Nitric Oxide Signaling and Sensing in Age-Related Diseases
Abstract
:1. Introduction
2. Nitric Oxide Signaling across Systems
2.1. Nitric Oxide Signaling in Cardiovascular System
2.1.1. NOS–NO Signaling Dysfunction
2.1.2. Therapeutic Strategies to Restore NO Disfunction
2.2. Nitric Oxide Signaling in Central Nervous System
2.2.1. Nitric Oxide Dependent Post-Translational Modifications—Role in Neurodegenerative Diseases
2.2.2. Therapeutic Targets in Neurodegenerative Disease
2.3. Nitric Oxide Role in Immunity
2.4. The Dual Role of NO in Cancer
NO-Based Therapeutic Approaches for the Treatment and Prevention of Cancer
2.5. Nitric Oxide in Clinical Studies
3. NO Signaling in Aging
4. Sensing
4.1. Cardiovascular System
4.2. Neurodegenerative Disease
4.3. Sensing in Cancer
5. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Förstermann, U.; Sessa, W.C. Nitric Oxide Synthases: Regulation and Function. Eur. Heart J. 2012, 33, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Kleschyov, A.L. The NO-Heme Signaling Hypothesis. Free Radic. Biol. Med. 2017, 112, 544–552. [Google Scholar] [CrossRef] [PubMed]
- Kleschyov, A.L.; Zhuge, Z.; Schiffer, T.A.; Guimarães, D.D.; Zhang, G.; Montenegro, M.F.; Tesse, A.; Weitzberg, E.; Carlström, M.; Lundberg, J.O. NO-Ferroheme Is a Signaling Entity in the Vasculature. Nat. Chem. Biol. 2023, 19, 1267–1275. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.J.; Wijshake, T.; Tchkonia, T.; LeBrasseur, N.K.; Childs, B.G.; van de Sluis, B.; Kirkland, J.L.; van Deursen, J.M. Clearance of P16Ink4a-Positive Senescent Cells Delays Ageing-Associated Disorders. Nature 2011, 479, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Pourbagher-Shahri, A.M.; Farkhondeh, T.; Talebi, M.; Kopustinskiene, D.M.; Samarghandian, S.; Bernatoniene, J. An Overview of No Signaling Pathways in Aging. Molecules 2021, 26, 4533. [Google Scholar] [CrossRef]
- Lundberg, J.O.; Weitzberg, E. Nitric Oxide Signaling in Health and Disease. Cell 2022, 185, 2853–2878. [Google Scholar] [CrossRef]
- Farah, C.; Michel, L.Y.M.; Balligand, J.-L. Nitric Oxide Signalling in Cardiovascular Health and Disease. Nat. Rev. Cardiol. 2018, 15, 292–316. [Google Scholar] [CrossRef]
- Martínez-Ruiz, A.; Lamas, S. Detection and Proteomic Identification of S-Nitrosylated Proteins in Endothelial Cells. Arch. Biochem. Biophys. 2004, 423, 192–199. [Google Scholar] [CrossRef]
- Kleinbongard, P. Red Blood Cells Express a Functional Endothelial Nitric Oxide Synthase. Blood 2006, 107, 2943–2951. [Google Scholar] [CrossRef]
- Porro, B.; Eligini, S.; Squellerio, I.; Tremoli, E.; Cavalca, V. The Red Blood Cell: A New Key Player in Cardiovascular Homoeostasis? Focus on the Nitric Oxide Pathway. Biochem. Soc. Trans. 2014, 42, 996–1000. [Google Scholar] [CrossRef]
- Crawford, J.H.; Chacko, B.K.; Kevil, C.G.; Patel, R.P. The Red Blood Cell and Vascular Function in Health and Disease. Antioxid. Redox Signal. 2004, 6, 992–999. [Google Scholar] [CrossRef] [PubMed]
- Cortese-Krott, M.M.; Kelm, M. Endothelial Nitric Oxide Synthase in Red Blood Cells: Key to a New Erythrocrine Function? Redox Biol. 2014, 2, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Hu, L.; Feng, X.; Wang, S. Nitrate and Nitrite in Health and Disease. Aging Dis. 2018, 9, 938–945. [Google Scholar] [CrossRef]
- DeMartino, A.W.; Kim-Shapiro, D.B.; Patel, R.P.; Gladwin, M.T. Nitrite and Nitrate Chemical Biology and Signalling. Br. J. Pharmacol. 2019, 176, 228–245. [Google Scholar] [CrossRef]
- Pawloski, J.R.; Hess, D.T.; Stamler, J.S. Export by Red Blood Cells of Nitric Oxidebioactivity. Nature 2001, 409, 622–626. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.W.; Yang, J.; Kleschyov, A.L.; Zhuge, Z.; Carlström, M.; Pernow, J.; Wajih, N.; Isbell, T.S.; Oh, J.Y.; Cabrales, P.; et al. Hemoglobin Β93 Cysteine Is Not Required for Export of Nitric Oxide Bioactivity from the Red Blood Cell. Circulation 2019, 139, 2654–2663. [Google Scholar] [CrossRef] [PubMed]
- Burwell, L.S.; Nadtochiy, S.M.; Tompkins, A.J.; Young, S.; Brookes, P.S. Direct Evidence for S-Nitrosation of Mitochondrial Complex I. Biochem. J. 2006, 394, 627–634. [Google Scholar] [CrossRef]
- Carnicer, R.; Crabtree, M.J.; Sivakumaran, V.; Casadei, B.; Kass, D.A. Nitric Oxide Synthases in Heart Failure. Antioxid. Redox Signal. 2013, 18, 1078–1099. [Google Scholar] [CrossRef]
- Brown, G.; Borutaite, V. Nitric Oxide and Mitochondrial Respiration in the Heart. Cardiovasc. Res. 2007, 75, 283–290. [Google Scholar] [CrossRef]
- Burgoyne, J.R.; Madhani, M.; Cuello, F.; Charles, R.L.; Brennan, J.P.; Schröder, E.; Browning, D.D.; Eaton, P. Cysteine Redox Sensor in PKGIa Enables Oxidant-Induced Activation. Science 2007, 317, 1393–1397. [Google Scholar] [CrossRef]
- Daiber, A.; Xia, N.; Steven, S.; Oelze, M.; Hanf, A.; Kröller-Schön, S.; Münzel, T.; Li, H. New Therapeutic Implications of Endothelial Nitric Oxide Synthase (ENOS) Function/Dysfunction in Cardiovascular Disease. Int. J. Mol. Sci. 2019, 20, 187. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Koziol-White, C.J.; Asosingh, K.; Cheng, G.; Ruple, L.; Groneberg, D.; Friebe, A.; Comhair, S.A.A.; Stasch, J.-P.; Panettieri, R.A.; et al. Soluble Guanylate Cyclase as an Alternative Target for Bronchodilator Therapy in Asthma. Proc. Natl. Acad. Sci. USA 2016, 113, E2355–E2362. [Google Scholar] [CrossRef] [PubMed]
- Stasch, J.-P.; Schmidt, P.M.; Nedvetsky, P.I.; Nedvetskaya, T.Y.; HS, A.K.; Meurer, S.; Deile, M.; Taye, A.; Knorr, A.; Lapp, H.; et al. Targeting the Heme-Oxidized Nitric Oxide Receptor for Selective Vasodilatation of Diseased Blood Vessels. J. Clin. Investig. 2006, 116, 2552–2561. [Google Scholar] [CrossRef] [PubMed]
- Rahaman, M.M.; Nguyen, A.T.; Miller, M.P.; Hahn, S.A.; Sparacino-Watkins, C.; Jobbagy, S.; Carew, N.T.; Cantu-Medellin, N.; Wood, K.C.; Baty, C.J.; et al. Cytochrome B5 Reductase 3 Modulates Soluble Guanylate Cyclase Redox State and CGMP Signaling. Circ. Res. 2017, 121, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Damy, T.; Ratajczak, P.; Shah, A.M.; Camors, E.; Marty, I.; Hasenfuss, G.; Marotte, F.; Samuel, J.-L.; Heymes, C. Increased Neuronal Nitric Oxide Synthase-Derived NO Production in the Failing Human Heart. Lancet 2004, 363, 1365–1367. [Google Scholar] [CrossRef]
- Hermida, N.; Michel, L.; Esfahani, H.; Dubois-Deruy, E.; Hammond, J.; Bouzin, C.; Markl, A.; Colin, H.; Steenbergen, A.V.; De Meester, C.; et al. Cardiac Myocyte Β3-Adrenergic Receptors Prevent Myocardial Fibrosis by Modulating Oxidant Stress-Dependent Paracrine Signaling. Eur. Heart J. 2018, 39, 888–898. [Google Scholar] [CrossRef]
- Belge, C.; Hammond, J.; Dubois-Deruy, E.; Manoury, B.; Hamelet, J.; Beauloye, C.; Markl, A.; Pouleur, A.-C.; Bertrand, L.; Esfahani, H.; et al. Enhanced Expression of Β3-Adrenoceptors in Cardiac Myocytes Attenuates Neurohormone-Induced Hypertrophic Remodeling Through Nitric Oxide Synthase. Circulation 2014, 129, 451–462. [Google Scholar] [CrossRef]
- Altenhöfer, S.; Radermacher, K.A.; Kleikers, P.W.M.; Wingler, K.; Schmidt, H.H.H.W. Evolution of NADPH Oxidase Inhibitors: Selectivity and Mechanisms for Target Engagement. Antioxid. Redox Signal. 2015, 23, 406–427. [Google Scholar] [CrossRef]
- Wu, G.; Morris, S.M., Jr. Arginine Metabolism: Nitric Oxide and Beyond. Biochem. J. 1998, 336, 1–17. [Google Scholar] [CrossRef]
- Schwedhelm, E.; Maas, R.; Freese, R.; Jung, D.; Lukacs, Z.; Jambrecina, A.; Spickler, W.; Schulze, F.; Böger, R.H. Pharmacokinetic and Pharmacodynamic Properties of Oral L-Citrulline and l-Arginine: Impact on Nitric Oxide Metabolism. Br. J. Clin. Pharmacol. 2008, 65, 51–59. [Google Scholar] [CrossRef]
- Shemyakin, A.; Kövamees, O.; Rafnsson, A.; Böhm, F.; Svenarud, P.; Settergren, M.; Jung, C.; Pernow, J. Arginase Inhibition Improves Endothelial Function in Patients With Coronary Artery Disease and Type 2 Diabetes Mellitus. Circulation 2012, 126, 2943–2950. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Li, Z.; Organ, C.L.; Park, C.-M.; Yang, C.; Pacheco, A.; Wang, D.; Lefer, D.J.; Xian, M. PH-Controlled Hydrogen Sulfide Release for Myocardial Ischemia-Reperfusion Injury. J. Am. Chem. Soc. 2016, 138, 6336–6339. [Google Scholar] [CrossRef]
- Heitzer, T.; Krohn, K.; Albers, S.; Meinertz, T. Tetrahydrobiopterin Improves Endothelium-Dependent Vasodilation by Increasing Nitric Oxide Activity in Patients with Type II Diabetes Mellitus. Diabetologia 2000, 43, 1435–1438. [Google Scholar] [CrossRef]
- Doshi, S.N.; McDowell, I.F.W.; Moat, S.J.; Payne, N.; Durrant, H.J.; Lewis, M.J.; Goodfellow, J. Folic Acid Improves Endothelial Function in Coronary Artery Disease via Mechanisms Largely Independent of Homocysteine Lowering. Circulation 2002, 105, 22–26. [Google Scholar] [CrossRef]
- Crabtree, M.J.; Channon, K.M. Synthesis and Recycling of Tetrahydrobiopterin in Endothelial Function and Vascular Disease. Nitric Oxide 2011, 25, 81–88. [Google Scholar] [CrossRef]
