Antioxidant, Nutritional Properties, Microbiological, and Health Safety of Juice from Organic and Conventional ‘Solaris’ Wine (Vitis vinifera L.) Farming
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Area of Research and Plant Material
2.2. Cultivation Scheme
- sulfur—12.5 kg/ha (withdrawal period—56 days)
- copper (copper oxychloride and copper hydroxide)—1.75 kg/ha (withdrawal period—7 days)
- potassium carbonate—17.5 kg/ha (withdrawal period—0 days)
- potassium gray soap—4 kg/ha (withdrawal period—0 days)
- metalaxyl-M (a compound of the phenylacetamide group 3.8%) and mancozeb (a compound of the dithiocarbamate group 64%)—2.25 kg/ha; (withdrawal period—56 days)
- cyflufenamid (a compound of the phenylacetamide group 5.32%)—0.3 kg/ha; (withdrawal period—21 days)
- cyprodinil (a compound of the anilinopyrimidine group 37.5%) and fludioxonil (a compound of the phenylpyrrole group 25%)—1.2 kg/ha (withdrawal period—21 days).
2.3. Bacteria and Fungi Microbiome Analysis
2.4. Juice Quality
2.5. Mycotoxin Detection
2.5.1. Detection of Mycotoxins in Grape Juice and Pomace
2.5.2. Detection of the Presence of Genes Encoding Ochratoxins, Aflatoxins, and Patulin in Juice
2.6. Detection of Pesticide Residues
2.7. Statistical Analysis
3. Results
3.1. Bacterial and Fungal Microbiota of Juice
3.1.1. Bacteria
3.1.2. Fungi
3.2. Health Safety-Pesticides and Mycotoxins in Juice
3.2.1. Pesticide Active Ingredients
3.2.2. Mycotoxins
3.3. Chemical and Nutritional Properties
3.4. Interrelationships among Variables
3.4.1. Clustering Analysis
3.4.2. Relationships between Variables
4. Discussion
4.1. Influence of the Viticultural System on the Microbiome and Mycotoxin Secretion
4.2. Influence of Viticulture Method on the Presence of Pesticide Residues
4.3. Influence of the Cultivation Method of the Vine on the Quality of the Juice—Health-Promoting and Technological Properties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Francesca, N.; Sannino, C.; Settanni, L.; Corona, O.; Barone, E.; Moschetti, G. Microbiological and chemical monitoring of Marsala base wine obtained by spontaneous fermentation during large-scale production. Ann. Microbiol. 2014, 64, 1643–1657. [Google Scholar] [CrossRef]
- Kántor, A.; Mareček, J.; Ivanišová, E.; Terentjeva, M.; Kačániová, M. Microorganisms of grape berries. Proc. Latv. Acad. Sci. Sect. B. 2017, 71, 502–508. [Google Scholar] [CrossRef]
- Kačániová, M.; Terentjeva, M.; Felsöciová, S.; Ivanišová, E.; Kunová, S.; Žiarovská, J.; Kluz, M.; Hanus, P.; Puchalski, C.; Kántor, A. Bacteria and yeasts isolated from different grape varieties. Slovak J. Food Sci. 2018, 12, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Tournas, V.H.; Katsoudas, E. Mould and yeast flora in fresh berries, grapes and citrus fruits. Int. J. Food Microbiol. 2005, 105, 11–17. [Google Scholar] [CrossRef]
- Fernández-Cruz, M.L.; Mansilla, M.L.; Tadeo, J.L. Mycotoxins in fruits and their processed products: Analysis, occurrence and health implications. J. Adv. Res. 2010, 1, 113–122. [Google Scholar] [CrossRef]
- Quirós-Alcalá, L.; Hansel, N.N.; McCormack, M.C.; Matsui, E.C. Paraben exposures and asthma-related outcomes among children from the US general population. J. Allergy Clin. Immunol. 2018, 14, 948–956. [Google Scholar] [CrossRef]
- Weitekamp, C.A.; Hofmann, H.A. Effects of air pollution exposure on social behavior: A synthesis and call for research. Environ. Health 2021, 20, 72. [Google Scholar] [CrossRef]
- Willer, H.; Schlatter, B.; Trávníček, J. The World of Organic Agriculture. Statistics and Emerging Trends 2023. FiBL, IFOAM. 2023. Available online: https://www.fibl.org/fileadmin/documents/shop/1254-organic-world-2023.pdf (accessed on 13 January 2024).
