Differential Nitric Oxide Responses in Primary Cultured Keratinocytes and Fibroblasts to Visible and Near-Infrared Light
Abstract
:1. Introduction
2. Materials and Methods
2.1. Primary Cell Cultures
2.2. Configuration of the Light Source
2.3. Experimental Design
2.4. Statistical Analysis
3. Results
3.1. Keratinocytes Release More NO under Blue Light Compared to Red or NIR Exposure
3.2. Blue Light Elicits Stronger NO Production in Fibroblasts Compared to Red and NIR Light, with Unexpectedly Higher Levels at the 850 nm than the 660 nm Wavelength
3.3. Keratinocytes Exhibit Stronger NO Production Response to Blue Light Compared to Fibroblasts across Different Wavelengths
4. Discussion
4.1. Consistent Blue Light-Induced NO Production in Keratinocytes with Notable Variability among the Populations
4.2. Blue Light Elicits Stronger NO Production in Fibroblasts Compared to Red and NIR Light, with Unexpectedly Higher Levels under the 850 nm than the 660 nm Wavelength
4.3. Impact of Blue Light-Induced ROS on NO Signaling and DAF Fluorescence
4.4. Implications for Light-Based Therapies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Fibroblasts | Keratinocytes | |||||
---|---|---|---|---|---|---|
Irradiance *, Fluence * | 455 nm | 660 nm | 850 nm | 455 nm | 660 nm | 850 nm |
5 mW, 10J | 1.04 | 1.04 | 1.03 | 1.02 | 0.98 | 0.99 |
10 mW, 10J | 1.01 | 1.02 | 1.03 | 0.99 | 1.03 | 1.02 |
15 mW, 10J | 0.97 | 1.12 | 1.07 | 1.03 | 1.02 | 1.03 |
20 mW, 10J | 0.99 | 1.09 | 1.09 | 1.02 | 1.06 | 1.05 |
5 mW, 15J | 1.01 | 1.11 | 0.99 | 1.02 | 1.01 | 1.05 |
10 mW, 15J | 0.97 | 1.17 | 1.03 | 0.99 | 1.06 | 1.02 |
15 mW, 15J | 0.99 | 1.01 | 1.05 | 1.03 | 1.14 | 1.01 |
20 mW, 15J | 0.96 | 1.04 | 1.01 | 0.98 | 1.12 | 1.03 |
The Viability Analysis Method
Wavelength | Cell Population | Mean | Standard Deviation |
---|---|---|---|
455 nm | F1 | 7.638007 | 2.948261 |
455 nm | F2 | 5.83564 | 1.310756 |
455 nm | F3 | 6.346638 | 0.409673 |
660 nm | F1 | 3.264572 | 1.226903 |
660 nm | F2 | 2.065564 | 0.343041 |
660 nm | F3 | 3.19994 | 0.7239476 |
850 nm | F1 | 5.682373 | 0.4192602 |
850 nm | F2 | 3.209916 | 0.2970698 |
850 nm | F3 | 4.224489 | 0.2612656 |
455 nm | K1 | 10.440256 | 2.1218991 |
455 nm | K2 | 11.078691 | 0.6286809 |
455 nm | K3 | 11.83777 | 4.8197893 |
660 nm | K1 | 5.95976 | 1.6264189 |
660 nm | K2 | 4.66611 | 0.820669 |
660 nm | K3 | 8.723922 | 4.4463689 |
850 nm | K1 | 5.401495 | 1.840381 |
850 nm | K2 | 6.975029 | 0.5356716 |
850 nm | K3 | 7.32995 | 2.5079849 |
References
- Ponec, M.; Weerheim, A.; Kempenaar, J.; Mulder, A.; Gooris, G.S.; Bouwstra, J.; Mommaas, A.M. The formation of competent barrier lipids in reconstructed human epidermis requires the presence of vitamin C. J. Investig. Dermatol. 1997, 109, 348–355. [Google Scholar] [CrossRef]
- Boelsma, E.; Verhoeven, M.C.; Ponec, M. Reconstruction of a human skin equivalent using a spontaneously transformed keratinocyte cell line (HaCaT). J. Investig. Dermatol. 1999, 112, 489–498. [Google Scholar] [CrossRef]
- Förstermann, U.; Sessa, W.C. Nitric oxide synthases: Regulation and function. Eur. Heart J. 2012, 33, 829–837. [Google Scholar] [CrossRef]
- Bogdan, C. Nitric oxide and the immune response. Nat. Immunol. 2001, 2, 907–916. [Google Scholar] [CrossRef]
- Suschek, C.V.; Oplander, C.; van Faassen, E.E. Non-enzymatic NO production in human skin: Effect of UVA on cutaneous NO stores. Nitric Oxide 2010, 22, 120–135. [Google Scholar] [CrossRef]
