulic acid | 14.3 ± 0.2 | 33.0 ± 0.1 | 42.2 ± 1.3 | 28.4 ± 0.8 | 57.9 ± 1.6 | 47.7 ± 3.8 | 40.6 ± 0.7 | 48.5 ± 0.7 |
p-Coumaric acid | 63.9 ± 5.6 | 59.7 ± 0.9 | 120.6 ± 11.9 | 102.4 ± 17.3 | 63.8 ± 1.4 | 59.7 ± 11.0 | 74.2 ± 1.6 | 83.0 ± 2.5 |
Caffeoylquinic acid | 3.2 ± 0.4 | 13.7 ± 0.6 | 24.1 ± 2.1 | 22.5 ± 5.0 | 38.3 ± 0.4 | 26.9 ± 0.8 | 37.2 ± 1.8 | 46.3 ± 3.2 |
Flavones | µg/g DW extract | |||||||
Apigenin-8-C-glucoside | 13.5 ± 0.5 | 32.9 ± 1.1 | 38.6 ± 1.0 | 27.8 ± 0.9 | 127.9 ± 10.0 | 70.6 ± 5.0 | 72.2 ± 1.5 | 80.0 ± 1.6 |
Isovitexin-2″-O-arabinoside | 1.20 ± 0.1 | 4.3 ± 0.1 | 3.5 ± 0.2 | 3.7 ± 1.1 | 20.1 ± 1.9 | 27.7 ± 0.7 | 3.5 ± 0.3 | 2.0 ± 0.1 |
Isoschaftoside | 17.07 ± 1.4 | 40.7 ± 2.6 | 44.1 ± 4.5 | 38.0 ± 7.0 | 4.7 ± 0.6 | 6.73 ± 0.1 | 55.4 ± 3.3 | 37.2 ± 1.1 |
Luteolin-6-C-glucoside | - | - | 101.6 ± 6.5 | 56.9 ± 17.2 | 250.3 ± 42.1 | 221.0 ± 0.9 | 215.4 ± 20.9 | 290.1 ± 1.0 |
Luteolin-8-C-glucoside | - | - | - | - | 42.9 ± 4.4 | 9.7 ± 0.5 | 22.3 ± 2.1 | 29.2 ± 1.8 |
Apigenin-7-O-neohesperidoside | 4.1 ± 0.6 | 9.0 ± 0.3 | 2.6 ± 0.4 | 5.64 ± 1.2 | 28.9 ± 1.5 | 17.6 ± 1.1 | 14.3 ± 0.9 | 21.9 ± 0.2 |
Tricin | 3.8 ± 0.1 | 7.3 ± 0.6 | 0.01 ± 0.0 | 0.01 ± 0.0 | 8.7 ± 0.5 | 9.7 ± 0.4 | 14.4 ± 1.0 | 14.3 ± 0.9 |
(b) | ||||||||
Identified Compound | 22 September 2020 | 14 October 2020 | 16 November 2020 | |||||
CU7870 | RB985476 | SP803280 | SP803280 | |||||
BHI | BLI | BHI | BLI | BHI | BLI | |||
4th H | 4th H | 2nd H | 3rd H | 5th H | 5th H | |||
Hydroxybenzoic acids | µg/g DW extract | |||||||
1-O-Vanilloyl-β-d-glucose | 158.6 ± 14.0 | 60.1 ± 60.0 | 123.4 ± 1.3 | 126.4 ± 70.0 | - | - | ||
Vanillic acid | 51.9 ± 2.9 | 53.3 ± 0.3 | 52.0 ± 1.7 | 53.7 ± 19.0 | 38.4 ± 4.9 | 43.3 ± 7.3 | ||
2,5-Dihydrobenzoic acid | 106.3 ± 25.5 | 102.9 ± 1.7 | 170.5 ± 5.8 | 155.8 ± 7.4 | 14.5 ± 0.6 | 16.1 ± 0.3 | ||
Gentisic acid 2-O-β-glucoside | 19.0 ± 3.0 | 20.9 ± 1.6 | 27.4 ± 1.4 | 22.7 ± 0.2 | 0.4 ± 0.2 | 0.3 ± 0.3 | ||
Gentisic acid 5-O-β-glucoside | 18.9 ± 1.9 | 20.6 ± 1.7 | 21.8 ± 1.2 | 17.6 ± 0.2 | 0.5 ± 0.1 | 0.3 ± 0.1 | ||
4-Hydroxybenzoic acid | 33.6 ± 0.5 | 30.3 ± 2.6 | 45.7 ± 1.8 | 73.6 ± 3.1 | 8.7 ± 1.7 | 5.7 ± 0.6 | ||