- Ochmian, I.; Błaszak, M.; Lachowicz, S.; Piwowarczyk, R. The impact of cultivation systems on the nutritional and phytochemical content, and microbiological contamination of highbush blueberry. Sci. Rep. 2020, 10, 16696. [Google Scholar] [CrossRef]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef]
- Fahmi, A.I.; El-Shehawi, A.M.; Nagaty, M.A. Antioxidant and antimutagenic activities of Taif grape (Vitis vinifera) cultivars. Am. J. Biochem. Biotechnol. 2013, 9, 102–117. [Google Scholar] [CrossRef]
- Flamini, R.; Mattivi, F.; de Rosso, M.; Arapitsas, P.; Bavaresco, L. Advanced Knowledge of Three Important Classes of Grape Phenolics: Anthocyanins, Stilbenes and Flavonols. Int. J. Mol. Sci. 2013, 14, 19651–19669. [Google Scholar] [CrossRef] [PubMed]
- Xia, E.Q.; Deng, G.F.; Guo, Y.J.; Li, H.B. Biological Activities of Polyphenols from Grapes. Int. J. Mol. Sci. 2010, 11, 622–646. [Google Scholar] [CrossRef]
- Toaldo, I.M.; van Camp, J.; Gonzales, G.B.; Kamiloglu, S.; Bordignon-Luiz, M.T.; Smagghe, G.; Raes, K.; Capanoglu, E.; Grootaert, C. Resveratrol improves TNF-α-induced endothelial dysfunction in a coculture model of a Caco-2 with an endothelial cell line. J. Nutr. Biochem. 2016, 36, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.W.; Bilogrevic, E.; Parker, M.; Francis, I.L.; Leske, P.; Hayasaka, Y.; Barter, S.; Herderich, M. The effect of pre-veraison smoke exposure of grapes on phenolic compounds and smoky flavour in wine. Aust. J. Grape Wine Res. 2022, 2022, 9820204. [Google Scholar] [CrossRef]
- Fenoll, J.; Manso, A.; Hellin, P.; Ruiz, L.; Flores, P. Changes in the aromatic composition of the Vitis vinifera grape Muscat Hamburg during ripening. Food Chem. 2009, 114, 420–428. [Google Scholar] [CrossRef]
- Lutz, M.; Jorquera, K.; Cancino, B.; Ruby, R.; Henriquez, C. Phenolics and antioxidant capacity of table grape (Vitis vinifera L.) cultivars grown in Chile. J. Food Sci. 2011, 76, 1088–1093. [Google Scholar] [CrossRef]
- Koundouras, S.; Marinos, V.; Gkoulioti, A.; Kotseridis, Y.; van Leeuwen, C. Influence of vineyard location and vine water status on fruit maturation of nonirrigated cv. Agiorgitiko (Vitis vinifera L.), Effects on wine phenolic and aroma components. J. Agric. Food Chem. 2006, 54, 5077–5086. [Google Scholar] [CrossRef]
- Kuhn, N.; Guan, L.; Dai, Z.W.; Wu, B.H.; Lauvergeat, V.; Gomès, E.; Li, S.H.; Godoy, F.; Arce-Johnson, P.; Delrot, S. Berry ripening: Recently heard through the grapevine. J. Exp. Bot. 2013, 65, 4543–4559. [Google Scholar] [CrossRef]
- Chedea, V.S.; Braicu, C.; Socaciu, C. Antioxidant/prooxidant activity of a polyphenolic grape seed extract. Food Chem. 2010, 121, 132–139. [Google Scholar] [CrossRef]
- Humaj, J.; Kostelnikova, K.; Sochor, J.; Kumsta, M.; Baron, M. Study of polyphenolic compounds in wines and different parts of the grapevine. Folia Hortic. 2023, 35, 297–306. [Google Scholar] [CrossRef]
- Lytra, G.; Miot-Sertier, C.; Moine, V.; Coulon, J.; Barbe, J.C. Influence of must yeast assimilable nitrogen content on fruity aroma variation during malolactic fermentation in red wine. Food Res. Int. 2020, 135, 109294. [Google Scholar] [CrossRef] [PubMed]
- Vrček, I.V.; Bojić, M.; Žuntar, I.; Mendaš, G.; Medić-Šarić, M. Phenol content, antioxidant activity and metal composition of Croatian wines deriving from organically and conventionally grown grapes. Food Chem. 2011, 124, 354–361. [Google Scholar] [CrossRef]
- Laureati, M.; Gaeta, D.; Pagliarini, E. Qualitative and sensory evaluation of Sangiovese red wine obtained from organically and conventionally grown grapes. Ital. J. Food Sci. 2014, 26, 355–362. [Google Scholar]
- Hepperly, P.R.; Douds, D.; Seidel, R. The Rodale Institute Farming System Trial 1981 to 2005: Long_term analysis of organic and conventional maize and soybean cropping systems. In Long_Term Field Experiments in Organic Farming; Raupp, J., Pekrun, C., Oltmanns, M., Köpke, U., Eds.; Verlag Dr. Köster: Berlin, Germany, 2006; pp. 15–31. [Google Scholar]
- Figiel-Kroczyńska, M.; Ochmian, I.; Lachowicz, S.; Krupa-Małkiewicz, M.; Wróbel, J.; Gamrat, R. Actinidia (mini kiwi) fruit quality in relation to summer cutting. Agronomy 2021, 11, 964. [Google Scholar] [CrossRef]
- PN-90/A-75101/04; Polish Committee for Standardisation. Fruit and Vegetable Preparations—Sample Preparation and Physicochemical Test Methods. Polish Committee for Standardisation: Warszawa, Poland, 2001.