- Armstrong, P.W.; Pieske, B.; Anstrom, K.J.; Ezekowitz, J.; Hernandez, A.F.; Butler, J.; Lam, C.S.P.; Ponikowski, P.; Voors, A.A.; Jia, G.; et al. Vericiguat in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2020, 382, 1883–1893. [Google Scholar] [CrossRef]
- Lu, Z.; Xu, X.; Hu, X.; Lee, S.; Traverse, J.H.; Zhu, G.; Fassett, J.; Tao, Y.; Zhang, P.; Remedios, C.D.; et al. Oxidative Stress Regulates Left Ventricular PDE5 Expression in the Failing Heart. Circulation 2010, 121, 1474–1483. [Google Scholar] [CrossRef] [PubMed]
- Hataishi, R.; Rodrigues, A.C.; Neilan, T.G.; Morgan, J.G.; Buys, E.; Shiva, S.; Tambouret, R.; Jassal, D.S.; Raher, M.J.; Furutani, E.; et al. Inhaled Nitric Oxide Decreases Infarction Size and Improves Left Ventricular Function in a Murine Model of Myocardial Ischemia-Reperfusion Injury. Am. J. Physiol. Heart Circ. Physiol. 2006, 291, H379–H384. [Google Scholar] [CrossRef] [PubMed]
- Kapil, V.; Khambata, R.S.; Robertson, A.; Caulfield, M.J.; Ahluwalia, A. Dietary Nitrate Provides Sustained Blood Pressure Lowering in Hypertensive Patients. Hypertension 2015, 65, 320–327. [Google Scholar] [CrossRef]
- Trzeciak, S.; Glaspey, L.J.; Dellinger, R.P.; Durflinger, P.; Anderson, K.; Dezfulian, C.; Roberts, B.W.; Chansky, M.E.; Parrillo, J.E.; Hollenberg, S.M. Randomized Controlled Trial of Inhaled Nitric Oxide for the Treatment of Microcirculatory Dysfunction in Patients With Sepsis*. Crit. Care Med. 2014, 42, 2482–2492. [Google Scholar] [CrossRef]
- Kapil, V.; Weitzberg, E.; Lundberg, J.O.; Ahluwalia, A. Clinical Evidence Demonstrating the Utility of Inorganic Nitrate in Cardiovascular Health. Nitric Oxide 2014, 38, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, J.O.; Carlström, M.; Larsen, F.J.; Weitzberg, E. Roles of Dietary Inorganic Nitrate in Cardiovascular Health and Disease. Cardiovasc. Res. 2011, 89, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Bonilla Ocampo, D.; Paipilla, A.; Marín, E.; Vargas-Molina, S.; Petro, J.; Pérez-Idárraga, A. Dietary Nitrate from Beetroot Juice for Hypertension: A Systematic Review. Biomolecules 2018, 8, 134. [Google Scholar] [CrossRef] [PubMed]
- Rogerson, D.; Aguilar Mora, F.A.; Young, J.S.; Klonizakis, M. No Effect of Nitrate-Rich Beetroot Juice on Microvascular Function and Blood Pressure in Younger and Older Individuals: A Randomised, Placebo-Controlled Double-Blind Pilot Study. Eur. J. Clin. Nutr. 2022, 76, 1380–1386. [Google Scholar] [CrossRef]
- Lundberg, J.O.; Gladwin, M.T.; Weitzberg, E. Strategies to Increase Nitric Oxide Signalling in Cardiovascular Disease. Nat. Rev. Drug Discov. 2015, 14, 623–641. [Google Scholar] [CrossRef]
- Mukherjee, P.; Cinelli, M.A.; Kang, S.; Silverman, R.B. Development of Nitric Oxide Synthase Inhibitors for Neurodegeneration and Neuropathic Pain. Chem. Soc. Rev. 2014, 43, 6814–6838. [Google Scholar] [CrossRef]
- Takahashi, H.; Xia, P.; Cui, J.; Talantova, M.; Bodhinathan, K.; Li, W.; Saleem, S.; Holland, E.A.; Tong, G.; Piña-Crespo, J.; et al. Pharmacologically Targeted NMDA Receptor Antagonism by NitroMemantine for Cerebrovascular Disease. Sci. Rep. 2015, 5, 14781. [Google Scholar] [CrossRef]
- Godfrey, W.H.; Hwang, S.; Cho, K.; Shanmukha, S.; Gharibani, P.; Abramson, E.; Kornberg, M.D. Therapeutic Potential of Blocking GAPDH Nitrosylation with CGP3466b in Experimental Autoimmune Encephalomyelitis. Front. Neurol. 2023, 13, 979659. [Google Scholar] [CrossRef]
- Cinelli, M.A.; Do, H.T.; Miley, G.P.; Silverman, R.B. Inducible Nitric Oxide Synthase: Regulation, Structure, and Inhibition. Med. Res. Rev. 2020, 40, 158–189. [Google Scholar] [CrossRef]
- Gianni, S.; Fenza, R.D.; Morais, C.C.A.; Fakhr, B.S.; Mueller, A.L.; Yu, B.; Carroll, R.W.; Ichinose, F.; Zapoly, W.M.; Berra, L. High-Dose Nitric Oxide From Pressurized Cylinders and Nitric Oxide Produced by an Electric Generator From Air. Respir. Care 2022, 67, 201–208. [Google Scholar] [CrossRef]
- High Dose Inhaled Nitric Oxide for COVID-19 (ICU Patients). Available online: https://clinicaltrials.gov/study/NCT04383002 (accessed on 13 September 2024).
- Khan, M.; Jatana, M.; Elango, C.; Singh Paintlia, A.; Singh, A.K.; Singh, I. Cerebrovascular Protection by Various Nitric Oxide Donors in Rats after Experimental Stroke. Nitric Oxide—Biol. Chem. 2006, 15, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Sekhon, B.; Giri, S.; Jatana, M.; Gilg, A.G.; Ayasolla, K.; Elango, C.; Singh, A.K.; Singh, I. S-Nitrosoglutathione Reduces Inflammation and Protects Brain against Focal Cerebral Ischemia in a Rat Model of Experimental Stroke. J. Cereb. Blood Flow. Metab. 2005, 25, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Nath, N.; Morinaga, O.; Singh, I. S-Nitrosoglutathione a Physiologic Nitric Oxide Carrier Attenuates Experimental Autoimmune Encephalomyelitis. J. Neuroimmune Pharmacol. 2010, 5, 240–251. [Google Scholar] [CrossRef] [PubMed]
- García-Ortiz, A.; Serrador, J.M. Nitric Oxide Signaling in T Cell-Mediated Immunity. Trends Mol. Med. 2018, 24, 412–427. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Fitzpatrick, A.; Cong, D.; Yao, C.; Yoo, J.; Turnbull, A.; Schwarze, J.; Norval, M.; Howie, S.E.M.; Weller, R.B.; et al. Nitric Oxide Induces Human CLA + CD25 + Foxp3 + Regulatory T Cells with Skin-Homing Potential. J. Allergy Clin. Immunol. 2017, 140, 1441–1444.e6. [Google Scholar] [CrossRef]
- Sikora, A.G.; Gelbard, A.; Davies, M.A.; Sano, D.; Ekmekcioglu, S.; Kwon, J.; Hailemichael, Y.; Jayaraman, P.; Myers, J.N.; Grimm, E.A.; et al. Targeted Inhibition of Inducible Nitric Oxide Synthase Inhibits Growth of Human Melanoma in Vivo and Synergizes with Chemotherapy. Clin. Cancer Res. 2010, 16, 1834–1844. [Google Scholar] [CrossRef]
- Chung, A.W.; Anand, K.; Anselme, A.C.; Chan, A.A.; Gupta, N.; Venta, L.A.; Schwartz, M.R.; Qian, W.; Xu, Y.; Zhang, L.; et al. A Phase 1/2 Clinical Trial of the Nitric Oxide Synthase Inhibitor L-NMMA and Taxane for Treating Chemoresistant Triple-Negative Breast Cancer. Sci. Transl. Med. 2021, 13, eabj5070. [Google Scholar] [CrossRef]
- Phase Ib of L-NMMA and Pembrolizumab. Available online: https://clinicaltrials.gov/study/NCT03236935 (accessed on 13 September 2024).
- Huang, Z.; Fu, J.; Zhang, Y. Nitric Oxide Donor-Based Cancer Therapy: Advances and Prospects. J. Med. Chem. 2017, 60, 7617–7635. [Google Scholar] [CrossRef]
- Huerta-Yepez, S.; Vega, M.; Jazirehi, A.; Garban, H.; Hongo, F.; Cheng, G.; Bonavida, B. Nitric Oxide Sensitizes Prostate Carcinoma Cell Lines to TRAIL-Mediated Apoptosis via Inactivation of NF-ΚB and Inhibition of Bcl-XL Expression. Oncogene 2004, 23, 4993–5003. [Google Scholar] [CrossRef]
- Sukhatme, V.; Bouche, G.; Meheus, L.; Sukhatme, V.P.; Pantziarka, P. Repurposing Drugs in Oncology (ReDO)—Nitroglycerin as an Anti-Cancer Agent. Ecancermedicalscience 2015, 9, 568. [Google Scholar] [CrossRef]
- Benarroch, E.E. Nitric Oxide: A Pleiotropic Signal in the Nervous System. Neurology 2011, 77, 1568–1576. [Google Scholar] [CrossRef] [PubMed]
- Behl, T.; Rana, T.; Sehgal, A.; Makeen, H.A.; Albratty, M.; Alhazmi, H.A.; Meraya, A.M.; Bhatia, S.; Sachdeva, M. Phytochemicals Targeting Nitric Oxide Signaling in Neurodegenerative Diseases. Nitric Oxide 2023, 130, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kopp-Scheinpflug, C.; Forsythe, I.D. Nitric Oxide Signaling in the Auditory Pathway. Front. Neural Circuits 2021, 15, 759342. [Google Scholar] [CrossRef]
- Steinert, J.R.; Amal, H. The Contribution of an Imbalanced Redox Signalling to Neurological and Neurodegenerative Conditions. Free Radic. Biol. Med. 2023, 194, 71–83. [Google Scholar] [CrossRef]
- Lourenço, C.F.; Laranjinha, J. Nitric Oxide Pathways in Neurovascular Coupling Under Normal and Stress Conditions in the Brain: Strategies to Rescue Aberrant Coupling and Improve Cerebral Blood Flow. Front. Physiol. 2021, 12, 729201. [Google Scholar] [CrossRef] [PubMed]
- Hoiland, R.L.; Caldwell, H.G.; Howe, C.A.; Nowak-Flück, D.; Stacey, B.S.; Bailey, D.M.; Paton, J.F.R.; Green, D.J.; Sekhon, M.S.; Macleod, D.B.; et al. Nitric Oxide Is Fundamental to Neurovascular Coupling in Humans. J. Physiol. 2020, 598, 4927–4939. [Google Scholar] [CrossRef]
- Duda, J.E.; Giasson, B.I.; Chen, Q.; Gur, T.L.; Hurtig, H.I.; Stern, M.B.; Gollomp, S.M.; Ischiropoulos, H.; Lee, V.M.Y.; Trojanowski, J.Q. Widespread Nitration of Pathological Inclusions in Neurodegenerative Synucleinopathies. Am. J. Clin. Pathol. 2000, 157, 1439–1445. [Google Scholar] [CrossRef]
- Sultana, R.; Poon, H.F.; Cai, J.; Pierce, W.M.; Merchant, M.; Klein, J.B.; Markesbery, W.R.; Butterfield, D.A. Identification of Nitrated Proteins in Alzheimer’s Disease Brain Using a Redox Proteomics Approach. Neurobiol. Dis. 2006, 22, 76–87. [Google Scholar] [CrossRef]
- Li, H.; Yang, Z.; Gao, Z. Protein Tyrosine Nitration: Chemistry and Role in Diseases. Adv. Mol. Toxicol. 2020, 13, 109–128. [Google Scholar] [CrossRef]