- Kojima, H.; Sakurai, K.; Kikuchi, K.; Kawahara, S.; Kirino, Y.; Nagoshi, H.; Hirata, Y.; Nagano, T. Development of a fluorescent indicator for nitric oxide based on the fluorescein chromophore. Chem. Pharm. Bull. 1998, 46, 373–375. [Google Scholar] [CrossRef]
- Meinhardt, M.; Krebs, R.; Anders, A.; Heinrich, U.; Tronnier, H. Absorption Spectra of Human Skin In Vivo in the Ultraviolet Wavelength Range Measured by Optoacoustics. Photochem. Photobiol. 2009, 85, 70–77. [Google Scholar] [CrossRef]
- Mowbray, M.; McLintock, S.; Weerakoon, R.; Lomatschinsky, N.; Jones, S.; Rossi, A.G.; Weller, R.B. Enzyme-independent NO stores in human skin: Quantification and influence of UV radiation. J. Investig. Dermatol. 2009, 129, 834–842. [Google Scholar] [CrossRef]
- Paunel, A.N.; Dejam, A.; Thelen, S.; Kirsch, M.; Horstjann, M.; Gharini, P.; Mürtz, M.; Kelm, M.; de Groot, H.; Kolb-Bachofen, V.; et al. Enzyme-independent nitric oxide formation during UVA challenge of human skin: Characterization, molecular sources, and mechanisms. Free Radic. Biol. Med. 2005, 38, 606–615. [Google Scholar] [CrossRef]
- Opländer, C.; Deck, A.; Volkmar, C.M.; Kirsch, M.; Liebmann, J.; Born, M.; van Abeelen, F.; van Faassen, E.E.; Kröncke, K.-D.; Windolf, J.; et al. Mechanism and biological relevance of blue-light (420–453 nm)-induced nonenzymatic nitric oxide generation from photolabile nitric oxide derivates in human skin in vitro and in vivo. Free Radic. Biol. Med. 2013, 65, 1363–1377. [Google Scholar] [CrossRef]
- Hamblin, M.R. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem. Photobiol. 2018, 94, 199–212. [Google Scholar] [CrossRef]
- Karu, T.I.; Pyatibrat, L.V.; Afanasyeva, N.I. Cellular effects of low power laser therapy can be mediated by nitric oxide. Lasers Surg. Med. 2005, 36, 307–314. [Google Scholar] [CrossRef]
- Goyer, B.; Pereira, U.; Magne, B.; Larouche, D.; Kearns-Turcotte, S.; Rochette, P.J.; Martin, L.; Germain, L. Impact of ultraviolet radiation on dermal and epidermal DNA damage in a human pigmented bilayered skin substitute. J. Tissue Eng. Regen. Med. 2019, 13, 2300–2311. [Google Scholar] [CrossRef]
- Fradette, J.; Larouche, D.; Fugère, C.; Guignard, R.; Beauparlant, A.; Couture, V.; Caouette-Laberge, L.; Roy, A.; Germain, L. Normal human Merkel cells are present in epidermal cell populations isolated and cultured from glabrous and hairy skin sites. J. Investig. Dermatol. 2003, 120, 313–317. [Google Scholar] [CrossRef]
- Attiogbe, E.; Larochelle, S.; Chaib, Y.; Mainzer, C.; Mauroux, A.; Bordes, S.; Closs, B.; Gilbert, C.; Moulin, V.J. An in vitro autologous, vascularized, and immunocompetent Tissue Engineered Skin model obtained by the self-assembled approach. Acta Biomater. 2023, 168, 361–371. [Google Scholar] [CrossRef]
- Germain, L.; Rouabhia, M.; Guignard, R.; Carrier, L.; Bouvard, V.; Auger, F.A. Improvement of human keratinocyte isolation and culture using thermolysin. Burns 1993, 19, 99–104. [Google Scholar] [CrossRef]
- Michel, M.; Török, N.; Godbout, M.J.; Lussier, M.; Gaudreau, P.; Royal, A.; Germain, L. Keratin 19 as a biochemical marker of skin stem cells in vivo and in vitro: Keratin 19 expressing cells are differentially localized in function of anatomic sites, and their number varies with donor age and culture stage. J. Cell Sci. 1996, 109, 1017–1028. [Google Scholar] [CrossRef]
- Laplante, A.F.; Germain, L.; Auger, F.A.; Moulin, V. Mechanisms of wound reepithelialization: Hints from a tissue-engineered reconstructed skin to long-standing questions. FASEB J. 2001, 15, 2377–2389. [Google Scholar] [CrossRef]