- Yen, G.C.; Chen, H.Y. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Lachowicz-Wiśniewska, S.; Kapusta, I.; Stinco, C.M.; Meléndez-Martínez, A.J.; Bieniek, A.; Ochmian, I.; Gil, Z. Distribution of polyphenolic and isoprenoid compounds and biological activity differences between in the fruit skin+ pulp, seeds, and leaves of new biotypes of Elaeagnus multiflora Thunb. Antioxidants 2021, 10, 849. [Google Scholar] [CrossRef]
- Rodríguez, A.; Rodríguez, M.; Andrade, M.J.; Córdoba, J.J. Development of a multiplex real-time PCR to quantify aflatoxin, ochratoxin A and patulin producing molds in foods. Int. J. Food Microbiol. 2012, 155, 10–18. [Google Scholar] [CrossRef]
- Available online: http://www.inhort.pl/files/laboratoria_akredytowane/badania_skazen/Offer_FSL_18_10_2022.pdf (accessed on 18 October 2023).
- Kruczek, A.; Krupa-Małkiewicz, M.; Lachowicz, S.; Oszmiański, J.; Ochmian, I. Health-promoting capacities of in vitro and cultivated goji (Lycium chinense Mill.) fruit and leaves; polyphenols, antimicrobial activity, macro- and microelements and heavy metals. Molecules 2020, 25, 5314. [Google Scholar] [CrossRef]
- Lumivero. XLSTAT Statistical and Data Analysis Solution. New York, USA. Available online: https://www.xlstat.com/en (accessed on 10 August 2023).
- European Food Safety Authority (EFSA); Anastassiadou, M.; Bernasconi, G.; Brancato, A.; Cabrera, L.C.; Greco, L.; Jarrah, S.; Kazocina, A.; Leuschner, R.; Magrans, J.O. Review of the existing maximum residue levels for spirotetramat according to Article 12 of Regulation (EC) No 396/2005. EFSA J. 2020, 18, e05960. [Google Scholar]
- Getachew, Z.; Abeble, L. Effect of seed treatment using Mancozeb and Ridomil fungicides on Variovorax strain performance, nodulation and yield of soybean (Glycine max L.). J. Agric. Nat. Resour. 2021, 4, 86–97. [Google Scholar] [CrossRef]
- Ma, G.; Gao, X.; Nan, J.; Zhang, T.; Xie, X.; Cai, Q. Fungicides alter the distribution and diversity of bacterial and fungal communities in ginseng fields. Bioengineered 2021, 12, 8043–8056. [Google Scholar] [CrossRef] [PubMed]
- White, D.C.; Sutton, S.D.; Ringelberg, D.B. The genus Sphingomonas: Physiology and ecology. Curr. Opin. Biotechnol. 1996, 7, 301–306. [Google Scholar] [CrossRef]
- Yabuuchi, E.; Yano, I.; Oyaizu, H.; Hashimoto, Y.; Ezaki, T.; Yamamoto, H. Proposals of Sphingomonas paucimobilis gen. nov. & comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov. & two genospecies of the genus Sphingomonas. Microbiol. Immunol. 1990, 34, 99–119. [Google Scholar] [CrossRef]
- Hesham, A.-L.; Mawad, A.M.; Mostafa, Y.M.; Shoreit, A. Biodegradation ability and catabolic genes of petroleum-degrading Sphingomonas koreensis strain ASU-06 isolated from Egyptian oily soil. Biomed Res. Int. 2014, 2014, 127674. [Google Scholar] [CrossRef]
- Zhou, M.; Liu, Z.; Wang, J.; Zhao, Y.; Hu, B. Sphingomonas Relies on Chemotaxis to Degrade Polycyclic Aromatic Hydrocarbons and Maintain Dominance in Coking Sites. Microorganisms 2022, 10, 1109. [Google Scholar] [CrossRef] [PubMed]
- Abrusci, A.; Palomar, J.; Pablos, J.L.; Rodriguez, F.; Catalinac, F. Efficient biodegradation of common ionic liquids by Sphingomonas paucimobilis bacterium. Green Chem. 2011, 13, 709–717. [Google Scholar] [CrossRef]
- Ravintheran, S.K.; Sivaprakasam, S.; Loke, S.; Lee, S.Y.; Manickam, R.; Yahya, A.; Croft, L.; Millard, A.; Parimannan, S.; Rajandas, H. Complete genome sequence of Sphingomonas paucimobilis AIMST S2, a xenobiotic-degrading bacterium. Sci. Data 2019, 6, 280. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Park, J.Y.; Balusamy, S.R.; Huo, Y.; Nong, L.K.; Thi Le, H.; Yang, D.C.; Kim, D. Comprehensive Genome Analysis on the Novel Species Sphingomonas panacis DCY99T Reveals Insights into Iron Tolerance of Ginseng. Int. J. Mol. Sci. 2020, 21, 2019. [Google Scholar] [CrossRef]