- Prigione, A.; Piazza, F.; Brighina, L.; Begni, B.; Galbussera, A.; DiFrancesco, J.C.; Andreoni, S.; Piolti, R.; Ferrarese, C. Alpha-Synuclein Nitration and Autophagy Response Are Induced in Peripheral Blood Cells from Patients with Parkinson Disease. Neurosci. Lett. 2010, 477, 6–10. [Google Scholar] [CrossRef]
- He, Y.; Yu, Z.; Chen, S. Alpha-Synuclein Nitration and Its Implications in Parkinson’s Disease. ACS Chem. Neurosci. 2019, 10, 777–782. [Google Scholar] [CrossRef] [PubMed]
- Butterfield, D.A.; Boyd-Kimball, D. Redox Proteomics and Amyloid Β-peptide: Insights into Alzheimer Disease. J. Neurochem. 2019, 151, 459–487. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, K.; Matsubara, K.; Fujikawa, Y.; Nagahiro, Y.; Shimizu, K.; Umegae, N.; Hayase, N.; Shiono, H.; Kobayashi, S. Nitration of Manganese Superoxide Dismutase in Cerebrospinal Fluids Is a Marker for Peroxynitrite-Mediated Oxidative Stress in Neurodegenerative Diseases. Ann. Neurol. 2000, 47, 524–527. [Google Scholar] [CrossRef]
- Liu, C.; Liang, M.C.; Soong, T.W. Nitric Oxide, Iron and Neurodegeneration. Front. Neurosci. 2019, 13, 114. [Google Scholar] [CrossRef]
- Tewari, D.; Sah, A.N.; Bawari, S.; Nabavi, S.F.; Dehpour, A.R.; Shirooie, S.; Braidy, N.; Fiebich, B.L.; Vacca, R.A.; Nabavi, S.M. Role of Nitric Oxide in Neurodegeneration: Function, Regulation, and Inhibition. Curr. Neuropharmacol. 2020, 19, 114–126. [Google Scholar] [CrossRef] [PubMed]
- Vrettou, S.; Wirth, B. S-Glutathionylation and S-Nitrosylation in Mitochondria: Focus on Homeostasis and Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 15849. [Google Scholar] [CrossRef]
- Nakamura, T.; Lipton, S.A. Redox Modulation by S-Nitrosylation Contributes to Protein Misfolding, Mitochondrial Dynamics, and Neuronal Synaptic Damage in Neurodegenerative Diseases. Cell Death Differ. 2011, 18, 1478–1486. [Google Scholar] [CrossRef]
- Colombini, M. VDAC Structure, Selectivity, and Dynamics. Biochim. Biophys. Acta Biomembr. 2012, 1818, 1457–1465. [Google Scholar] [CrossRef]
- Abrams, A.J.; Farooq, A.; Wang, G. S-Nitrosylation of ApoE in Alzheimer’s Disease. Biochemistry 2011, 50, 3405–3407. [Google Scholar] [CrossRef]
- Chung, K.K.K.; Thomas, B.; Li, X.; Pletnikova, O.; Troncoso, J.C.; Marsh, L.; Dawson, V.L.; Dawson, T.M. S-Nitrosylation of Parkin Regulates Ubiquitination and Compromises Parkin’s Protective Function. Science 2004, 304, 1328–1331. [Google Scholar] [CrossRef]
- Singh, A.; Isaac, A.O.; Luo, X.; Mohan, M.L.; Cohen, M.L.; Chen, F.; Kong, Q.; Bartz, J.; Singh, N. Abnormal Brain Iron Homeostasis in Human and Animal Prion Disorders. PLoS Pathog. 2009, 5, e1000336. [Google Scholar] [CrossRef] [PubMed]
- Spiers, J.G.; Cortina Chen, H.-J.; Barry, T.L.; Bourgognon, J.-M.; Steinert, J.R. Redox Stress and Metal Dys-Homeostasis Appear as Hallmarks of Early Prion Disease Pathogenesis in Mice. Free Radic. Biol. Med. 2022, 192, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Ficiarà, E.; Munir, Z.; Boschi, S.; Caligiuri, M.E.; Guiot, C. Alteration of Iron Concentration in Alzheimer’s Disease as a Possible Diagnostic Biomarker Unveiling Ferroptosis. Int. J. Mol. Sci. 2021, 22, 4479. [Google Scholar] [CrossRef] [PubMed]
- Malard, E.; Valable, S.; Bernaudin, M.; Pérès, E.; Chatre, L. The Reactive Species Interactome in the Brain. Antioxid. Redox Signal. 2021, 35, 1176–1206. [Google Scholar] [CrossRef]
- Trippier, P.C.; Jansen Labby, K.; Hawker, D.D.; Mataka, J.J.; Silverman, R.B. Target- and Mechanism-Based Therapeutics for Neurodegenerative Diseases: Strength in Numbers. J. Med. Chem. 2013, 56, 3121–3147. [Google Scholar] [CrossRef]
- Nakamura, T.; Lipton, S.A. Protein S-Nitrosylation as a Therapeutic Target for Neurodegenerative Diseases. Trends Pharmacol. Sci. 2016, 37, 73–84. [Google Scholar] [CrossRef]
- Bogdan, C. Nitric Oxide and the Immune Response. Nat. Immunol. 2001, 2, 907–916. [Google Scholar] [CrossRef]
- Nathan, C.; Xie, Q. w Nitric Oxide Synthases: Roles, Tolls, and Controls. Cell 1994, 78, 915–918. [Google Scholar] [CrossRef]
- Kleinert, H.; Schwarz, P.M.; Förstermann, U. Regulation of the Expression of Inducible Nitric Oxide Synthase. Biol. Chem. 2003, 384, 1343–1364. [Google Scholar] [CrossRef]
- Coleman, J.W. Nitric oxide in immunity and inflammation. Int. Immunopharmacol. 2001, 1, 1397–1406. [Google Scholar] [CrossRef]
- Radi, R. Nitric Oxide, Oxidants, and Protein Tyrosine Nitration. Proc. Natl. Acad. Sci. USA 2004, 101, 4003–4008. [Google Scholar] [CrossRef] [PubMed]
- Schapiro, J.M.; Libby, S.J.; Fang, F.C. Inhibition of Bacterial DNA Replication by Zinc Mobilization during Nitrosative Stress. Proc. Natl. Acad. Sci. USA 2003, 100, 8496–8501. [Google Scholar] [CrossRef] [PubMed]
- Stevanin, T.M.; Ioannidis, N.; Mills, C.E.; Kim, S.O.; Hughes, M.N.; Poole, R.K. Flavohemoglobin Hmp Affords Inducible Protection for Escherichia Coli Respiration, Catalyzed by Cytochromes Bo’ or Bd, from Nitric Oxide. J. Biol. Chem. 2000, 275, 35868–35875. [Google Scholar] [CrossRef] [PubMed]
- Mohr, S.; Hallak, H.; De Boitte, A.; Lapetina, E.G.; Brüne, B. Nitric Oxide-Induced S-Glutathionylation and Inactivation of Glyceraldehyde-3-Phosphate Dehydrogenase. J. Biol. Chem. 1999, 274, 9427–9430. [Google Scholar] [CrossRef]
- Nathan, C.; Shiloh, M.U. Reactive Oxygen and Nitrogen Intermediates in the Relationship between Mammalian Hosts and Microbial Pathogens. Proc. Natl. Acad. Sci. USA 2000, 97, 8841–8848. [Google Scholar] [CrossRef]
- Al-Shehri, S.S. Reactive Oxygen and Nitrogen Species and Innate Immune Response. Biochimie 2021, 181, 52–64. [Google Scholar] [CrossRef]
- Sodano, F.; Gazzano, E.; Fruttero, R.; Lazzarato, L. NO in Viral Infections: Role and Development of Antiviral Therapies. Molecules 2022, 27, 2337. [Google Scholar] [CrossRef]
- Mintz, J.; Vedenko, A.; Rosete, O.; Shah, K.; Goldstein, G.; Hare, J.M.; Ramasamy, R.; Arora, H. Current Advances of Nitric Oxide in Cancer and Anticancer Therapeutics. Vaccines 2021, 9, 94. [Google Scholar] [CrossRef]
- Hu, Y.; Xiang, J.; Su, L.; Tang, X. The Regulation of Nitric Oxide in Tumor Progression and Therapy. J. Int. Med. Res. 2020, 48, 0300060520905985. [Google Scholar] [CrossRef]
- Lundberg, J.O.; Farkas-Szallasi, T.; Weitzberg, E.; Rinder, J.; Lidholm, J.; Änggåard, A.; Hökfelt, T.; Lundberg, J.M.; Alving, K. High Nitric Oxide Production in Human Paranasal Sinuses. Nat. Med. 1995, 1, 370–373. [Google Scholar] [CrossRef]
- Mattila, J.T.; Thomas, A.C. Nitric Oxide Synthase: Non-Canonical Expression Patterns. Front. Immunol. 2014, 5, 478. [Google Scholar] [CrossRef] [PubMed]
- Shreshtha, S.; Sharma, P.; Kumar, P.; Sharma, R.; Singh, S.P. Nitric Oxide: It’s Role in Immunity. J. Clin. Diagn. Res. 2018, 12, BE01–BE05. [Google Scholar] [CrossRef]
- Ibiza, S.; Víctor, V.M.; Boscá, I.; Ortega, A.; Urzainqui, A.; O’Connor, J.E.; Sánchez-Madrid, F.; Esplugues, J.V.; Serrador, J.M. Endothelial Nitric Oxide Synthase Regulates T Cell Receptor Signaling at the Immunological Synapse. Immunity 2006, 24, 753–765. [Google Scholar] [CrossRef] [PubMed]
- García-Ortiz, A.; Martín-Cofreces, N.B.; Ibiza, S.; Ortega, Á.; Izquierdo-Álvarez, A.; Trullo, A.; Victor, V.M.; Calvo, E.; Sot, B.; Martínez-Ruiz, A.; et al. ENOS S-Nitrosylates β-Actin on Cys374 and Regulates PKC-θ at the Immune Synapse by Impairing Actin Binding to Profilin-1. PLoS Biol. 2017, 15, e2000653. [Google Scholar] [CrossRef] [PubMed]
- Niedbala, W.; Wei, X.Q.; Campbell, C.; Thomson, D.; Komai-Koma, M.; Liew, F.Y. Nitric Oxide Preferentially Induces Type 1 T Cell Differentiation by Selectively Up-Regulating IL-12 Receptor Β2 Expression via CGMP. Proc. Natl. Acad. Sci. USA 2002, 99, 16186–16191. [Google Scholar] [CrossRef]
- Fritzsche, C.; Schleicher, U.; Bogdan, C. Endothelial Nitric Oxide Synthase Limits the Inflammatory Response in Mouse Cutaneous Leishmaniasis. Immunobiology 2010, 215, 826–832. [Google Scholar] [CrossRef]
- Vallance, B.A.; Dijkstra, G.; Qiu, B.; Van Der Waaij, L.A.; Van Goor, H.; Jansen, P.L.M.; Mashimo, H.; Collins, S.M. Relative Contributions of NOS Isoforms during Experimental Colitis: Endothelial-Derived NOS Maintains Mucosal Integrity. Am. J. Physiol.—Gastrointest. Liver Physiol. 2004, 287, G865–G874. [Google Scholar] [CrossRef]
- Beck, P.L.; Xavier, R.; Wong, J.; Ezedi, I.; Mashimo, H.; Mizoguchi, A.; Mizoguchi, E.; Bhan, A.K.; Podolsky, D.K. Paradoxical Roles of Different Nitric Oxide Synthase Isoforms in Colonic Injury. Am. J. Physiol.—Gastrointest. Liver Physiol. 2004, 286, G137–G147. [Google Scholar] [CrossRef]
- Uehara, E.U.; Shida, B.S.; de Brito, C.A. Role of Nitric Oxide in Immune Responses against Viruses: Beyond Microbicidal Activity. Inflamm. Res. 2015, 64, 845–852. [Google Scholar] [CrossRef]