4-Hydroxybenzaldehyde | 12.1 ± 0.9 | 9.6 ± 0.1 | 48.9 ± 1.4 | 61.4 ± 4.3 | 5.9 ± 0.6 | 4.3 ± 0.4 | ||
Hydroxybenzoic-4-β-glucoside | 4.2 ± 1.3 | 5.3 ± 0.9 | 3.9 ± 0.2 | 2.9 ± 0.1 | - | - | ||
Hydroxycinnamic acids | µg/g DW extract | |||||||
Neochlorogenic acid | 83.1 ± 3.2 | 59.6 ± 3.3 | 86.0 ± 3.7 | 81.1 ± 0.5 | - | - | ||
Chlorogenic acid | 103.7 ± 15.7 | 100.0 ± 5.3 | 70.7 ± 3.8 | 71.5 ± 0.5 | 2.6 ± 0.1 | 2.5 ± 0.3 | ||
4-Caffeoylquinic acid | 43.4 ± 3.2 | 40.4 ± 1.5 | 42.9 ± 1.1 | 44.7 ± 1.5 | - | - | ||
5-O-Feruloylquinic acid | 102.4 ± 22.1 | 122.2 ± 2.5 | 163.9 ± 0.2 | 153.7 ± 2.8 | 6.2 ± 0.1 | 8.1 ± 0.4 | ||
trans-3-Feruloylquinic acid | 11.8 ± 1.0 | 9.7 ± 0.6 | 94.5 ± 0.7 | 57.8 ± 25.9 | 3.5 ± 0.2 | 4.5 ± 0.2 | ||
Feruloylquinic acid isomer | 79.8 ± 1.0 | 74.5 ± 2.7 | 9.3 ± 0.6 | 49.4 ± 10.0 | - | - | ||
Caffeic acid | 35.8 ± 8.9 | 42.6 ± 0.7 | 24.2 ± 1.4 | 46.1 ± 3.4 | 5.8 ± 0.3 | 6.5 ± 0.5 | ||
Ferulic acid | 40.3 ± 10.0 | 50.2 ± 0.6 | 31.1 ± 0.8 | 34.3 ± 0.6 | 6.7 ± 1.0 | 7.0 ± 1.1 | ||
p-Coumaric acid | 30.8 ± 1.7 | 38.5 ± 1.1 | 37.4 ± 2.2 | 53.6 ± 1.6 | 21.4 ± 0.7 | 22.0 ± 1.3 | ||
Caffeoylquinic acid | 15.5 ± 2.2 | 17.4 ± 0.2 | 27.6 ± 2.8 | 26.4 ± 2.8 | 6.5 ± 0.4 | 8.6 ± 0.8 | ||
Flavones | µg/g DW extract | |||||||
Apigenin-8-C-glucoside | 59.8 ± 2.5 | 56.6 ± 6.7 | 64.7 ± 3.5 | 52.7 ± 1.3 | 11.4 ± 1.0 | 12.0 ± 0.5 | ||
Isovitexin 2″-O-arabinoside | 1.3 ± 0.1 | 1.5 ± 0.1 | - | - | - | - | ||
Isoschaftoside | 22.3 ± 1.5 | 24.4 ± 0.5 | 15.1 ± 2.0 | 17.7 ± 0.2 | 7.3 ± 0.8 | 8.4 ± 0.4 | ||
Luteolin-6-C-glucoside | 129.8 ± 17.5 | 137.5 ± 2.9 | 174.5 ± 22.7 | 168.6 ± 1.0 | 37.8 ± 4.4 | 40.3 ± 1.5 | ||
Luteolin-8-C-glucoside | 13.9 ± 1.4 | 3.4 ± 0.1 | 7.8 ± 1.4 | 6.6 ± 0.4 | 12.4 ± 0.4 | 12.8 ± 1.6 | ||
Apigenin 7-O-neohesperidoside | 27.0 ± 3.3 | 22.6 ± 0.2 | 11.3 ± 0.5 | 5.5 ± 0.2 | - | - | ||
Tricin | 33.1 ± 1.1 | 27.9 ± 1.0 | 9.7 ± 0.5 | 9.9 ± 0.6 | 4.8 ± 0.4 | 5.1 ± 0.5 |
(a) | ||||||||
Identified Compound | 4 June 2020 | 3 July 2020 | 24 July 2020 | 8 August 2020 | ||||
RB966928 | CTC9001 | CTC15 | CU7870 | CTC4 | RB966928 | CU7870 | ||