- Luo, Y.; Zhou, M.; Zhao, Q.; Wang, F.; Gao, J.; Sheng, H.; An, L. Complete genome sequence of Sphingomonas sp. Cra20, a drought resistant and plant growth promoting rhizobacteria. Genomics 2020, 112, 3648–3657. [Google Scholar] [CrossRef]
- Guo, Y.Z.; Ding, X.M.; Yao, L.; Xu, D.M.; Zhao, Y.J.; Feng, F.Y.; Meng, J.Y. Isolation and Identification of Massilia sp. B260 and Its Effect on Seedling Raising. Biotechnol. Bull. 2019, 35, 144–149. [Google Scholar] [CrossRef]
- Fasusi, O.A.; Amoo, A.E.; Babalola, O.O. Characterization of plant growth-promoting rhizobacterial isolates associated with food plants in South Africa. Antonie Leeuwenhoek 2021, 114, 1683–1708. [Google Scholar] [CrossRef] [PubMed]
- Ofek, M.; Hadar, Y.; Minz, D. Ecology of root colonizing Massilia (Oxalobacteraceae). PLoS ONE 2012, 7, e40117. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yaqiong, L.; Chen, J.; Fu, X.; Suo, R.; Chitrakarn, B.; Wang, J. Effects of spontaneous fermentation on microbial succession and its correlation with volatile compounds during fermentation of Petit Verdot wine. LWT 2022, 168, 113890. [Google Scholar] [CrossRef]
- Ryan, M.P.; Pembroke, J.T. Brevundimonas spp: Emerging global opportunistic pathogens. Virulence 2018, 9, 480–493. [Google Scholar] [CrossRef] [PubMed]
- Naqqash, T.; Imran, A.; Hameed, S.; Shahid, M.; Majeed, A.; Iqbal, J.; Hanif, M.K.; Ejaz, S.; Malik, K.A. First report of diazotrophic Brevundimonas spp. as growth enhancer and root colonizer of potato. Sci. Rep. 2020, 10, 12893. [Google Scholar] [CrossRef]
- Kecskeméti, E.; Berkelmann-Löhnertz, B.; Reineke, A. Are Epiphytic Microbial Communities in the Carposphere of Ripening Grape Clusters (Vitis vinifera L.) Different between Conventional, Organic, and Biodynamic Grapes? PLoS ONE 2016, 11, e0160852. [Google Scholar] [CrossRef]
- Szegedi, E.; Civerolo, L. Bacterial diseases of grape vine. Int. J. Hortic. Sci. 2011, 17, 45–49. [Google Scholar] [CrossRef]
- Jones, L.; Riaz, S.; Morales-Cruz, A.; Amrine, K.C.; McGuire, B.; Gubler, W.D.; Walker, M.A.; Cantu, D. Adaptive genomic structural variation in the grape powdery mildew pathogen Erysiphe necator. BMC Genom. 2014, 15, 1081. [Google Scholar] [CrossRef]
- García-Cela, E.; Crespo-Sempere, A.; Gil-Serna, J.; Porqueres, A.; Marin, S. Fungal diversity, incidence and mycotoxin contamination in grapes from two agro-climatic Spanish regions with emphasis on Aspergillus species. J. Sci. Food Agric. 2015, 95, 1716–1729. [Google Scholar] [CrossRef]
- Abarca, M.L.; Bragulat, M.R.; Castellá, G.; Cabañes, F.J. Impact of some environmental factors on growth and ochratoxin A production by Aspergillus niger and Aspergillus welwitschiae. Int. J. Food Microbiol. 2019, 291, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Pinto, C.; Custódio, V.; Nunes, M.; Songy, A.; Rabenoelina, F.; Courteaux, B.; Clément, C.; Gomes, A.C.; Fontaine, F. Understand the Potential Role of Aureobasidium pullulans, a Resident Microorganism from Grapevine, to Prevent the Infection Caused by Diplodia seriata. Front. Microbiol. 2018, 9, 3047. [Google Scholar] [CrossRef]
- Onetto, C.A.; Borneman, A.; Schmidt, S. Investigating the effects of Aureobasidium pullulans on grape juice composition and fermentation. Food Microbiol. 2020, 90, 103451. [Google Scholar] [CrossRef] [PubMed]
- de Hoog, G.S.; Hijwegen, T.; Batenburg_Van Der Vegte, W.H. A new species of Dissoconium. Mycol. Res. 1991, 95, 679–682. [Google Scholar] [CrossRef]
- Welke, J.E. Fungal and mycotoxin problems in grape juice and wine industries. Curr. Opin. Food Sci. 2019, 29, 7–13. [Google Scholar] [CrossRef]