- Hofseth, L.J.; Saito, S.; Perwez Hussain, S.; Espey, M.G.; Miranda, K.M.; Araki, Y.; Jhappan, C.; Higashimoto, Y.; He, P.; Linke, S.P.; et al. Nitric Oxide-Induced Cellular Stress and P53 Activation in Chronic Inflammation. Proc. Natl. Acad. Sci. USA 2003, 100, 143–148. [Google Scholar] [CrossRef]
- Niedbala, W.; Wei, X.Q.; Piedrafita, D.; Xu, D.; Liew, F.Y. Effects of Nitric Oxide on the Induction and Differentiation of Th1 Cells. Eur. J. Immunol. 1999, 29, 2498–2505. [Google Scholar] [CrossRef]
- Xiong, H.; Kawamura, I.; Nishibori, T.; Mitsuyama, M. Suppression of IFN-γ Production from Listeria Monocytogenes-Specific T Cells by Endogenously Produced Nitric Oxide. Cell. Immunol. 1996, 172, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, R.; Lu, G.; Shen, Y.; Peng, L.; Zhu, C.; Cui, M.; Wang, W.; Arnaboldi, P.; Tang, M.; et al. T Cell-Derived Inducible Nitric Oxide Synthase Switches Offth17 Cell Differentiation. J. Exp. Med. 2013, 210, 1447–1462. [Google Scholar] [CrossRef] [PubMed]
- Perrone, L.A.; Belser, J.A.; Wadford, D.A.; Katz, J.M.; Tumpey, T.M. Inducible Nitric Oxide Contributes to Viral Pathogenesis Following Highly Pathogenic Influenza Virus Infection in Mice. J. Infect. Dis. 2013, 207, 1576–1584. [Google Scholar] [CrossRef]
- Torre, D.; Ferrario, G. Immunological Aspects of Nitric Oxide in HIV-1 Infection. Med. Hypotheses 1996, 47, 405–407. [Google Scholar] [CrossRef]
- Torre, D. Nitric Oxide and Endothelial Dysfunction in HIV Type 1 Infection. Clin. Infect. Dis. 2006, 43, 1086–1087. [Google Scholar] [CrossRef]
- Akaike, T.; Noguchi, Y.; Ijiri, S.; Setoguchi, K.; Suga, M.; Zheng, Y.M.; Dietzschold, B.; Maeda, H. Pathogenesis of Influenza Virus-Induced Pneumonia: Involvement of Both Nitric Oxide and Oxygen Radicals. Proc. Natl. Acad. Sci. USA 1996, 93, 2448–2453. [Google Scholar] [CrossRef]
- Rana, T. Unravelling of Nitric Oxide Signalling: A Potential Biomarker with Multifaceted Complex Mechanism Associated with Canine Inflammatory Bowel Disease (IBD). Anaerobe 2020, 66, 102288. [Google Scholar] [CrossRef] [PubMed]
- Predonzani, A.; Bianca Calì, B.; Agnellini, A.H.R.; Molon, B. Spotlights on Immunological Effects of Reactive Nitrogenspecies: When Inflammation Says Nitric Oxide. World J. Exp. Med. 2015, 5, 64–76. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, J.; Liu, Y.; Zheng, Y.; Bo, J.; Zhou, X.; Wang, J.; Ma, Z. Role of Nitric Oxide Synthase in the Development of Bone Cancer Pain and Effect of L-NMMA. Mol. Med. Rep. 2016, 13, 1220–1226. [Google Scholar] [CrossRef]
- Kirkebøen, K.A.; Strand, O.A. The Role of Nitric Oxide in Sepsis—An Overview. Acta Anaesthesiol. Scand. 1999, 43, 275–288. [Google Scholar] [CrossRef] [PubMed]
- MacMicking, J.D.; Nathan, C.; Hom, G.; Chartrain, N.; Fletcher, D.S.; Trumbauer, M.; Stevens, K.; Xie, Q.w.; Sokol, K.; Hutchinson, N.; et al. Altered Responses to Bacterial Infection and Endotoxic Shock in Mice Lacking Inducible Nitric Oxide Synthase. Cell 1995, 81, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Laubach, V.E.; Shesely, E.G.; Smithies, O.; Sherman, P.A. Mice Lacking Inducible Nitric Oxide Synthase Are Not Resistant to Lipopolysaccharide-Induced Death. Proc. Natl. Acad. Sci. USA 1995, 92, 10688–10692. [Google Scholar] [CrossRef] [PubMed]
- Bayarri, M.A.; Milara, J.; Estornut, C.; Cortijo, J. Nitric Oxide System and Bronchial Epithelium: More Than a Barrier. Front. Physiol. 2021, 12, 687381. [Google Scholar] [CrossRef] [PubMed]
- Ropponen, K.M.; Kellokoski, J.K.; Lipponen, P.K.; Eskelinen, M.J.; Alanne, L.; Alhava, E.M.; Kosma, V.M. Expression of Inducible Nitric Oxide Synthase in Colorectal Cancer and Its Association with Prognosis. Scand. J. Gastroenterol. 2000, 35, 1204–1211. [Google Scholar] [CrossRef] [PubMed]
- Zafirellis, K.; Zachaki, A.; Agrogiannis, G.; Gravani, K. Inducible Nitric Oxide Synthase Expression and Its Prognostic Significance in Colorectal Cancer. APMIS 2010, 118, 115–124. [Google Scholar] [CrossRef]
- Burke, A.J.; Sullivan, F.J.; Giles, F.J.; Glynn, S.A. The Yin and Yang of Nitric Oxide in Cancer Progression. Carcinogenesis 2013, 34, 503–512. [Google Scholar] [CrossRef]
- Stuehr, D.J.; Santolini, J.; Wang, Z.Q.; Wei, C.C.; Adak, S. Update on Mechanism and Catalytic Regulation in the NO Synthases. J. Biol. Chem. 2004, 279, 36167–36170. [Google Scholar] [CrossRef]
- Lim, K.H.; Ancrile, B.B.; Kashatus, D.F.; Counter, C.M. Tumour Maintenance Is Mediated by ENOS. Nature 2008, 452, 646–649. [Google Scholar] [CrossRef]
- Switzer, C.H.; Glynn, S.A.; Cheng, R.Y.S.; Ridnour, L.A.; Green, J.E.; Ambs, S.; Wink, D.A. S-Nitrosylation of EGFR and Src Activates an Oncogenic Signaling Network in Human Basal-like Breast Cancer. Mol. Cancer Res. 2012, 10, 1203–1215. [Google Scholar] [CrossRef]
- Marshall, H.E.; Foster, M.W. S-Nitrosylation of Ras in Breast Cancer. Breast Cancer Res. 2012, 14, 113. [Google Scholar] [CrossRef] [PubMed]
- Somasundaram, V.; Basudhar, D.; Bharadwaj, G.; No, J.H.; Ridnour, L.A.; Cheng, R.Y.S.; Fujita, M.; Thomas, D.D.; Anderson, S.K.; McVicar, D.W.; et al. Molecular Mechanisms of Nitric Oxide in Cancer Progression, Signal Transduction, and Metabolism. Antioxid. Redox Signal. 2019, 30, 1124–1143. [Google Scholar] [CrossRef] [PubMed]
- Miranda, K.M.; Ridnour, L.A.; McGinity, C.L.; Bhattacharyya, D.; Wink, D.A. Nitric Oxide and Cancer: When to Give and When to Take Away? Inorg. Chem. 2021, 60, 15941–15947. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.D.; Espey, M.G.; Ridnour, L.A.; Hofseth, L.J.; Mancardi, D.; Harris, C.C.; Wink, D.A. Hypoxic Inducible Factor 1α, Extracellular Signal-Regulated Kinase, and P53 Are Regulated by Distinct Threshold Concentrations of Nitric Oxide. Proc. Natl. Acad. Sci. USA 2004, 101, 8894–8899. [Google Scholar] [CrossRef]
- Wang, F.; Sekine, H.; Kikuchi, Y.; Takasaki, C.; Miura, C.; Heiwa, O.; Shuin, T.; Fujii-Kuriyama, Y.; Sogawa, K. HIF-1α-Prolyl Hydroxylase: Molecular Target of Nitric Oxide in the Hypoxic Signal Transduction Pathway. Biochem. Biophys. Res. Commun. 2002, 295, 657–662. [Google Scholar] [CrossRef]
- Metzen, E.; Zhou, J.; Jelkmann, W.; Fandrey, J.; Brüne, B. Nitric Oxide Impairs Normoxic Degradation of HIF-1α by Inhibition of Prolyl Hydroxylases. Mol. Biol. Cell 2003, 14, 3470–3481. [Google Scholar] [CrossRef]
- Martínez-Ruiz, A.; Lamas, S. S-Nitrosylation: A Potential New Paradigm in Signal Transduction. Cardiovasc. Res. 2004, 62, 43–52. [Google Scholar] [CrossRef]
- Cummins, E.P.; Berra, E.; Comerford, K.M.; Ginouves, A.; Fitzgerald, K.T.; Seeballuck, F.; Godson, C.; Nielsen, J.E.; Moynagh, P.; Pouyssegur, J.; et al. Prolyl Hydroxylase-1 Negatively Regulates IκB Kinase-β, Giving Insight into Hypoxia-Induced NFκB Activity. Proc. Natl. Acad. Sci. USA 2006, 103, 18154–18159. [Google Scholar] [CrossRef]
- Lipinski, P.; Starzynski, R.R.; Drapier, J.C.; Bouton, C.; Bartlomiejczyk, T.; Sochanowicz, B.; Smuda, E.; Gajkowska, A.; Kruszewski, M. Induction of Iron Regulatory Protein 1 RNA-Binding Activity by Nitric Oxide Is Associated with a Concomitant Increase in the Labile Iron Pool: Implications for DNA Damage. Biochem. Biophys. Res. Commun. 2005, 327, 349–355. [Google Scholar] [CrossRef]
- Styś, A.; Galy, B.; Starzyński, R.R.; Smuda, E.; Drapier, J.C.; Lipiński, P.; Bouton, C. Iron Regulatory Protein 1 Outcompetes Iron Regulatory Protein 2 in Regulating Cellular Iron Homeostasis in Response to Nitric Oxide. J. Biol. Chem. 2011, 286, 22846–22854. [Google Scholar] [CrossRef]
- Soum, E.; Drapier, J.C. Nitric Oxide and Peroxynitrite Promote Complete Disruption of the [4Fe-4S] Cluster of Recombinant Human Iron Regulatory Protein 1. J. Biol. Inorg. Chem. 2003, 8, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Fernando, V.; Zheng, X.; Walia, Y.; Sharma, V.; Letson, J.; Furuta, S. S-Nitrosylation: An Emerging Paradigm of Redox Signaling. Antioxidants 2019, 8, 404. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, S.; Medina, C.; Ledwidge, M.; Radomski, M.W.; Gilmer, J.F. Nitric Oxide-Matrix Metaloproteinase-9 Interactions: Biological and Pharmacological Significance NO and MMP-9 Interactions. Biochim. Biophys. Acta Mol. Cell Res. 2014, 1843, 603–617. [Google Scholar] [CrossRef]
- Ridnour, L.A.; Barasch, K.M.; Windhausen, A.N.; Dorsey, T.H.; Lizardo, M.M.; Yfantis, H.G.; Lee, D.H.; Switzer, C.H.; Cheng, R.Y.S.; Heinecke, J.L.; et al. Nitric Oxide Synthase and Breast Cancer: Role of TIMP-1 in NO-Mediated Akt Activation. PLoS ONE 2012, 7, e44081. [Google Scholar] [CrossRef] [PubMed]
- Vanini, F.; Kashfi, K.; Nath, N. The Dual Role of INOS in Cancer. Redox Biol. 2015, 6, 334–343. [Google Scholar] [CrossRef]
- Thomas, D.D.; Heinecke, J.L.; Ridnour, L.A.; Cheng, R.Y.; Kesarwala, A.H.; Switzer, C.H.; McVicar, D.W.; Roberts, D.D.; Glynn, S.; Fukuto, J.M.; et al. Signaling and Stress: The Redox Landscape in NOS2 Biology. Free Radic. Biol. Med. 2015, 87, 204–225. [Google Scholar] [CrossRef]
- Kim, P.K.M.; Zamora, R.; Petrosko, P.; Billiar, T.R. The Regulatory Role of Nitric Oxide in Apoptosis. Int. Immunopharmacol. 2001, 1, 1421–1441. [Google Scholar] [CrossRef]