UHI | ULI | UHI | ULI | UHI | ULI | UHI | ULI | |
1st H | 1st H | 7th H | 5th H | 2nd H | 1st H | 3rd H | 4th H | |
Hydroxybenzoic acids | µg/g DW extract | |||||||
1-O-Vanilloyl-β-d-glucose | - | - | - | - | - | - | 36.2 ± 0.4 | 21.3 ± 10.6 |
Vanillic acid | - | - | - | - | - | - | 21.2 ± 3.5 | 11.7 ± 1.8 |
2,5-Dihydrobenzoic acid | 16.0 ± 0.2 | 18.1 ± 0.5 | 142.4 ± 2.3 | 62.6 ± 1.8 | 125.7 ± 13.0 | 145.8 ± 12.1 | 17.6 ± 3.2 | 10.5 ± 1.2 |
Gentisic acid 2-O-β-glucoside | - | - | 19.3 ± 0.5 | 11.2 ± 0.2 | 20.8 ± 1.7 | 24.8 ± 1.3 | - | - |
Gentisic acid 5-O-β-glucoside | - | - | 14.2 ± 0.1 | 6.9 ± 0.3 | 14.5 ± 0.7 | 20.4 ± 0.0 | - | - |
4-Hydroxybenzoic acid | 1.4 ± 0.5 | 0.5 ± 0.1 | 43.6 ± 1.6 | 22.2 ± 1.1 | 77.8 ± 0.5 | 43.8 ± 1.0 | 3.0 ± 0.4 | 1.7 ± 1.7 |
3,4-Dihydroxybenzaldehyde | 1.8 ± 0.0 | 3.9 ± 1.0 | 5.1 ± 0.2 | 2.3 ± 0.6 | 2.7 ± 0.2 | 18.3 ± 0.5 | - | - |
4-Hydroxybenzaldehyde | 11.2 ± 0.8 | 29.8 ± 0.7 | 19.2 ± 0.1 | 35.3 ± 1.1 | 17.8 ± 1.0 | 38.2 ± 1.1 | 24.9 ± 0.1 | 22.6 ± 0.6 |
Hydroxycinnamic acids | µg/g DW extract | |||||||
Neochlorogenic acid | 1.0 ± 0.2 | 1.1 ± 0.3 | 26.4 ± 1.5 | 7.2 ± 1.2 | 103.5 ± 12.0 | 106.7 ± 9.0 | - | - |
Chlorogenic acid | 2.0 ± 0.2 | 1.1 ± 0.3 | 68.9 ± 3.2 | 21.6 ± 3.3 | 255.1 ± 4.4 | 272.8 ± 6.0 | 2.5 ± 0.7 | 2.4 ± 0.1 |
4-Caffeoylquinic acid | 1.3 ± 0.1 | 1.2 ± 0.1 | 14.1 ± 1.1 | 5.9 ± 0.8 | 60.3 ± 3.0 | 51.3 ± 2.6 | - | - |
5-O-Feruloylquinic acid | 8.2 ± 1.3 | 13.5 ± 1.0 | 263.2 ± 1.3 | 105.3 ± 2.9 | 211.5 ± 20.0 | 391.5 ± 8.1 | 4.5 ± 1.5 | 2.0 ± 0.2 |
trans-3-Feruloylquinic acid | - | - | 16.8 ± 0.4 | 7.6 ± 0.4 | 12.9 ± 1.9 | 65.5 ± 4.7 | 4.7 ± 0.6 | 2.4 ± 0.0 |
Feruloylquinic acid isomer | 6.0 ± 1.1 | 10.6 ± 1.0 | 118.5 ± 1.3 | 86.8 ± 0.5 | 100.4 ± 9.9 | 204.1 ± 12.6 | - | - |
Caffeic acid | 1.9 ± 0.2 | 1.4 ± 0.3 | 14.1 ± 0.7 | 5.6 ± 0.2 | 53.6 ± 12.0 | 25.8 ± 1.4 | 3.3 ± 0.7 | 3.7 ± 0.3 |
Ferulic acid | 14.2 ± 1.0 | 13.2 ± 0.9 | 52.5 ± 0.5 | 46.4 ± 0.1 | 40.4 ± 1.7 | 56.8 ± 2.2 | 17.1 ± 0.6 | 16.2 ± 0.4 |
p-Coumaric acid | 71.3 ± 5.6 | 100.8 ± 5.8 | 75.6 ± 1.1 | 125.3 ± 11.5 | 59.8 ± 1.7 | 76.6 ± 2.6 | 95.9 ± 5.6 | 106.3 ± 2.7 |