- Daou, R.; Joubrane, K.; Maroun, R.G.; Khabbaz, L.R.; Ismail, A.; Khoury, A. Mycotoxins: Factors influencing production and control strategies. AIMS Agric. Food. 2021, 6, 416–447. [Google Scholar] [CrossRef]
- Kraus, C.; Abou-Ammar, R.; Schubert, A.; Fischer, M. Warburgia ugandensis Leaf and Bark Extracts: An Alternative to Copper as Fungicide against Downy Mildew in Organic Viticulture? Plants 2021, 10, 2765. [Google Scholar] [CrossRef] [PubMed]
- Dagostin, S.; Schärer, H.J.; Pertot, I.; Tamm, L. Are there alternatives to copper for controlling grapevine downy mildew in organic viticulture? Crop Prot. 2011, 30, 776–788. [Google Scholar] [CrossRef]
- La Torre, A.; Iovino, V.; Caradonia, F. Copper in plant protection: Current situation and prospects. Phytopathol. Mediterr. 2018, 57, 201–236. [Google Scholar] [CrossRef]
- Golge, O.; Kabak, B. Pesticide Residues in Table Grapes and Exposure Assessment. J. Agric. Food Chem. 2018, 66, 1701–1713. [Google Scholar] [CrossRef]
- Česnik, H.B.; Gregorcic, A.; Cus, F. Pesticide residues in grapes from vineyards included in integrated pest management in Slovenia. Food Addit. Contam. Part A 2008, 25, 438–443. [Google Scholar] [CrossRef] [PubMed]
- Brandhorst, T.T.; Klein, B.S. Uncertainty surrounding the mechanism and safety of the postharvest fungicide fludioxonil. Food Chem. Toxicol. 2019, 123, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Szot, I.; Łysiak, G.P. Effect of the Climatic Conditions in Central Europe on the Growth and Yield of Cornelian Cherry Cultivars. Agriculture 2022, 12, 1295. [Google Scholar] [CrossRef]
- Strausak, D.; Mercer, J.F.; Dieter, H.H.; Stremmel, W.; Multhaup, G. Copper in disorders with neurological symptoms: Alzheimer’s, Menkes, and Wilson diseases. Brain Res. Bull. 2001, 55, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.C.; Scollary, G.R. Determination of total copper in white wine by stripping potentiometry utilising medium exchange. Anal. Chim. Acta 2000, 413, 25–32. [Google Scholar] [CrossRef]
- Grangeteau, C.; David, V.; Herve, A.; Guilloux-Benatier, M.; Rousseaux, S. The sensitivity of yeasts and yeasts-like fungi to copper and sulfur could explain lower yeast biodiversity in organic vineyards. FEMS Yeast Res. 2017, 17, fox092. [Google Scholar] [CrossRef]
- Moine, A.; Pugliese, M.; Monchiero, M.; Gribaudo, I.; Gullino, M.L.; Pagliarani, C.; Gambino, G. Effects of fungicide application on physiological and molecular responses of grapevine (Vitis vinifera L.): A comparison between copper and sulphur fungicides applied alone and in combination with novel fungicides. Pest Manag. Sci. 2023, 79, 4569–4588. [Google Scholar] [CrossRef]
- Vally, H.; Thompson, P.J. Role of sulfite additives in wine induced asthma: Single dose and cumulative dose studies. Thorax 2001, 56, 763–769. [Google Scholar] [CrossRef]
- Xu, X.; Miao, Y.; Wang, H.; Du, J.; Wang, C.; Shi, X.; Wang, B. Analysis of Microbial Community Diversity on the Epidermis of Wine Grapes in Manasi’s Vineyard, Xinjiang. Foods 2022, 11, 3174. [Google Scholar] [CrossRef]
- Schmit, T.M.; Rickard, B.J.; Taber, J. Consumer valuation of environmentally friendly production practices in wines considering asymmetric information and sensory effects. J. Agric. Econ. 2013, 64, 483–504. [Google Scholar] [CrossRef]
- Ugliano, M.; Henschke, P.A.; Herderich, M.J.; Pretorius, I.S. Nitrogen management is critical for wine flavour and style. Aust. New Zeal. Wine Ind. J. 2007, 22, 24–30. Available online: https://www.researchgate.net/publication/275832110_Nitrogen_management_is_critical_for_wine_flavour_and_style (accessed on 7 March 2024).
- Asami, D.K.; Hong, Y.J.; Barrett, D.M.; Mitchell, A.E. Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. J. Agric. Food Chem. 2003, 51, 1237–1241. [Google Scholar] [CrossRef] [PubMed]