- Uzunbajakava, N.E.; Tobin, D.J.; Botchkareva, N.V.; Dierickx, C.; Bjerring, P.; Town, G. Highlighting nuances of blue light phototherapy: Mechanisms and safety considerations. J. Biophotonics 2022, 16, e202200257. [Google Scholar] [CrossRef]
- Stern, M.; Broja, M.; Sansone, R.; Grone, M.; Skene, S.S.; Liebmann, J.; Suschek, C.V.; Born, M.; Kelm, M.; Heiss, C. Blue light exposure decreases systolic blood pressure, arterial stiffness, and improves endothelial function in humans. Eur. J. Prev. Cardiol. 2018, 25, 1875–1883. [Google Scholar] [CrossRef]
- Garza, Z.C.F.; Born, M.; Hilbers, P.A.J.; van Riel, N.A.W.; Liebmann, J. Visible Blue Light Therapy: Molecular Mechanisms and Therapeutic Opportunities. Curr. Med. Chem. 2018, 25, 5564–5577. [Google Scholar] [CrossRef] [PubMed]
- Tanveer, M.A.; Rashid, H.; Tasduq, S.A. Molecular basis of skin photoaging and therapeutic interventions by plant-derived natural product ingredients: A comprehensive review. Heliyon 2023, 9, e13580. [Google Scholar] [CrossRef] [PubMed]
- Debacq-Chainiaux, F.; Leduc, C.; Verbeke, A.; Toussaint, O. UV, stress and aging. Dermato-Endocrinology 2012, 4, 236–240. [Google Scholar] [CrossRef]
- Bertrand-Vallery, V.; Boilan, E.; Ninane, N.; Demazy, C.; Friguet, B.; Toussaint, O.; Poumay, Y.; Debacq-Chainiaux, F. Repeated exposures to UVB induce differentiation rather than senescence of human keratinocytes lacking p16INK-4A. Biogerontology 2010, 11, 167–181. [Google Scholar] [CrossRef]
- Mignon, C.; Uzunbajakava, N.E.; Castellano-Pellicena, I.; Botchkareva, N.V.; Tobin, D.J. Differential response of human dermal fibroblast subpopulations to visible and near-infrared light: Potential of photobiomodulation for addressing cutaneous conditions. Lasers Surg. Med. 2018, 50, 859–882. [Google Scholar] [CrossRef]
- Suschek, C.V. Nitric Oxide Derivatives and Skin Environmental Exposure to Light: From Molecular Pathways to Therapeutic Opportunities. In Skin Stress Response Pathways: Environmental Factors and Molecular Opportunities; Wondrak, G.T., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 127–154. [Google Scholar]
- Kroncke, K.D.; Suschek, C.V.; Kolb-Bachofen, V. Implications of inducible nitric oxide synthase expression and enzyme activity. Antioxid. Redox Signal. 2000, 2, 585–605. [Google Scholar] [CrossRef] [PubMed]
- Eells, J.T.; Henry, M.M.; Summerfelt, P.; Wong-Riley, M.T.; Buchmann, E.V.; Kane, M.; Whelan, N.T.; Whelan, H.T. Therapeutic photobiomodulation for methanol-induced retinal toxicity. Proc. Natl. Acad. Sci. USA 2003, 100, 3439–3444. [Google Scholar] [CrossRef]
- Levin, J.; Maibach, H. Human skin buffering capacity: An overview. Ski. Res. Technol. 2008, 14, 121–126. [Google Scholar] [CrossRef]
- Schäfer, M.; Werner, S. Transcriptional Control of Wound Repair. Annu. Rev. Cell Dev. Biol. 2007, 23, 69–92. [Google Scholar] [CrossRef]
- Kojima, H.; Nakatsubo, N.; Kikuchi, K.; Kawahara, S.; Kirino, Y.; Nagoshi, H.; Hirata, Y.; Nagano, T. Detection and imaging of nitric oxide with novel fluorescent indicators: Diaminofluoresceins. Anal. Chem. 1998, 70, 2446–2453. [Google Scholar] [CrossRef]