Caffeoylquinic acid | 2.7 ± 0.4 | 2.8 ± 0.3 | 49.9 ± 1.8 | 53.7 ± 2.5 | 43.3 ± 5.9 | 58.9 ± 0.4 | 4.9 ± 0.7 | 3.1 ± 0.4 |
4,5-Dicaffeoylquinic acid | - | - | - | - | 41.7 ± 2.9 | 11.2 ± 0.6 | - | - |
Flavones | µg/g DW extract | |||||||
Apigenin-8-C-glucoside | 9.1 ± 0.2 | 7.0 ± 0.3 | 93.2 ± 0.6 | 35.5 ± 1.5 | 103.8 ± 2.7 | 124.2 ± 2.0 | 11.2 ± 0.3 | 8.8 ± 0.2 |
Isovitexin 2″-O-arabinoside | 0.8 ± 0.1 | 0.4 ± 0.0 | 7.0 ± 0.2 | 6.9 ± 0.9 | 51.5 ± 1.1 | 49.2 ± 2.0 | 0.7 ± 0.1 | 0.9 ± 0.1 |
Isoschaftoside | 12.0 ± 1.0 | 9.3 ± 0.7 | 73.6 ± 2.2 | 63.6 ± 2.7 | 7.9 ± 0.4 | 6.7 ± 0.1 | 9.1 ± 0.4 | 11.2 ± 0.1 |
Apigenin-6-C-glucosyl-8-C-arabinoside | 2.4 ± 1.0 | 3.3 ± 1.1 | 13.7 ± 1.1 | 7.5 ± 1.2 | 14.5 ± 0.3 | 20.3 ± 0.3 | - | - |
Luteolin-6-C-glucoside | - | - | 188.7 ± 0.8 | 139.5 ± 3.5 | 244.9 ± 3.7 | 397.8 ± 19.2 | 28.2 ± 6.3 | 22.1 ± 5.4 |
Apigenin 7-O-neohesperidoside | 0.6 ± 0.3 | 0.6 ± 0.2 | 9.5 ± 0.3 | 11.9 ± 1.2 | 13.6 ± 0.1 | 38.3 ± 0.5 | - | - |
(b) | ||||||||
Identified Compound | 22 September 2020 | 14 October 2020 | 16 November 2020 | |||||
CU7870 | CU0618 | CTC15 | SP813250 | RB966928 | CTC4 | |||
UHI | ULI | UHI | ULI | UHI | ULI | |||
5th H | 3rd H | 6th H | 7th H | 4th H | 2nd H | |||
Hydroxybenzoic acids | µg/g DW extract | |||||||
1-O-Vanilloyl-β-d-glucose | 114.3 ± 14.5 | 11.4 ± 2.6 | 74.1 ± 0.7 | 1.2 ± 0.1 | - | - | ||
Vanillic acid | 78.6 ± 4.1 | 4.2 ± 1.3 | 114.4 ± 5.5 | 2.5 ± 0.8 | 50.7 ± 2.3 | 8.8 ± 0.1 | ||
2,5-Dihydrobenzoic acid | 10.0 ± 0.7 | 29.5 ± 1.7 | 53.6 ± 0.5 | 57.6 ± 0.8 | 19.9 ± 0.3 | 17.8 ± 0.3 | ||
Gentisic acid 2-O-β-glucoside | - | 5.9 ± 0.5 | - | 2.6 ± 0.2 | 0.6 ± 0.0 | - | ||
Gentisic acid 5-O-β-glucoside | - | 5.9 ± 0.7 | - | 2.6 ± 0.2 | 0.4 ± 0.3 | - | ||
4-Hydroxybenzoic acid | 1.3 ± 0.1 | 18.2 ± 1.6 | 49.8 ± 0.2 | 26.7 ± 4.2 | 12.9 ± 0.2 | 11.5 ± 0.2 | ||
3,4-Dihydroxybenzaldehyde | - | - | 1.7 ± 0.3 | - | - | - | ||
4-Hydroxybenzaldehyde | 9.4 ± 1.0 | 9.6 ± 0.7 | 23.5 ± 0.9 | 24.5 ± 0.8 | 8.4 ± 0.1 | 8.2 ± 0.1 | ||
Hydroxycinnamic acids | µg/g DW extract | |||||||
Neochlorogenic acid | - | 12.1 ± 0.0 | 28.5 ± 2.5 | 4.1 ± 0.8 | - | - | ||
Chlorogenic acid | 3.2 ± 0.4 | 8.5 ± 7.1 | 42.9 ± 2.4 | 12.5 ± 0.3 | 3.2 ± 0.1 | 3.2 ± 0.1 | ||