- Wojdyło, A.; Oszmiański, J.; Milczarek, M.; Wietrzyk, J. Phenolic profile, antioxidant and antiproliferative activity of black and red currants (Ribes spp.) from organic and conventional cultivation. Int. J. Food Sci. Technol. 2013, 48, 715–726. [Google Scholar] [CrossRef]
- Juroszek, P.; Heidi, M.L.; Ray-Yu, Y.; Dolores, R.L.; Chin-Hua, M. Fruit quality and bioactive compounds with antioxidant activity of tomatoes grown on-farm: Comparison of organic and conventional management systems. J. Agric. Food Chem. 2009, 57, 1188–1194. [Google Scholar] [CrossRef]
- Dhalaria, R.; Verma, R.; Kumar, D.; Puri, S.; Tapwal, A.; Kumar, V.; Nepovimova, E.; Kuca, K. Bioactive Compounds of Edible Fruits with Their Anti-Aging Properties: A Comprehensive Review to Prolong Human Life. Antioxidants 2020, 9, 1123. [Google Scholar] [CrossRef]
- Fereidoon, S.; Vamadevan, V.; Won Young, O.; Han, P. Phenolic compounds in agri-food by-products, their bioavailability and health effects. J. Food Bioact. 2019, 5, 57–119. [Google Scholar] [CrossRef]
- Kong, Q.; An, P.; Xu, Z.; Zhang, R.; Qi, J.; Ren, X. New Insights into the Alleviating Role of Melaleuca alternifolia Oil on Metabolites Pathway Disorder of Grapes Caused by Aspergillus niger, Verified by Corresponding Key Genes Expression. Food Chem. 2020, 327, 127083. [Google Scholar] [CrossRef]
- Bell, S.J.; Henschke, P.A. Implications of Nitrogen Nutrition for Grapes, Fermentation and Wine. Aust. J. Grape Wine Res. 2005, 11, 242–295. [Google Scholar] [CrossRef]
- Garde-Cerdán, T.; Gutiérrez-Gamboa, G.; Fernández-Novales, J.; Pérez-Álvarez, E.P.; Diago, M.P. Towards the Definition of Optimal Grape Harvest Time in Grenache Grapevines: Nitrogenous Maturity. Sci. Hortic. 2018, 239, 9–16. [Google Scholar] [CrossRef]
- Fernández, M.A.; García, M.D.; Sáenz, M.T. Antibacterial Activity of the Phenolic Acid Fraction of Scrophularia frutescens and Scrophularia sambucifolia. J. Ethnopharm. 1996, 53, 11–14. [Google Scholar] [CrossRef]
- Aklan, A.; Aybastıer, Ö. Characterization of Cichorium intybus L. Extract in Preventing Oxidative DNA Base Damage Using Gas Chromatography–Tandem Mass Spectrometry (GC–MS/MS). Anal. Lett. 2024, 1–10. [Google Scholar] [CrossRef]
- Zych, I.; Krzepiłko, A. Measurement of Total Antioxidant Capacity of Selected Antioxidants and Infusions Using DPPH Radical Reduction. Chem.-Didact.-Ecol.-Metrol. 2010, 1, 51–54. [Google Scholar]
- Chen, X.; Liang, L.; Han, C. Borate Suppresses the Scavenging Activity of Gallic Acid and Plant Polyphenol Extracts on DPPH Radical: A Potential Interference to DPPH Assay. LWT 2020, 131, 109769. [Google Scholar] [CrossRef]
- Soobrattee, M.A.; Neergheen, V.S.; Luximon-Ramma, A.; Aruoma, O.I.; Bahorun, T. Phenolics as Potential Antioxidant Therapeutic Agents: Mechanism and Actions. Mutat. Res. 2005, 579, 200–213. [Google Scholar] [CrossRef] [PubMed]
- Olszowy-Tomczyk, M. Synergistic, Antagonistic, and Additive Antioxidant Effects in Binary Mixtures. Phytochem. Rev. 2020, 19, 63–103. [Google Scholar] [CrossRef]
- Tavadyan, L.A.; Minasyan, S.H. Synergistic and Antagonistic Co-antioxidant Effects of Flavonoids with Trolox or Ascorbic Acid in a Binary Mixture. J. Chem. Sci. 2019, 131, 40. [Google Scholar] [CrossRef]
- Karadag, A.; Ozcelik, B.; Saner, S. Review of Methods to Determine Antioxidant Capacities. Food Anal. Methods 2009, 2, 41–60. [Google Scholar] [CrossRef]
- Yeomans, V.C.; Linseisen, J.; Wolfram, G. Interactive Effects of Polyphenols, Tocopherol, and Ascorbic Acid on the Cu2+-Mediated Oxidative Modification of Human Low-Density Lipoproteins. Eur. J. Nutr. 2005, 44, 422–428. [Google Scholar] [CrossRef]
- Głowacka, M.; Zielińska, A. Synergistic and Antagonistic Antioxidant Effects in Two-Component Mixtures of Selected Polyphenols and L-Ascorbic Acid. Herbalism 2022, 8, 45–58. [Google Scholar] [CrossRef]