- Ridnour, L.A.; Thomas, D.D.; Mancardi, D.; Espey, M.G.; Miranda, K.M.; Paolocci, N.; Feelisch, M.; Fukuto, J.; Wink, D.A. The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations. Biol. Chem. 2004, 385, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Pope, N.J.; Powell, S.M.; Wigle, J.C.; Denton, M.L. Wavelength- and irradiance-dependent changes in intracellular nitric oxide level. J. Biomed. Opt. 2020, 25, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Oplander, C.; Hidding, S.; Werners, F.B.; Born, M.; Pallua, N.; Suschek, C.V. Effects of blue light irradiation on human dermal fibroblasts. J. Photochem. Photobiol. B 2011, 103, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Ruemer, S.; Krischke, M.; Fekete, A.; Lesch, M.; Mueller, M.J.; Kaiser, W.M. Methods to Detect Nitric Oxide in Plants: Are DAFs Really Measuring NO? Methods Mol. Biol. 2016, 1424, 57–68. [Google Scholar] [CrossRef]
- Radi, R. Peroxynitrite, a stealthy biological oxidant. J. Biol. Chem. 2013, 288, 26464–26472. [Google Scholar] [CrossRef]
- Thomas, D.D.; Ridnour, L.A.; Isenberg, J.S.; Flores-Santana, W.; Switzer, C.H.; Donzelli, S.; Hussain, P.; Vecoli, C.; Paolocci, N.; Ambs, S.; et al. The chemical biology of nitric oxide: Implications in cellular signaling. Free Radic. Biol. Med. 2008, 45, 18–31. [Google Scholar] [CrossRef]
- Weller, R. Nitric oxide: A key mediator in cutaneous physiology. Clin. Exp. Dermatol. 2003, 28, 511–514. [Google Scholar] [CrossRef] [PubMed]
- Godley, B.F.; Shamsi, F.A.; Liang, F.Q.; Jarrett, S.G.; Davies, S.; Boulton, M. Blue light induces mitochondrial DNA damage and free radical production in epithelial cells. J. Biol. Chem. 2005, 280, 21061–21066. [Google Scholar] [CrossRef]
- Coats, J.G.; Maktabi, B.; Abou-Dahech, M.S.; Baki, G. Blue Light Protection, Part I—Effects of blue light on the skin. J. Cosmet. Dermatol. 2021, 20, 714–717. [Google Scholar] [CrossRef]
- Regazzetti, C.; Sormani, L.; Debayle, D.; Bernerd, F.; Tulic, M.K.; De Donatis, G.M.; Chignon-Sicard, B.; Rocchi, S.; Passeron, T. Melanocytes Sense Blue Light and Regulate Pigmentation through Opsin-3. J. Investig. Dermatol. 2018, 138, 171–178. [Google Scholar] [CrossRef]
- Arjmandi, N.; Mortazavi, G.; Zarei, S.; Faraz, M.; Mortazavi, S.A.R. Can Light Emitted from Smartphone Screens and Taking Selfies Cause Premature Aging and Wrinkles? J. Biomed. Phys. Eng. 2018, 8, 447–452. [Google Scholar] [CrossRef] [PubMed]
ID | Cell Type | Source | Donor′s Sex | Donor′s Age | Fitzpatrick Index |
---|---|---|---|---|---|
Population 1 | K * and F ** | Breast Surgery | Female | 55 years | II |
Population 2 | K and F | Facelift | Female | 60 years | II |
Population 3 | K and F | Foreskin | Male | <1 month | IV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barolet, A.C.; Magne, B.; Barolet, D.; Germain, L. Differential Nitric Oxide Responses in Primary Cultured Keratinocytes and Fibroblasts to Visible and Near-Infrared Light. Antioxidants 2024, 13, 1176. https://doi.org/10.3390/antiox13101176
Barolet AC, Magne B, Barolet D, Germain L. Differential Nitric Oxide Responses in Primary Cultured Keratinocytes and Fibroblasts to Visible and Near-Infrared Light. Antioxidants. 2024; 13(10):1176. https://doi.org/10.3390/antiox13101176
Chicago/Turabian StyleBarolet, Augustin C., Brice Magne, Daniel Barolet, and Lucie Germain. 2024. "Differential Nitric Oxide Responses in Primary Cultured Keratinocytes and Fibroblasts to Visible and Near-Infrared Light" Antioxidants 13, no. 10: 1176. https://doi.org/10.3390/antiox13101176
APA StyleBarolet, A. C., Magne, B., Barolet, D., & Germain, L. (2024). Differential Nitric Oxide Responses in Primary Cultured Keratinocytes and Fibroblasts to Visible and Near-Infrared Light. Antioxidants, 13(10), 1176. https://doi.org/10.3390/antiox13101176