4-Caffeoylquinic acid | - | 8.8 ± 0.0 | 20.7 ± 1.2 | 3.9 ± 0.2 | - | - | ||
5-O-Feruloylquinic acid | 4.9 ± 0.3 | 71.7 ± 2.9 | 149.6 ± 8.3 | 46.6 ± 5.7 | 17.5 ± 0.2 | 14.5 ± 0.1 | ||
trans-3-Feruloylquinic acid | 4.4 ± 0.3 | 5.3 ± 0.7 | 48.1 ± 10.0 | 12.6 ± 1.0 | 10.4 ± 0.1 | 8.3 ± 0.0 | ||
Feruloylquinic acid isomer | - | 46.5 ± 2.9 | - | 28.2 ± 1.1 | - | - | ||
Caffeic acid | 2.1 ± 0.2 | 4.1 ± 0.2 | 50.3 ± 4.3 | 14.9 ± 0.8 | 4.3 ± 0.1 | 4.1 ± 0.0 | ||
Ferulic acid | 18.3 ± 0.7 | 27.7 ± 0.5 | 20.7 ± 0.1 | 21.7 ± 0.4 | - | - | ||
p-Coumaric acid | 37.2 ± 2.7 | 29.1 ± 0.4 | 40.8 ± 0.4 | 41.3 ± 0.9 | 20.5 ± 0.2 | 23.5 ± 0.2 | ||
Caffeoylquinic acid | 1.8 ± 0.1 | 14.5 ± 0.5 | 23.2 ± 1.7 | 16.9 ± 1.4 | 6.3 ± 0.1 | 6.0 ± 0.0 | ||
4,5-Dicaffeoylquinic acid | - | 4.9 ± 0.2 | - | 2.2 ± 0.2 | - | - | ||
Flavones | µg/g DW extract | |||||||
Apigenin-8-C-glucoside | 10.7 ± 0.2 | 32.6 ± 0.6 | 49.3 ± 0.5 | 32.3 ± 0.5 | 8.3 ± 0.6 | 9.7 ± 0.1 | ||
Isovitexin 2″-O-arabinoside | 1.5 ± 0.1 | 3.3 ± 0.1 | - | - | - | - | ||
Isoschaftoside | 17.9 ± 1.0 | 37.7 ± 0.7 | 33.0 ± 0.2 | 33.4 ± 0.7 | 14.8 ± 0.2 | 17.5 ± 0.7 | ||
Apigenin-6-C-glucosyl-8-C-arabinoside | 2.1 ± 0.1 | 3.9 ± 0.2 | 7.9 ± 0.5 | 11.4 ± 0.2 | 3.7 ± 0.0 | 4.1 ± 0.1 | ||
Luteolin-6-C-glucoside | 19.9 ± 0.1 | 47.8 ± 1.1 | 213.6 ± 3.9 | 112.4 ± 2.9 | 24.3 ± 0.4 | 21.9 ± 1.5 | ||
Apigenin-7-O-neohesperidoside | 0.8 ± 0.0 | 1.3 ± 0.1 | 7.5 ± 0.4 | 1.4 ± 0.1 | - | - |
Geographic Area | Harvesting Date | Variety | Borer Infection | Harvest | ABTS | DPPH |
---|---|---|---|---|---|---|
Bonfim | 4 June 2020 | CTC9001 | High | 1st | 3.4 ± 0.0 | 8.8 ± 1.4 |
CTC9001 | Low | 1st | 2.3 ± 0.0 | 4.7 ± 0.0 | ||
3 July 2020 | CTC9001 | High | 1st | 1.8 ± 0.1 | 5.3 ± 0.5 | |
RB966928 | Low | 7th | 2.2 ± 1.5 | 6.8 ± 4.1 | ||
24 July 2020 | RB966928 | High | 1st | ND | ND | |
RB966928 | Low | 1st | ND | ND | ||
8 August 2020 | RB985476 | High | 1st | 1.5 ± 0.1 | 1.4 ± 0.2 | |
CTC4 | Low | 3rd | 1.5 ± 0.1 | 1.5 ± 0.3 | ||
22 September 2020 | CU7870 | High | 4th | 1.2 ± 0.0 | 1.1 ± 0.0 | |
CU7870 | Low | 4th | 1.5 ± 0.1 | 2.1 ± 0.0 | ||