Bacteria (16S rRNA) | Fungi (ITS) | |||
---|---|---|---|---|
Farming Methods | ||||
Index | Organic | Conventional | Organic | Conventional |
Reads | 26,295 | 9376 | 16,390 | 17,125 |
OTUs | 108 | 89 | 35 | 33 |
Simpson’s dominance (λ) | 0.092 | 0.099 | 0.155 | 0.246 |
S–W diversity (H’) | 3.126 | 3.080 | 2.255 | 1.814 |
Pielou’s evenness (J’) | 0.668 | 0.686 | 0.634 | 0.519 |
Operational Taxonomic Units (OTUs) | Organic Juice | Conventional Juice | Fisher’s Exact Test |
---|---|---|---|
g__Sphingomonas | 22.47 | 22.61 | 0.795 |
g__Massilia | 15.68 | 17.96 | <0.0001 * |
g__Hymenobacter | 4.84 | 6.14 | <0.0001 |
g__Pseudomonas | 5.27 | 4.19 | <0.0001 |
s__Variovorax_paradoxus | 4.88 | 3.57 | <0.0001 |
g__Variovorax | 3.73 | 2.85 | <0.0001 |
g__Variovorax | 3.99 | 1.77 | <0.0001 |
g__Brevundimonas | 3.86 | 1.74 | <0.0001 |
g__Pedobacter | 3.28 | 2.01 | <0.0001 |
f__Microbacteriaceae | 2.80 | 2.97 | 0.405 |
g__Xylophilus | 2.25 | 4.04 | <0.0001 |
g__Rathayibacter | 2.07 | 2.08 | 0.966 |
g__Methylobacterium | 1.85 | 1.40 | 0.004 |
g__Curtobacterium | 1.67 | 1.75 | 0.641 |
s__Frondihabitans_australicus | 1.56 | 1.57 | 0.923 |
g__Kineococcus | 1.43 | 1.06 | 0.005 |
g__Klenkia | 1.36 | 0.95 | 0.002 |
g__Rhodococcus | 1.32 | 0.82 | <0.0001 |
g__Gluconobacter | 0.00 | 4.40 | <0.0001 |
s__Pseudomonas_rhizosphaerae | 0.65 | 0.91 | 0.012 |
s__Methylobacterium_adhaesivum | 0.56 | 0.89 | 0.001 |
s__Gluconobacter_cerinus | 0.19 | 1.05 | <0.0001 |
g__Aureimonas | 0.75 | 0.29 | <0.0001 |
f__Comamonadaceae | 0.75 | 0.13 | <0.0001 |
d__Bacteria | 0.76 | 0.00 | <0.0001 |
g__Brevundimonas | 0.62 | 0.17 | <0.0001 |
s__cf._Chryseobacterium | 0.64 | 0.00 | <0.0001 |
g__Flavobacterium | 0.54 | 0.12 | <0.0001 |
f__Myxococcaceae | 0.50 | 0.22 | 0.000 |
g__Bacillus | 0.47 | 0.23 | 0.002 |
g__Dyadobacter | 0.49 | 0.00 | <0.0001 |
g__Serratia | 0.17 | 0.82 | <0.0001 |
g__Duganella | 0.10 | 0.59 | <0.0001 |
s__Erwinia_gerundensis | 0.00 | 0.84 | <0.0001 |
s__Serratia_fonticola | 0.00 | 0.80 | <0.0001 |
Operational Taxonomic Units (OTUs) | Organic Juice | Conventional Juice | Fisher’s Exact Test |
---|---|---|---|
g__Erysiphe | 20.32 | 38.15 | 0.008 * |
g__Aureobasidium | 28.89 | 28.98 | 1.000 |
g__Alternaria | 9.57 | 8.95 | 0.814 |
g__Mycosphaerella | 7.79 | 6.23 | 0.593 |
g__Botryotinia | 7.15 | 4.92 | 0.568 |
g__Hanseniaspora | 7.49 | 0.03 | 0.003 |
g__Cladosporium | 3.01 | 3.14 | 1.000 |
g__Dissoconium | 3.04 | 1.37 | 0.369 |
g__Penicillium | 1.26 | 3.01 | 0.621 |
g__Mucor | 4.34 | 0.05 | 0.059 |
o__Entylomatales | 2.00 | 0.84 | 0.621 |
g__Epicoccum | 1.24 | 1.52 | 1.000 |
p__Ascomycota | 0.96 | 0.62 | 1.000 |
g__Vishniacozyma | 0.37 | 0.74 | 1.000 |
g__Neosetophoma | 0.41 | 0.09 | 0.497 |
g__Stemphylium | 0.21 | 0.29 | 1.000 |
g__Sarocladium | 0.23 | 0.16 | 1.000 |
g__Trichothecium | 0.31 | 0.09 | 1.000 |
o__Hypocreales | 0.23 | 0.16 | 1.000 |
g__Acremonium | 0.18 | 0.05 | 1.000 |
g__Peronospora | 0.07 | 0.13 | 1.000 |
f__Peronosporaceae | 0.12 | 0.07 | 1.000 |
g__Botrytis | 0.09 | 0.08 | 1.000 |
c__Dothideomycetes | 0.08 | 0.06 | 1.000 |
g__Curvibasidium | 0.12 | 0.04 | 1.000 |
g__Hypholoma | 0.12 | 0.04 | 1.000 |
g__Scleroramularia | 0.10 | 0.04 | 1.000 |
g__Bremia | 0.07 | 0.02 | 1.000 |
g__Nectriella | 0.08 | 0.00 | 1.000 |
g__Tricladium | 0.05 | 0.01 | 1.000 |
g__Fusarium | 0.00 | 0.06 | 1.000 |
Methods of Cultivation | Sampling Points | Active Substance (mg/kg) | ||
---|---|---|---|---|
Sulphur | Cooper | |||
juice | ||||
Organic | natural pesticides | 1 | 17.6 | 3.26 |
2 | 17.7 | 3.15 | ||
3 | 17.0 | 3.01 | ||
mean | 17.4 B * | 3.14 B | ||
wine ** | ||||
mean | 6.7 b | 0.56 b | ||
Conventional | juice | |||
1 | 3.2 | 2.14 | ||
2 | 3.4 | 2.05 | ||
3 | 3.1 | 2.06 | ||
mean | 3.2 A | 2.08 A | ||