- Bode, A.M.; Dong, Z. Post-Translational Modification of P53 in Tumorigenesis. Nat. Rev. Cancer. 2004, 4, 793–805. [Google Scholar] [CrossRef]
- Kröncke, K.D.; Carlberg, C. Inactivation of Zinc Finger Transcription Factors Provides a Mechanism for a Gene Regulatory Role of Nitric Oxide. FASEB J. 2000, 14, 166–173. [Google Scholar] [CrossRef]
- Jaiswal, M.; LaRusso, N.F.; Nishioka, N.; Nakabeppu, Y.; Gores, G.J. Human Ogg1, a Protein Involved in the Repair of 8-Oxoguanine, Is Inhibited by Nitric Oxide. Cancer Res. 2001, 61, 6388–6393. [Google Scholar]
- Matthews, J.R.; Botting, C.H.; Panico, M.; Morris, H.R.; Hay, R.T. Inhibition of NF-ΚB DNA Binding by Nitric Oxide. Nucleic Acids Res. 1996, 24, 2236–2242. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.C. Nitric Oxide and Mitochondrial Respiration. Biochim. Biophys. Acta Bioenerg. 1999, 1411, 351–369. [Google Scholar] [CrossRef]
- Sharpe, M.A.; Cooper, C.E. Interaction of Peroxynitrite with Mitochondrial Cytochrome Oxidase. Catalytic Production of Nitric Oxide and Irreversible Inhibition of Enzyme Activity. J. Biol. Chem. 1998, 273, 30961–30972. [Google Scholar] [CrossRef] [PubMed]
- Vaseva, A.V.; Marchenko, N.D.; Ji, K.; Tsirka, S.E.; Holzmann, S.; Moll, U.M. P53 Opens the Mitochondrial Permeability Transition Pore to Trigger Necrosis. Cell 2012, 149, 1536–1548. [Google Scholar] [CrossRef]
- Reddy, T.P.; Glynn, S.A.; Billiar, T.R.; Wink, D.A.; Chang, J.C. Targeting Nitric Oxide: Say NO to Metastasis. Clin. Cancer Res. 2023, 29, 1855–1868. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, J.; Luo, L.; Yu, Y.; Sun, T. Nitric Oxide and Tumors: From Small-Molecule Donor to Combination Therapy. ACS Biomater. Sci. Eng. 2023, 9, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Sala, D.; Cernuda-Morollón, E.; Díaz-Cazorla, M.; Rodríguez-Pascual, F.; Lamas, S. Posttranscriptional Regulation of Human INOS by the NO/CGMP Pathway. Am. J. Physiol. Renal Physiol. 2001, 280, F466–F473. [Google Scholar] [CrossRef] [PubMed]
- Bogdanov, A.; Klimenko, V.; Verlov, N.; Bogdanov, A.; Knyazev, N. Pulse Mode Irradiation Regimen of PDT Results in High Progression Free and Overall Survival in Mice with Model Tumour. Ann. Oncol. 2019, 30, v21. [Google Scholar] [CrossRef]
- Jiang, L.; Chen, D.; Jin, Z.; Xia, C.; Xu, Q.; Fan, M.; Dai, Y.; Liu, J.; Li, Y.; He, Q. Light-Triggered Nitric Oxide Release and Structure Transformation of Peptide for Enhanced Intratumoral Retention and Sensitized Photodynamic Therapy. Bioact. Mater. 2022, 12, 303–313. [Google Scholar] [CrossRef]
- Meunier, M.; Yammine, A.; Bettaieb, A.; Plenchette, S. Nitroglycerin: A Comprehensive Review in Cancer Therapy. Cell Death Dis. 2023, 14, 323. [Google Scholar] [CrossRef]
- Marullo, R.; Castro, M.; Yomtoubian, S.; Calvo-Vidal, M.N.; Revuelta, M.V.; Krumsiek, J.; Cho, A.; Morgado, P.C.; Yang, S.; Medina, V.; et al. The Metabolic Adaptation Evoked by Arginine Enhances the Effect of Radiation in Brain Metastases. Sci. Adv. 2021, 7, eabg1964. [Google Scholar] [CrossRef] [PubMed]
- Sinha, B.K. Can Nitric Oxide-Based Therapy Be Improved for the Treatment of Cancers? A Perspective. Int. J. Mol. Sci. 2023, 24, 13611. [Google Scholar] [CrossRef] [PubMed]
- Woodhouse, L.; Scutt, P.; Krishnan, K.; Berge, E.; Gommans, J.; Ntaios, G.; Wardlaw, J.; Sprigg, N.; Bath, P.M. Effect of Hyperacute Administration (Within 6 Hours) of Transdermal Glyceryl Trinitrate, a Nitric Oxide Donor, on Outcome After Stroke. Stroke 2015, 46, 3194–3201. [Google Scholar] [CrossRef] [PubMed]
- Kamenshchikov, N.O.; Anfinogenova, Y.J.; Kozlov, B.N.; Svirko, Y.S.; Pekarskiy, S.E.; Evtushenko, V.V.; Lugovsky, V.A.; Shipulin, V.M.; Lomivorotov, V.V.; Podoksenov, Y.K. Nitric Oxide Delivery during Cardiopulmonary Bypass Reduces Acute Kidney Injury: A Randomized Trial. J. Thorac. Cardiovasc. Surg. 2022, 163, 1393–1403.e9. [Google Scholar] [CrossRef]
- Lei, C.; Berra, L.; Rezoagli, E.; Yu, B.; Dong, H.; Yu, S.; Hou, L.; Chen, M.; Chen, W.; Wang, H.; et al. Nitric Oxide Decreases Acute Kidney Injury and Stage 3 Chronic Kidney Disease after Cardiac Surgery. Am. J. Respir. Crit. Care Med. 2018, 198, 1279–1287. [Google Scholar] [CrossRef]
- Maccallini, C.; Budriesi, R.; De Filippis, B.; Amoroso, R. Advancements in the Research of New Modulators of Nitric Oxide Synthases Activity. Int. J. Mol. Sci. 2024, 25, 8486. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y. Potential Interventions for Novel Coronavirus in China: A Systematic Review. J. Med. Virol. 2020, 92, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Xiang, R.; Yu, Z.; Wang, Y.; Wang, L.; Huo, S.; Li, Y.; Liang, R.; Hao, Q.; Ying, T.; Gao, Y.; et al. Recent Advances in Developing Small-Molecule Inhibitors against SARS-CoV-2. Acta Pharm. Sin. B 2022, 12, 1591–1623. [Google Scholar] [CrossRef]
- Muenster, S.; Zarragoikoetxea, I.; Moscatelli, A.; Balcells, J.; Gaudard, P.; Pouard, P.; Marczin, N.; Janssens, S.P. Inhaled NO at a Crossroads in Cardiac Surgery: Current Need to Improve Mechanistic Understanding, Clinical Trial Design and Scientific Evidence. Front. Cardiovasc. Med. 2024, 11, 1374635. [Google Scholar] [CrossRef]
- Mir, J.M.; Maurya, R.C. Nitric Oxide as a Therapeutic Option for COVID-19 Treatment: A Concise Perspective. New J. Chem. 2021, 45, 1774–1784. [Google Scholar] [CrossRef]
- Tandon, M.; Wu, W.; Moore, K.; Winchester, S.; Tu, Y.-P.; Miller, C.; Kodgule, R.; Pendse, A.; Rangwala, S.; Joshi, S. SARS-CoV-2 Accelerated Clearance Using a Novel Nitric Oxide Nasal Spray (NONS) Treatment: A Randomized Trial. Lancet Reg. Health—Southeast Asia 2022, 3, 100036. [Google Scholar] [CrossRef] [PubMed]
- Shei, R.-J.; Baranauskas, M.N. More Questions than Answers for the Use of Inhaled Nitric Oxide in COVID-19. Nitric Oxide 2022, 124, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Fejes, R.; Pilat, N.; Lutnik, M.; Weisshaar, S.; Weijler, A.M.; Krüger, K.; Draxler, A.; Bragagna, L.; Peake, J.M.; Woodman, R.J.; et al. Effects of Increased Nitrate Intake from Beetroot Juice on Blood Markers of Oxidative Stress and Inflammation in Older Adults with Hypertension. Free Radic. Biol. Med. 2024, 222, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Ritz, T.; Werchan, C.A.; Kroll, J.L.; Rosenfield, D. Beetroot Juice Supplementation for the Prevention of Cold Symptoms Associated with Stress: A Proof-of-Concept Study. Physiol. Behav. 2019, 202, 45–51. [Google Scholar] [CrossRef]
- Volino-Souza, M.; de Oliveira, G.V.; Conte-Junior, C.A.; Alvares, T.S. Effect of Microencapsulated Watermelon (Citrullus Lanatus) Rind on Flow-Mediated Dilation and Tissue Oxygen Saturation of Young Adults. Eur. J. Clin. Nutr. 2023, 77, 71–74. [Google Scholar] [CrossRef]
- Beirne, A.-M.; Mitchelmore, O.; Palma, S.; Andiapen, M.; Rathod, K.S.; Hammond, V.; Bellin, A.; Cooper, J.; Wright, P.; Antoniou, S.; et al. NITRATE-CIN Study: Protocol of a Randomized (1:1) Single-Center, UK, Double-Blind Placebo-Controlled Trial Testing the Effect of Inorganic Nitrate on Contrast-Induced Nephropathy in Patients Undergoing Coronary Angiography for Acute Coronary Syndromes. J. Cardiovasc. Pharmacol. Ther. 2021, 26, 303–309. [Google Scholar] [CrossRef]
- Alberto Montesanto, A.; Crocco, P.; Tallaro, F.; Pisani, F.; Mazzei, B.; Mari, V.; Corsonello, A.; Lattanzio, F.; Passarino, G.; Rose, G. Common Polymorphisms in Nitric Oxide Synthase (NOS) Genes Influence Quality of Aging and Longevity in Humans. Biogerontology 2013, 14, 177. [Google Scholar] [CrossRef]
- Toprakçı, M.; Özmen, D.; Mutaf, I.; Turgan, N.; Parıldar, Z.; Habif, S.; Güner, I.; Bayındır, O. Age-Associated Changes in Nitric Oxide Metabolites Nitrite and Nitrate. Int. J. Clin. Lab. Res. 2000, 30, 83–85. [Google Scholar] [CrossRef]
- Li, J.; Billiar, T.R.; Talanian, R.V.; Kim, Y.M. Nitric Oxide Reversibly Inhibits Seven Members of the Caspase Family via S-Nitrosylation. Biochem. Biophys. Res. Commun. 1997, 240, 419–424. [Google Scholar] [CrossRef]
- Tenneti, L.; D’Emilia, D.M.; Lipton, S.A. Suppression of Neuronal Apoptosis by S-Nitrosylation of Caspases. Neurosci. Lett. 1997, 236, 139–142. [Google Scholar] [CrossRef]
- Perluigi, M.; Swomley, A.M.; Butterfield, D.A. Redox Proteomics and the Dynamic Molecular Landscape of the Aging Brain. Ageing Res. Rev. 2014, 13, 75–89. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.H.; Zou, Y.; Kim, D.H.; Kim, N.D.; Yu, B.P.; Chung, H.Y. Proteomic Analysis of Nitrated and 4-Hydroxy-2-Nonenal-Modified Serum Proteins during Aging. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2006, 61, 332–338. [Google Scholar] [CrossRef]
- Kanski, J.; Hong, S.J.; Schöneich, C. Proteomic Analysis of Protein Nitration in Aging Skeletal Muscle and Identification of Nitrotyrosine-Containing Sequences in Vivo by Nanoelectrospray Ionization Tandem Mass Spectrometry. J. Biol. Chem. 2005, 280, 24261–24266. [Google Scholar] [CrossRef] [PubMed]