14 October 2020 | RB985476 | High | 2nd | 0.9 ± 0.0 | 1.0 ± 0.1 | |
SP803280 | Low | 4th | 1.0 ± 0.0 | 1.2 ± 0.1 | ||
16 November 2020 | CU7870 | High | 1st | ND | ND | |
CU7870 | Low | 1st | ND | ND | ||
Univalem | 4 June 2020 | RB966928 | High | 1st | 3.3 ± 0.0 | 6.9 ± 0.6 |
CTC9001 | Low | 1st | 3.6 ± 0.0 | 9.1 ± 1.1 | ||
3 July 2020 | CTC15 | High | 7th | 1.4 ± 0.1 | 3.1 ± 1.0 | |
CTC15 | Low | 5th | 1.7 ± 0.1 | 4.6 ± 0.2 | ||
24 July 2020 | CU7870 | High | 2nd | ND | ND | |
CTC4 | Low | 1st | ND | ND | ||
8 August 2020 | RB966928 | High | 3rd | 2.9 ± 0.0 | 3.8 ± 0.2 | |
CU7870 | Low | 4th | 2.9 ± 0.1 | 4.0 ± 0.5 | ||
22 September 2020 | CU7870 | High | 5th | 1.2 ± 0.1 | 1.2 ± 0.2 | |
CU0618 | Low | 3rd | 1.4 ± 0.0 | 1.4 ± 0.0 | ||
14 October 2020 | CTC15 | High | 6th | 2.0 ± 0.0 | 5.0 ± 0.8 | |
CTC15 | Low | 5th | 1.3 ± 0.1 | 2.4 ± 0.5 | ||
16 November 2020 | CU7870 | High | 2nd | ND | ND | |
CTC4 | Low | 1st | ND | ND |
Estimated Effect of β | Hydroxybenzoic Acids | Hydroxycinnamic Acids | Flavones | ABTS | DPPH |
---|---|---|---|---|---|
Intercept | 157.15 ** | 57.81 | 214.59 *** | 2.78 *** | 0.57 |
Collection time (X1) | −279.32 | 1463.86 | 100.54 | 5.57 | −11.86 |
Variety (X2) | 472.95 *** | −1147.95 | 27.59 | −10.31 * | 10.23 |
Geographical area (X3) | −175.01 ** | 460.15 | −59.15 | 1.49 | −4.46 |
Borer infection level (X4) | −281.58 * | −678.45 | −64.99 | 1.90 | 1.94 |
Harvest number (X5) | −288.93 * | −1549.26 ** | −74.35 | 0.02 | 6.15 |
X21 | −103.11 | −5.56 | −158.66 | −4.16 * | 6.25 |
X22 | 830.57 *** | −160.05 | −190.47 | −15.60 * | 21.44 |
X23 | - | - | - | - | - |
X24 | −169.99 | −196.20 | 21.38 | 0.37 | 8.80 |
X25 | 375.45 *** | 1625.61 *** | 316.39 *** | 0.07 | −2.74 |
X1 X2 | −1070.49 *** | −488.82 | −249.28 | 14.78 * | −18.51 |
X1 X3 | −392.48 *** | −1681.32 *** | −109.58 | 0.77 | 0.39 |
X1 X4 | −313.79 * | 1316.06 | 116.41 | −0.80 | −3.40 |
X1 X5 | 44.96 | 543.74 | 277.76 *** | 5.15 ** | −4.00 |
X2 X3 | 224.98 ** | 1310.92 *** | 27.71 | −2.11 ** | −1.94 |
X2 X4 | 236.49 | −1483.73 * | −141.22 | 1.49 | 0.44 |
X2 X5 | −443.79 *** | −2028.47 *** | −346.02 * | −4.53 | 5.55 |