wine | ||||
mean | 2.8 a | 0.44 a | ||
Sampling Points | Cyprodinil *** | Fludioxonil | ||
juice | ||||
Organic | synthetic pesticides | n.d. | n.d. | |
Conventional | 1 | 14.7 a * | 18.9 a | |
2 | 18.4 a | 15.3 a | ||
3 | - | - |
Polyphenolic Compounds (mg/L) | Farming Methods | |
---|---|---|
Organic | Conventional | |
GRP (cis- and trans- isomers) | 64.68 b * | 56.39 a |
Caftaric acid (cis- and trans- isomers) | 133.42 b | 113.27 a |
Coutaric acid (cis- and trans- isomers) | 5.66 b | 5.02 a |
Coutaric acid (cis- and trans- isomers) | 11.47 b | 9.93 a |
Fertaric acid | 2.76 b | 2.36 a |
Gallic acid | 1.64 a | 1.53 a |
hydroxycinnamic acids total | 219.63 b | 188.5 a |
Procyanidin dimer B1 | 13.38 b | 11.99 a |
(+)-Catechin | 14.19 b | 9.68 a |
Procyanidin dimer B2 | 3.24 b | 2.81 a |
(−)-Epicatechin | 85.24 b | 77.89 a |
flavan-3-ols total | 116.05 b | 102.37 a |
Total polyphenolic | 335.68 B | 290.88 A |
DPPH | FRAP | ABTS | ORAC | |
---|---|---|---|---|
Farming methods—organic | ||||
GRP (cis- and trans- isomers) | 0.14 | 0.22 | 0.00 | 0.08 |
Caftaric acid (cis- and trans- isomers) | −0.44 | −0.04 | 0.20 | −0.21 |
Coutaric acid (cis- and trans- isomers) | 0.29 | 0.57 | 0.23 | −0.05 |
Coutaric acid (cis- and trans- isomers) | −0.38 | 0.15 | −0.02 | −0.30 |
Fertaric acid | 0.45 | 0.44 | 0.27 | 0.48 |
Gallic acid | 0.33 | 0.35 | 0.67 * | 0.33 |
Procyanidin dimer B1 | −0.06 | 0.16 | −0.04 | 0.14 |
(+)-Catechin | 0.15 | −0.31 | −0.47 | 0.29 |
Procyanidin dimer B2 | −0.01 | 0.03 | −0.11 | −0.67 |
(−)-Epicatechin | 0.08 | 0.64 | 0.44 | −0.30 |
Farming methods—conventional | ||||
GRP (cis- and trans- isomers) | −0.53 | −0.58 | −0.19 | 0.02 |
Caftaric acid (cis- and trans- isomers) | 0.05 | −0.34 | −0.06 | 0.08 |
Coutaric acid (cis- and trans- isomers) | −0.08 | 0.78 | 0.66 | −0.63 |
Coutaric acid (cis- and trans- isomers) | 0.13 | −0.49 | −0.04 | −0.08 |
Fertaric acid | 0.62 | 0.80 | −0.46 | 0.36 |
Gallic acid | 0.05 | 0.83 | 0.39 | 0.46 |
Procyanidin dimer B1 | −0.46 | −0.40 | -0.36 | 0.66 |
(+)-Catechin | −0.17 | −0.36 | -0.31 | 0.41 |
Procyanidin dimer B2 | 0.25 | 0.07 | -0.69 | −0.05 |
(−)-Epicatechin | −0.02 | 0.47 | 0.19 | −0.79 |
Parameters | Farming Methods | |
---|---|---|
Organic | Conventional | |
SSA (% Brix) | 24.8 b * | 22.5 a |
Acidity (g/L) | 7.5 b | 8.6 a |
Turbidity of juice (NTU) | 1116 a | 1388 b |
YAN—Yeast Assimilable Nitrogen (mg/L) | 147 b | 117 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ochmian, I.; Przemieniecki, S.W.; Błaszak, M.; Twarużek, M.; Lachowicz-Wiśniewska, S. Antioxidant, Nutritional Properties, Microbiological, and Health Safety of Juice from Organic and Conventional ‘Solaris’ Wine (Vitis vinifera L.) Farming. Antioxidants 2024, 13, 1214. https://doi.org/10.3390/antiox13101214
Ochmian I, Przemieniecki SW, Błaszak M, Twarużek M, Lachowicz-Wiśniewska S. Antioxidant, Nutritional Properties, Microbiological, and Health Safety of Juice from Organic and Conventional ‘Solaris’ Wine (Vitis vinifera L.) Farming. Antioxidants. 2024; 13(10):1214. https://doi.org/10.3390/antiox13101214
Chicago/Turabian StyleOchmian, Ireneusz, Sebastian W. Przemieniecki, Magdalena Błaszak, Magdalena Twarużek, and Sabina Lachowicz-Wiśniewska. 2024. "Antioxidant, Nutritional Properties, Microbiological, and Health Safety of Juice from Organic and Conventional ‘Solaris’ Wine (Vitis vinifera L.) Farming" Antioxidants 13, no. 10: 1214. https://doi.org/10.3390/antiox13101214
APA StyleOchmian, I., Przemieniecki, S. W., Błaszak, M., Twarużek, M., & Lachowicz-Wiśniewska, S. (2024). Antioxidant, Nutritional Properties, Microbiological, and Health Safety of Juice from Organic and Conventional ‘Solaris’ Wine (Vitis vinifera L.) Farming. Antioxidants, 13(10), 1214. https://doi.org/10.3390/antiox13101214