- Cabré, R.; Naudí, A.; Dominguez-Gonzalez, M.; Ayala, V.; Jové, M.; Mota-Martorell, N.; Piñol-Ripoll, G.; Gil-Villar, M.P.; Rué, M.; Portero-Otín, M.; et al. Sixty Years Old Is the Breakpoint of Human Frontal Cortex Aging. Free Radic. Biol. Med. 2017, 103, 14–22. [Google Scholar] [CrossRef]
- Seth, D.; Stamler, J.S. The SNO-Proteome: Causation and Classifications. Curr. Opin. Chem. Biol. 2011, 15, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Finelli, M.J. Redox Post-Translational Modifications of Protein Thiols in Brain Aging and Neurodegenerative Conditions—Focus on S-Nitrosation. Front. Aging Neurosci. 2020, 12, 254. [Google Scholar] [CrossRef]
- Wang, L.; Yang, Z.; He, X.; Pu, S.; Yang, C.; Wu, Q.; Zhou, Z.; Cen, X.; Zhao, H. Mitochondrial Protein Dysfunction in Pathogenesis of Neurological Diseases. Front. Mol. Neurosci. 2022, 15, 974480. [Google Scholar] [CrossRef]
- Di Giacomo, G.; Rizza, S.; Montagna, C.; Filomeni, G. Established Principles and Emerging Concepts on the Interplay between Mitochondrial Physiology and S-(De)Nitrosylation: Implications in Cancer and Neurodegeneration. Int. J. Cell Biol. 2012, 2012, 361872. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, L.; Jiang, X.; Zhai, S.; Xing, D. The Essential Role of Drp1 and Its Regulation by S-Nitrosylation of Parkin in Dopaminergic Neurodegeneration: Implications for Parkinson’s Disease. Antioxid. Redox Signal. 2016, 25, 609–622. [Google Scholar] [CrossRef]
- Faienza, F.; Rizza, S.; Giglio, P.; Filomeni, G. TRAP1: A Metabolic Hub Linking Aging Pathophysiology to Mitochondrial S-Nitrosylation. Front. Physiol. 2020, 11, 340. [Google Scholar] [CrossRef]
- Liu, L.; Hausladen, A.; Zeng, M.; Que, L.; Heitman, J.; Stamler, J.S. A Metabolic Enzyme for S-Nitrosothiolconserved from Bacteria to Humans. Nature 2001, 410, 490–494. [Google Scholar] [CrossRef] [PubMed]
- Barnett, S.D.; Buxton, I.L.O. The Role of S-Nitrosoglutathione Reductase (GSNOR) in Human Disease and Therapy. Crit. Rev. Biochem. Mol. Biol. 2017, 52, 340–354. [Google Scholar] [CrossRef] [PubMed]
- Kartawy, M.; Khaliulin, I.; Amal, H. Systems Biology Reveals Reprogramming of the S-Nitroso-Proteome in the Cortical and Striatal Regions of Mice during Aging Process. Sci. Rep. 2020, 10, 13913. [Google Scholar] [CrossRef] [PubMed]
- Gonos, E.S.; Kapetanou, M.; Sereikaite, J.; Bartosz, G.; Naparlo, K.; Grzesik, M.; Sadowska-Bartosz, I. Origin and Pathophysiology of Protein Carbonylation, Nitration and Chlorination in Age-Related Brain Diseases and Aging. Aging 2018, 10, 868–901. [Google Scholar] [CrossRef]
- Larrick, J.W.; Mendelsohn, A.R. Regulation of S-Nitrosylation in Aging and Senescence. Rejuvenation Res. 2019, 22, 171–174. [Google Scholar] [CrossRef]
- Rizza, S.; Cardaci, S.; Montagna, C.; Giacomo, G.D.; De Zio, D.; Bordi, M.; Maiani, E.; Campello, S.; Borreca, A.; Puca, A.A.; et al. S-Nitrosylation Drives Cell Senescence and Aging in Mammals by Controlling Mitochondrial Dynamics and Mitophagy. Proc. Natl. Acad. Sci. USA 2018, 115, E3388–E3397. [Google Scholar] [CrossRef]
- Rizza, S.; Filomeni, G. Re: “Regulation of S-Nitrosylation in Aging and Senescence” by Larrick and Mendelsohn (Rejuvenation Res 2019;22:171–174). Rejuvenation Res. 2019, 22, 359–361. [Google Scholar] [CrossRef]
- Mendelsohn, A.R.; Larrick, J. Response to Rizza and Filomenia Re: “Regulation of S-Nitrosylation in Aging and Senescence. ” Rejuvenation Res. 2019, 22, 362–363. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, K.; Su, W.; Zhang, D.F.; Wang, P.; Qiao, X.; Yao, Q.; Yuan, Z.; Yao, Y.G.; Liu, G.; et al. Increased GSNOR Expression during Aging Impairs Cognitive Function and Decreases S-Nitrosation of CaMKIIα. J. Neurosci. 2017, 37, 9741–9758. [Google Scholar] [CrossRef]
- Moon, Y.; Cao, Y.; Zhu, J.; Xu, Y.; Balkan, W.; Buys, E.S.; Diaz, F.; Kerrick, W.G.; Hare, J.M.; Percival, J.M. GSNOR Deficiency Enhances In Situ Skeletal Muscle Strength, Fatigue Resistance, and RyR1 S-Nitrosylation Without Impacting Mitochondrial Content and Activity. Antioxid. Redox Signal. 2017, 26, 165–181. [Google Scholar] [CrossRef]
- Hatzistergos, K.E.; Paulino, E.C.; Dulce, R.A.; Takeuchi, L.M.; Bellio, M.A.; Kulandavelu, S.; Cao, Y.; Balkan, W.; Kanashiro-Takeuchi, R.M.; Hare, J.M. S-Nitrosoglutathione Reductase Deficiency Enhances the Proliferative Expansion of Adult Heart Progenitors and Myocytes Post Myocardial Infarction. J. Am. Heart Assoc. 2015, 4, e001974. [Google Scholar] [CrossRef] [PubMed]
- Cox, A.G.; Saunders, D.C.; Kelsey, P.B.; Conway, A.A.; Tesmenitsky, Y.; Marchini, J.F.; Brown, K.K.; Stamler, J.S.; Colagiovanni, D.B.; Rosenthal, G.J.; et al. S-Nitrosothiol Signaling Regulates Liver Development and Improves Outcome Following Toxic Liver Injury. Cell Rep. 2014, 6, 56–69. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Sharpless, N.E. Senescence in Health and Disease. Cell 2017, 169, 1000–1011. [Google Scholar] [CrossRef] [PubMed]
- Kalous, K.S.; Wynia-Smith, S.L.; Olp, M.D.; Smith, B.C. Mechanism of Sirt1 NAD+-Dependent Protein Deacetylase Inhibition by Cysteine S-Nitrosation. J. Biol. Chem. 2016, 291, 25398–25410. [Google Scholar] [CrossRef]
- Mohamad Kamal, N.S.; Safuan, S.; Shamsuddin, S.; Foroozandeh, P. Aging of the Cells: Insight into Cellular Senescence and Detection Methods. Eur. J. Cell Biol. 2020, 99, 151108. [Google Scholar] [CrossRef]
- Andreeva, V.D.; Ehlers, H.; Aswin Krishna, R.C.; Presselt, M.; van den Broek, L.J.; Bonnet, S. Combining Nitric Oxide and Calcium Sensing for the Detection of Endothelial Dysfunction. Commun. Chem. 2023, 6, 179. [Google Scholar] [CrossRef]
- Vidanapathirana, A.K.; Psaltis, P.J.; Bursill, C.A.; Abell, A.D.; Nicholls, S.J. Cardiovascular Bioimaging of Nitric Oxide: Achievements, Challenges, and the Future. Med. Res. Rev. 2021, 41, 435–463. [Google Scholar] [CrossRef]
- Gustafsson, L.E.; Leone, A.M.; Persson, M.G.; Wiklund, N.P.; Moncada, S. Endogenous Nitric Oxide Is Present in the Exhaled Air of Rabbits, Guinea Pigs and Humans. Biochem. Biophys. Res. Commun. 1991, 181, 852–857. [Google Scholar] [CrossRef]
- Akbay, N.O.; Bingol, Z.; Kiyan, E.; Karaayvaz, E.B.; Bilge, A.K.; Issever, H.; Okumus, G. Fractional Exhaled Nitric Oxide Measurement in Pulmonary Hypertension: A Follow-Up Study. Clin. Appl. Thromb./Hemost. 2018, 24, 483–488. [Google Scholar] [CrossRef]
- Carpagnano, G.E.; Radaeli, A.; Lacedonia, D.; Correale, M.; Carpagnano, G.; Palmiotti, A.; Barbaro, M.P.F.; Di Biase, M.; Brunetti, N.; Scioscia, G.; et al. Exhaled Nitric Oxide and Exhaled Breath Temperature as Potential Biomarkers in Patients with Pulmonary Hypertension. Biomed. Res. Int. 2018, 2018, 7292045. [Google Scholar] [CrossRef]
- Salonen, I.; Huttunen, K.; Hirvonen, M.; Dufva, J.; Groundstroem, K.; Dufva, H.; Salonen, R.O. Exhaled Nitric Oxide and Atherosclerosis. Eur. J. Clin. Investig. 2012, 42, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Saito, A.; Amiya, E.; Soma, K.; Inaba, T.; Maki, H.; Hatano, M.; Yao, A.; Morita, H.; Komuro, I. Fractional Exhaled Nitric Oxide in Adult Congenital Heart Disease. Nitric Oxide 2020, 100–101, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Maniscalco, M.; Vitale, C.; Vatrella, A.; Molino, A.; Bianco, A.; Mazzarella, G. Fractional Exhaled Nitric Oxide-Measuring Devices: Technology Update. Med. Devices (Auckl) 2016, 9, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Ragnoli, B.; Radaeli, A.; Pochetti, P.; Kette, S.; Morjaria, J.; Malerba, M. Fractional Nitric Oxide Measurement in Exhaled Air (FeNO): Perspectives in the Management of Respiratory Diseases. Ther. Adv. Chronic Dis. 2023, 14, 20406223231190480. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Tian, Y.; Li, M.; Zhao, J.; Zhu, L.; Zhang, W.; Gu, H.; Wang, H.; Shi, J.; Fang, X.; et al. Quantitative Detection of Nitric Oxide in Exhaled Human Breath by Extractive Electrospray Ionization Mass Spectrometry. Sci. Rep. 2015, 5, 8725. [Google Scholar] [CrossRef]
- Wang, C.; Sahay, P. Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits. Sensors 2009, 9, 8230–8262. [Google Scholar] [CrossRef]
- Zhang, Z.; Cang, H.; Xie, Y.; Li, H.; Li, H. A Miniaturized Photodiode-Based Chemiluminescence Sensor for Measurement of Fractional Exhaled Nitric Oxide. Sens. Actuators B Chem. 2023, 394, 134402. [Google Scholar] [CrossRef]
- Zhou, Z.; Shen, C.; Long, W.; Chen, J.; Lu, J.; Gao, L.; Hu, Y.; Yu, M.; Wu, X.; Shao, J. Simultaneous Real-Time Detection of Fractional Exhaled Nitric Oxide and End-Tidal Carbon Dioxide by Quantum Cascade Laser Absorption Spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024, 308, 123750. [Google Scholar] [CrossRef]
- Wang, Y.; Nikodem, M.; Zhang, E.; Cikach, F.; Barnes, J.; Comhair, S.; Dweik, R.A.; Kao, C.; Wysocki, G. Shot-Noise Limited Faraday Rotation Spectroscopy for Detection of Nitric Oxide Isotopes in Breath, Urine and Blood. Sci. Rep. 2015, 5, 9096. [Google Scholar] [CrossRef]