X3 X4 | −103.02 | 274.62 | 24.52 | 1.84 | −5.49 |
X3 X5 | 217.70 *** | 593.82 * | 167.65* | −0.38 | −4.47 |
X4 X5 | 101.01 | −486.24 | 7.49 | −1.42 | 5.48 |
R2 | 0.949 | 0.810 | 0.857 | 0.99 | 0.92 |
R2 Adjusted | 0.922 | 0.710 | 0.781 | 0.84 | 0.84 |
RMSE | 7.455 | 38.418 | 8.948 | 0.04 | 0.12 |
Parameter | Optimum Harvesting Conditions for All the Parameters Combined | Predicted Values at Optimum Harvesting Conditions | Desirability |
---|---|---|---|
Hydroxybenzoic acids | Collection date: October 2020 Variety: CU 0618 Geographic area: Guariba Infection level: 13.81% Harvesting: 7th | 977.59 ± 482.52 | 1.0 |
Hydroxycinnamic acids | 1336.16 ± 764.92 | ||
Flavones | 1660.49 ± 388.94 | ||
ABTS | 4.84 ± 5.92 | ||
DPPH | 9.96 ± 17.95 |
Target Output | Optimal Neural Network | Correlation Coefficients | ||
---|---|---|---|---|
Training Data | Testing Data | Validation Data | ||
Hydroxybenzoic acids | MLP 20-5-5 | 0.994 | 0.956 | 0.993 |
MLP 20-3-5 | 0.978 | 0.935 | 0.994 | |
MLP 20-4-5 | 0.919 | 0.929 | 0.892 | |
MLP 20-4-5 | 0.981 | 0.915 | 0.975 | |
MLP 20-3-5 | 0.966 | 0.933 | 0.958 | |
Hydroxycinnamic acids | MLP 20-5-5 | 0.991 | 0.980 | 0.956 |
MLP 20-3-5 | 0.940 | 0.954 | 0.880 | |
MLP 20-4-5 | 0.895 | 0.931 | 0.864 | |
MLP 20-4-5 | 0.894 | 0.974 | 0.984 | |
MLP 20-3-5 | 0.949 | 0.956 | 0.837 | |
Flavones | MLP 20-5-5 | 0.989 | 0.992 | 0.973 |
MLP 20-3-5 | 0.950 | 0.973 | 0.967 | |
MLP 20-4-5 | 0.888 | 0.834 | 0.886 | |
MLP 20-4-5 | 0.976 | 0.940 | 0.989 | |
MLP 20-3-5 | 0.904 | 0.951 | 0.928 | |
ABTS | MLP 20-5-5 | 0.997 | 0.936 | 0.563 |
MLP 20-3-5 | 0.983 | 0.990 | 0.764 | |
MLP 20-4-5 | 0.770 | 0.931 | 0.948 | |
MLP 20-4-5 | 0.956 | 0.968 | 0.828 | |
MLP 20-3-5 | 0.898 | 0.969 | 0.838 | |
DPPH | MLP 20-5-5 | 0.979 | 0.985 | 0.742 |
MLP 20-3-5 | 0.941 | 0.967 | 0.621 | |
MLP 20-4-5 | 0.868 | 0.910 | 0.862 | |
MLP 20-4-5 | 0.955 | 0.972 | 0.702 | |
MLP 20-3-5 | 0.911 | 0.964 | 0.781 |
Response | Modeling Method | Optimal Neural Network | R2 | RMSE |
---|---|---|---|---|
Hydroxybenzoic acids | RSM | 0.949 | 7.455 | |
ANN | MLP 20-5-5 | 0.989 | 4.461 | |
MLP 20-3-5 | 0.956 | 4.356 | ||
MLP 20-4-5 | 0.85 | 4.734 | ||
MLP 20-4-5 | 0.963 | 5.449 | ||
MLP 20-3-5 | 0.933 | 4.213 | ||
Hydroxycinnamic acids | RSM | 0.810 | 38.418 | |
ANN | MLP 20-5-5 | 0.983 | 7.869 | |
MLP 20-3-5 | 0.885 | 18.339 | ||
MLP 20-4-5 | 0.801 | 16.526 | ||
MLP 20-4-5 | 0.799 | 17.425 | ||
MLP 20-3-5 | 0.901 | 19.013 | ||
Flavones | RSM | 0.857 | 8.948 | |
ANN | MLP 20-5-5 | 0.978 | 3.908 | |
MLP 20-3-5 | 0.902 | 4.020 | ||
MLP 20-4-5 | 0.789 | 5.154 | ||
MLP 20-4-5 | 0.952 | 4.928 | ||
MLP 20-3-5 | 0.817 | 5.839 | ||
ABTS | RSM | 0.990 | 0.039 | |
ANN | MLP 20-5-5 | 0.994 | 0.011 | |
MLP 20-3-5 | 0.966 | 0.024 | ||
MLP 20-4-5 | 0.593 | 0.087 | ||
MLP 20-4-5 | 0.913 | 0.083 | ||
MLP 20-3-5 | 0.807 | 0.048 | ||
DPPH | RSM | 0.920 | 0.118 | |
ANN | MLP 20-5-5 | 0.959 | 0.089 | |
MLP 20-3-5 | 0.886 | 0.119 | ||
MLP 20-4-5 | 0.753 | 0.207 | ||
MLP 20-4-5 | 0.913 | 0.220 | ||
MLP 20-3-5 | 0.829 | 0.144 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, A.L.S.; Carvalho, M.J.; Silva, P.; Pintado, M.; Madureira, A.R. Unraveling Biotic and Abiotic Factors Shaping Sugarcane Straw Polyphenolic Richness: A Gateway to Artificial Intelligence-Driven Crop Management. Antioxidants 2024, 13, 47. https://doi.org/10.3390/antiox13010047
Oliveira ALS, Carvalho MJ, Silva P, Pintado M, Madureira AR. Unraveling Biotic and Abiotic Factors Shaping Sugarcane Straw Polyphenolic Richness: A Gateway to Artificial Intelligence-Driven Crop Management. Antioxidants. 2024; 13(1):47. https://doi.org/10.3390/antiox13010047
Chicago/Turabian StyleOliveira, Ana L. S., Maria João Carvalho, Poliana Silva, Manuela Pintado, and Ana Raquel Madureira. 2024. "Unraveling Biotic and Abiotic Factors Shaping Sugarcane Straw Polyphenolic Richness: A Gateway to Artificial Intelligence-Driven Crop Management" Antioxidants 13, no. 1: 47. https://doi.org/10.3390/antiox13010047
APA StyleOliveira, A. L. S., Carvalho, M. J., Silva, P., Pintado, M., & Madureira, A. R. (2024). Unraveling Biotic and Abiotic Factors Shaping Sugarcane Straw Polyphenolic Richness: A Gateway to Artificial Intelligence-Driven Crop Management. Antioxidants, 13(1), 47. https://doi.org/10.3390/antiox13010047