- Brown, M.D.; Schoenfisch, M.H. Electrochemical Nitric Oxide Sensors: Principles of Design and Characterization. Chem. Rev. 2019, 119, 11551–11575. [Google Scholar] [CrossRef]
- Tabish, T.A.; Zhu, Y.; Shukla, S.; Kadian, S.; Sangha, G.S.; Lygate, C.A.; Narayan, R.J. Graphene Nanocomposites for Real-Time Electrochemical Sensing of Nitric Oxide in Biological Systems. Appl. Phys. Rev. 2023, 10, 041310. [Google Scholar] [CrossRef]
- Takarada, S.; Imanishi, T.; Goto, M.; Mochizuki, S.; Ikejima, H.; Tsujioka, H.; Kuroi, A.; Takeshita, T.; Akasaka, T. First Evaluation of Real-Time Nitric Oxide Changes in the Coronary Circulation in Patients with Non-Ischaemic Dilated Cardiomyopathy Using a Catheter-Type Sensor. Eur. Heart J. 2010, 31, 2862–2870. [Google Scholar] [CrossRef]
- Andrews, A.M.; Jaron, D.; Buerk, D.G.; Kirby, P.L.; Barbee, K.A. Direct, Real-Time Measurement of Shear Stress-Induced Nitric Oxide Produced from Endothelial Cells in Vitro. Nitric Oxide 2010, 23, 335–342. [Google Scholar] [CrossRef]
- Li, R.; Qi, H.; Ma, Y.; Deng, Y.; Liu, S.; Jie, Y.; Jing, J.; He, J.; Zhang, X.; Wheatley, L.; et al. A Flexible and Physically Transient Electrochemical Sensor for Real-Time Wireless Nitric Oxide Monitoring. Nat. Commun. 2020, 11, 3207. [Google Scholar] [CrossRef]
- Malinski, T. Using Nanosensors for In Situ Monitoring and Measurement of Nitric Oxide and Peroxynitrite in a Single Cell. In Advanced Protocols in Oxidative Stress III; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2015; pp. 139–155. [Google Scholar] [CrossRef]
- Chen, Y. Recent Developments of Fluorescent Probes for Detection and Bioimaging of Nitric Oxide. Nitric Oxide 2020, 98, 1–19. [Google Scholar] [CrossRef]
- Kojima, H.; Nakatsubo, N.; Kikuchi, K.; Kawahara, S.; Kirino, Y.; Nagoshi, H.; Hirata, Y.; Nagano, T. Detection and Imaging of Nitric Oxide with Novel Fluorescent Indicators: Diaminofluoresceins. Anal. Chem. 1998, 70, 2446–2453. [Google Scholar] [CrossRef]
- Arnau del Valle, C.; Williams, L.; Thomas, P.; Johnson, R.; Raveenthiraraj, S.; Warren, D.; Sobolewski, A.; Muñoz, M.P.; Galindo, F.; Marín, M.J. A Highly Photostable and Versatile Two-Photon Fluorescent Probe for the Detection of a Wide Range of Intracellular Nitric Oxide Concentrations in Macrophages and Endothelial Cells. J. Photochem. Photobiol. B 2022, 234, 112512. [Google Scholar] [CrossRef]
- Chen, X.-X.; Niu, L.-Y.; Yang, Q.-Z. Visualizing the Underlying Signaling Pathway Related to Nitric Oxide and Glutathione in Cardiovascular Disease Therapy by a Sequentially Activated Fluorescent Probe. Anal. Chem. 2021, 93, 3922–3928. [Google Scholar] [CrossRef]
- Liu, P.; Li, B.; Zheng, J.; Liang, Q.; Wu, C.; Huang, L.; Zhang, P.; Jia, Y.; Wang, S. A Novel N-Nitrosation-Based Ratiometric Fluorescent Probe for Highly Selective Imaging Endogenous Nitric Oxide in Living Cells and Zebrafish. Sens. Actuators B Chem. 2021, 329, 129147. [Google Scholar] [CrossRef]
- Goodwin, J.M.; Chrestensen, C.A.; Moomaw, E.W. Detection of Nitric Oxide by Membrane Inlet Mass Spectrometry. In Nitric Oxide: Methods and Protocols; Humana Press: New York, NY, USA, 2018; pp. 35–47. [Google Scholar]
- Tu, C.; Swenson, E.; Silverman, D. Membrane Inlet for Mass Spectrometric Measurement of Nitric Oxide. Free Radic. Biol. Med. 2007, 43, 1453–1457. [Google Scholar] [CrossRef]
- Kleschyov, A.L.; Wenzel, P.; Munzel, T. Electron Paramagnetic Resonance (EPR) Spin Trapping of Biological Nitric Oxide. J. Chromatogr. B 2007, 851, 12–20. [Google Scholar] [CrossRef]
- Shergill, J.K.; Cammack, R.; Cooper, C.E.; Cooper, J.M.; Mann, V.M.; Schapira, A.H. V Detection of Nitrosyl Complexes in Human Substantia Nigra, in Relation to Parkinson’s Disease. Biochem. Biophys. Res. Commun. 1996, 228, 298–305. [Google Scholar] [CrossRef]
- Bratasz, A.; Kuter, I.; Konior, R.; Gościński, I.; Łukiewicz, S. Nitric Oxide as a Prognostic Marker for Neurological Diseases. Antioxid. Redox Signal 2004, 6, 613–617. [Google Scholar] [CrossRef]
- Zecca, L.; Rosati, M.; Renella, R.; Galimberti, M.; Ambrosini, A.; Fariello, R.G. Nitrite and Nitrate Levels in Cerebrospinal Fluid of Normal Subjects. J. Neural Transm. 1998, 105, 627–633. [Google Scholar] [CrossRef]
- Troška, P.; Chudoba, R.; Danč, L.; Bodor, R.; Horčičiak, M.; Tesařová, E.; Masár, M. Determination of Nitrite and Nitrate in Cerebrospinal Fluid by Microchip Electrophoresis with Microsolid Phase Extraction Pre-Treatment. J. Chromatogr. B 2013, 930, 41–47. [Google Scholar] [CrossRef]
- Shukla, R.; Rajani, M.; Srivastava, N.; Barthwal, M.K.; Dikshit, M. Nitrite and Malondialdehyde Content in Cerebrospinal Fluid of Patients with Parkinson’s Disease. Int. J. Neurosci. 2006, 116, 1391–1402. [Google Scholar] [CrossRef]
- Alsiraey, N.; Malinski, T.; Dewald, H.D. Using Metalloporphyrin Nanosensors for In Situ Monitoring and Measurement of Nitric Oxide and Peroxynitrite in a Single Human Neural Progenitor Cell. ACS Sens. 2024, 9, 3037–3047. [Google Scholar] [CrossRef]
- Barandov, A.; Ghosh, S.; Li, N.; Bartelle, B.B.; Daher, J.I.; Pegis, M.L.; Collins, H.; Jasanoff, A. Molecular Magnetic Resonance Imaging of Nitric Oxide in Biological Systems. ACS Sens. 2020, 5, 1674–1682. [Google Scholar] [CrossRef]
- Kang, H.; Shu, W.; Yu, J.; Gao, M.; Han, R.; Jing, J.; Zhang, R.; Zhang, X. A Near-Infrared Fluorescent Probe for Ratiometric Imaging Peroxynitrite in Parkinson’s Disease Model. Sens. Actuators B Chem. 2022, 359, 131393. [Google Scholar] [CrossRef]
- Yan, M.; Fang, H.; Wang, X.; Xu, J.; Zhang, C.; Xu, L.; Li, L. A Two-Photon Fluorescent Probe for Visualizing Endoplasmic Reticulum Peroxynitrite in Parkinson’s Disease Models. Sens. Actuators B Chem. 2021, 328, 129003. [Google Scholar] [CrossRef]
- Weng, M.; Yang, X.; Ni, Y.; Xu, C.; Zhang, H.; Shao, J.; Shi, N.; Zhang, C.; Wu, Q.; Li, L.; et al. Deep-Red Fluorogenic Probe for Rapid Detection of Nitric Oxide in Parkinson’s Disease Models. Sens. Actuators B Chem. 2019, 283, 769–775. [Google Scholar] [CrossRef]
- Sun, Q.; Xu, J.; Ji, C.; Shaibani, M.S.S.; Li, Z.; Lim, K.; Zhang, C.; Li, L.; Liu, Z. Ultrafast Detection of Peroxynitrite in Parkinson’s Disease Models Using a Near-Infrared Fluorescent Probe. Anal. Chem. 2020, 92, 4038–4045. [Google Scholar] [CrossRef]
- Sun, X.; Kim, G.; Xu, Y.; Yoon, J.; James, T.D. A Water-Soluble Copper(II) Complex for the Selective Fluorescence Detection of Nitric Oxide/Nitroxyl and Imaging in Living Cells. Chempluschem 2016, 81, 30–34. [Google Scholar] [CrossRef]
- Lee, M.H.; Kim, J.S.; Sessler, J.L. Small Molecule-Based Ratiometric Fluorescence Probes for Cations, Anions, and Biomolecules. Chem. Soc. Rev. 2015, 44, 4185–4191. [Google Scholar] [CrossRef]
- Tang, J.; Guo, Z.; Zhang, Y.; Bai, B.; Zhu, W.-H. Rational Design of a Fast and Selective Near-Infrared Fluorescent Probe for Targeted Monitoring of Endogenous Nitric Oxide. Chem. Commun. 2017, 53, 10520–10523. [Google Scholar] [CrossRef]
- He, Z.; Liu, D.; Liu, Y.; Li, X.; Shi, W.; Ma, H. Golgi-Targeted Fluorescent Probe for Imaging NO in Alzheimer’s Disease. Anal. Chem. 2022, 94, 10256–10262. [Google Scholar] [CrossRef]
- Zheng, Z.; Gong, S.; Zhang, J.; Liu, Y.; Feng, G. Golgi-Targeted Fluorescent Probe for Nitric Oxide Imaging in Parkinson’s Disease Models. Sens. Actuators B Chem. 2023, 397, 134654. [Google Scholar] [CrossRef]
- Xi, Y.; Bai, S.; Tian, Y.; Lv, Y.; Ji, L.; Li, W.; He, G.; Yang, L. Golgi-Targeted NIR Fluorescent Probe with Large Stokes Shift for Real-Time Monitoring of Nitric Oxide in Depression Model. Bioorg Chem. 2024, 148, 107476. [Google Scholar] [CrossRef]
- Joshi, G.; Chi, Y.; Huang, Z.; Wang, Y. Aβ-Induced Golgi Fragmentation in Alzheimer’s Disease Enhances Aβ Production. Proc. Natl. Acad. Sci. USA 2014, 111, E1230–E1239. [Google Scholar] [CrossRef]
- Iwakiri, Y.; Satoh, A.; Chatterjee, S.; Toomre, D.K.; Chalouni, C.M.; Fulton, D.; Groszmann, R.J.; Shah, V.H.; Sessa, W.C. Nitric Oxide Synthase Generates Nitric Oxide Locally to Regulate Compartmentalized Protein S-Nitrosylation and Protein Trafficking. Proc. Natl. Acad. Sci. USA 2006, 103, 19777–19782. [Google Scholar] [CrossRef]
- Zeng, L.; Ma, G.; Lin, J.; Huang, P. Photoacoustic Probes for Molecular Detection: Recent Advances and Perspectives. Small 2018, 14, e1800782. [Google Scholar] [CrossRef]
- Qi, F.-Y.; Qiao, L.; Peng, L.; Yang, Y.; Zhang, C.-H.; Liu, X. An Activatable Fluorescent-Photoacoustic Dual-Modal Probe for Highly Sensitive Imaging of Nitroxyl in Vivo. Analyst 2024, 149, 2299–2305. [Google Scholar] [CrossRef]
- Jiang, Z.; Liang, Z.; Cui, Y.; Zhang, C.; Wang, J.; Wang, H.; Wang, T.; Chen, Y.; He, W.; Liu, Z.; et al. Blood–Brain Barrier Permeable Photoacoustic Probe for High-Resolution Imaging of Nitric Oxide in the Living Mouse Brain. J. Am. Chem. Soc. 2023, 145, 7952–7961. [Google Scholar] [CrossRef]
- Gupta, M.; Paliwal, V.K.; Babu, G.N. Serum Fractalkine and 3-Nitrotyrosine Levels Correlate with Disease Severity in Parkinson’s Disease: A Pilot Study. Metab. Brain Dis. 2022, 37, 209–217. [Google Scholar] [CrossRef]
- Ryberg, H.; Söderling, A.-S.; Davidsson, P.; Blennow, K.; Caidahl, K.; Persson, L.I. Cerebrospinal Fluid Levels of Free 3-Nitrotyrosine Are Not Elevated in the Majority of Patients with Amyotrophic Lateral Sclerosis or Alzheimer’s Disease. Neurochem. Int. 2004, 45, 57–62. [Google Scholar] [CrossRef]
- Knight, A.R.; Taylor, E.L.; Lukaszewski, R.; Jensen, K.T.; Jones, H.E.; Carré, J.E.; Isupov, M.N.; Littlechild, J.A.; Bailey, S.J.; Brewer, E.; et al. A High-Sensitivity Electrochemiluminescence-Based ELISA for the Measurement of the Oxidative Stress Biomarker, 3-Nitrotyrosine, in Human Blood Serum and Cells. Free Radic. Biol. Med. 2018, 120, 246–254. [Google Scholar] [CrossRef]
- Fernández, E.; García-Moreno, J.-M.; de Pablos, A.; Chacón, J. May the Evaluation of Nitrosative Stress Through Selective Increase of 3-Nitrotyrosine Proteins Other Than Nitroalbumin and Dominant Tyrosine-125/136 Nitrosylation of Serum α-Synuclein Serve for Diagnosis of Sporadic Parkinson’s Disease? Antioxid. Redox Signal 2013, 19, 912–918. [Google Scholar] [CrossRef]
- Seneviratne, U.; Nott, A.; Bhat, V.B.; Ravindra, K.C.; Wishnok, J.S.; Tsai, L.-H.; Tannenbaum, S.R. S-Nitrosation of Proteins Relevant to Alzheimer’s Disease during Early Stages of Neurodegeneration. Proc. Natl. Acad. Sci. USA 2016, 113, 4152–4157. [Google Scholar] [CrossRef]
- Zahid, S.; Khan, R.; Oellerich, M.; Ahmed, N.; Asif, A.R. Differential S-Nitrosylation of Proteins in Alzheimer’s Disease. Neuroscience 2014, 256, 126–136. [Google Scholar] [CrossRef]
- Almeida, B.; Rogers, K.E.; Nag, O.K.; Delehanty, J.B. Sensing Nitric Oxide in Cells: Historical Technologies and Future Outlook. ACS Sens. 2021, 6, 1695–1703. [Google Scholar] [CrossRef]
- Iverson, N.; Hofferber, E.; Stapleton, J. Nitric Oxide Sensors for Biological Applications. Chemosensors 2018, 6, 8. [Google Scholar] [CrossRef]
- Jiao, Y.; Dong, X.; Ran, X.; Deng, Q.; Xiao, H.; Wang, Z.; Zhang, T. Theoretical Characterization of Two-Photon Fluorescent Probes for Nitric Oxide Detection: Sensing Mechanism, Photophysical Properties and Protonation Effects. Phys. Chem. Chem. Phys. 2023, 25, 19932–19942. [Google Scholar] [CrossRef]
- Liu, W.; Fan, C.; Sun, R.; Xu, Y.-J.; Ge, J.-F. Near-Infrared Emission of Dibenzoxanthenium and Its Application in the Design of Nitric Oxide Probes. Org. Biomol. Chem. 2015, 13, 4532–4538. [Google Scholar] [CrossRef]
- Mao, Z.; Feng, W.; Li, Z.; Zeng, L.; Lv, W.; Liu, Z. NIR in, Far-Red out: Developing a Two-Photon Fluorescent Probe for Tracking Nitric Oxide in Deep Tissue. Chem. Sci. 2016, 7, 5230–5235. [Google Scholar] [CrossRef]
- Parisi, C.; Pastore, A.; Stornaiuolo, M.; Sortino, S. A Fluorescent Probe with an Ultra-Rapid Response to Nitric Oxide. J. Mater. Chem. B 2024, 12, 5076–5084. [Google Scholar] [CrossRef]
- Wang, Q.; Jiao, X.; Liu, C.; He, S.; Zhao, L.; Zeng, X. A Rhodamine-Based Fast and Selective Fluorescent Probe for Monitoring Exogenous and Endogenous Nitric Oxide in Live Cells. J. Mater. Chem. B 2018, 6, 4096–4103. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, X.; Xiao, Y.; Zou, W.; Wang, L.; Jin, L. Targetable Fluorescent Probe for Monitoring Exogenous and Endogenous NO in Mitochondria of Living Cells. Anal. Chem. 2013, 85, 7076–7084. [Google Scholar] [CrossRef]
- Yu, H.; Xiao, Y.; Jin, L. A Lysosome-Targetable and Two-Photon Fluorescent Probe for Monitoring Endogenous and Exogenous Nitric Oxide in Living Cells. J. Am. Chem. Soc. 2012, 134, 17486–17489. [Google Scholar] [CrossRef]
- Kojima, H.; Urano, Y.; Kikuchi, K.; Higuchi, T.; Hirata, Y.; Nagano, T. Fluorescent Indicators for Imaging Nitric Oxide Production. Angew. Chem. Int. Ed. 1999, 38, 3209–3212. [Google Scholar] [CrossRef]
- Reinhardt, C.J.; Xu, R.; Chan, J. Nitric Oxide Imaging in Cancer Enabled by Steric Relaxation of a Photoacoustic Probe Platform. Chem. Sci. 2020, 11, 1587–1592. [Google Scholar] [CrossRef]
- Reinhardt, C.J.; Zhou, E.Y.; Jorgensen, M.D.; Partipilo, G.; Chan, J. A Ratiometric Acoustogenic Probe for in Vivo Imaging of Endogenous Nitric Oxide. J. Am. Chem. Soc. 2018, 140, 1011–1018. [Google Scholar] [CrossRef]
- Mantovani, A.; Marchesi, F.; Malesci, A.; Laghi, L.; Allavena, P. Tumour-Associated Macrophages as Treatment Targets in Oncology. Nat. Rev. Clin. Oncol. 2017, 14, 399–416. [Google Scholar] [CrossRef]
- Lucero, M.Y.; East, A.K.; Reinhardt, C.J.; Sedgwick, A.C.; Su, S.; Lee, M.C.; Chan, J. Development of NIR-II Photoacoustic Probes Tailored for Deep-Tissue Sensing of Nitric Oxide. J. Am. Chem. Soc. 2021, 143, 7196–7202. [Google Scholar] [CrossRef]
- Abdelwahab, A.A.; Koh, W.C.A.; Noh, H.-B.; Shim, Y.-B. A Selective Nitric Oxide Nanocomposite Biosensor Based on Direct Electron Transfer of Microperoxidase: Removal of Interferences by Co-Immobilized Enzymes. Biosens. Bioelectron. 2010, 26, 1080–1086. [Google Scholar] [CrossRef]
- Eroglu, E.; Gottschalk, B.; Charoensin, S.; Blass, S.; Bischof, H.; Rost, R.; Madreiter-Sokolowski, C.T.; Pelzmann, B.; Bernhart, E.; Sattler, W.; et al. Development of Novel FP-Based Probes for Live-Cell Imaging of Nitric Oxide Dynamics. Nat. Commun. 2016, 7, 10623. [Google Scholar] [CrossRef]
- Qin, Y.; You, S.-H.; Zhang, Y.; Venu, A.; Hong, Y.; Min, J.-J. Genetic Programming by Nitric Oxide-Sensing Gene Switch System in Tumor-Targeting Bacteria. Biosensors 2023, 13, 266. [Google Scholar] [CrossRef]
Problem | Goal/Application | Target/Therapeutic Strategy | Examples of Compounds/Drugs |
---|---|---|---|
NO signaling disfunction in cardiovascular | Restoration of NO production and bioavailability | β3-adrenergic receptor agonists | Isoproterenol [27] |
NOX inhibition | GKT137831, ML171, and VAS2870 [28] | ||
Increased NOS activity | L-arginine, L-citrulline [29,30], arginase inhibitors [31], hydrogen sulfide [32], BH4 [33], folate [34] | ||
sGC stimulation | Vericiguat [36] | ||
PDE5 inhibition | Sildenafil [37] | ||
Inhalation of NO | Inhaled NO [38] | ||
nitrate/nitrite supplementation | organic nitrates and inorganic nitrites [39] beetroot juice [43] | ||
Neuronal degeneration | Reducing RNS production | Selective inhibition of nNOS | nNOS inhibitors [46] |
Regulation of protein S-nitrosation in neurodegenerative diseases | S-nitrosation of GluN1 subunit of NMDAR | Nitromemantine [47] | |
Prevent apoptosis | GAPDH nitrosation | CGP3466B [48] | |
Overproduction of NO in immune system | Block NO production | Targeting iNOS with specific and non-specific inhibitors | iNOS inhibitors [6,49] |
COVID-19 respiratory complications | Improve oxygenation | Inhalation of NO | Inhaled NO [50,51] |
Inflammation, autoimmune diseases, stroke | Reduce inflammation and modulate immune responses | Use of NO donors to achieve anti-inflammatory effects | GSNO, SNAP, SNP [52,53,54] |
Atopic dermatitis | induced NO production | UV-induced NO production | NO produced by UV irradiation [55,56] |
Regulation of NO level in cancer | Inhibit cancer cell proliferation | iNOS inhibition | L-nil [57] L-NMMA in combination with taxene [58] or pembrolizumab [59] |
Promoting cell death by ensuring high concentrations of NO | Upregulation of p53 pathway, mitochondrial cytochrome c release, ONOO− generation | Organic nitrates Diazeniumdiolates Metal-NO complexes Furozans S-nitrosothiols Syndonimines [60] | |
Inhibition of NF-κB pathway due to the S-nitrosation of p50 | Diazeniumdiolate [61] | ||
Cancer cell resistance to chemotherapy and radiotherapy | Enhance therapeutic efficacy of anticancer agents | Combine NO donors with chemotherapy or radiotherapy to sensitize cancer cells | NO donors combined with cisplatin, docetaxel, carboplatin [60,62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazuryk, O.; Gurgul, I.; Oszajca, M.; Polaczek, J.; Kieca, K.; Bieszczad-Żak, E.; Martyka, T.; Stochel, G. Nitric Oxide Signaling and Sensing in Age-Related Diseases. Antioxidants 2024, 13, 1213. https://doi.org/10.3390/antiox13101213
Mazuryk O, Gurgul I, Oszajca M, Polaczek J, Kieca K, Bieszczad-Żak E, Martyka T, Stochel G. Nitric Oxide Signaling and Sensing in Age-Related Diseases. Antioxidants. 2024; 13(10):1213. https://doi.org/10.3390/antiox13101213
Chicago/Turabian StyleMazuryk, Olga, Ilona Gurgul, Maria Oszajca, Justyna Polaczek, Konrad Kieca, Ewelina Bieszczad-Żak, Tobiasz Martyka, and Grażyna Stochel. 2024. "Nitric Oxide Signaling and Sensing in Age-Related Diseases" Antioxidants 13, no. 10: 1213. https://doi.org/10.3390/antiox13101213
APA StyleMazuryk, O., Gurgul, I., Oszajca, M., Polaczek, J., Kieca, K., Bieszczad-Żak, E., Martyka, T., & Stochel, G. (2024). Nitric Oxide Signaling and Sensing in Age-Related Diseases. Antioxidants, 13(10), 1213. https://doi.org/10.3390/antiox13101213