Chemical Synthesis of Monolignols: Traditional Methods, Recent Advances, and Future Challenges in Sustainable Processes
Abstract
:1. Introduction
2. Synthetic Approaches to Prepare Monolignols
2.1. p-Coumaryl Alcohol
2.2. Coniferyl Alcohol
2.3. Sinapyl Alcohol
3. Unconventional Monolignols and Monolignol Analogues
3.1. Caffeyl Alcohol, Monolignol
3.2. Iso-Sinapyl Alcohol, Non-Natural Monolignol Analogue
3.3. 5-Hydroxyconiferyl Alcohol, Monolignol
4. Concluding Remarks and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACN | Acetonitrile |
AcOH | Acetic acid |
AgOAc | Silver acetate |
BnCl | Benzyl chloride |
CAME | p-Coumaryl alcohol-γ-O-methyl ether |
CFL | Compact fluorescence lamp |
DCE | 1,2-dichloroethane |
DBU | 1,8-diazabicyclo[5.4.0]undec-7-ene |
DCM | Dichloromethane |
DIBALH | Diisobutylaluminium hydride |
DMAP | 4-dimethyalaminopyridine |
DME | Dimethoxyethane |
EtOH | Ethanol |
HAT | Hydrogen atom transfer |
HWE | Horner–Wadsworth–Emmons |
HFIP | Hexafluoroisopropanol |
H2SO4 | Sulfuric acid |
(iPr)2SiHCl | Chlorodiisopropylsilane |
KN(TMS)2 | Potassium bis(trimehylsilyl)amide |
LiAlH4 | Lithium aluminum hydride |
MeOH | Methanol |
Mg | Magnesium (metallic) |
NaBH4 | Sodium borohydride |
NaH | Sodium hydride |
NBS | N-bromosuccinimide |
Pd(OAc)2 | Palladium (II) acetate |
PhCO3tBu | Tert-butyl peroxybenzoate |
SET | Single electron transfer |
TBAF | Tetra-n-butylammonium fluoride |
TEA | Triethylamine |
THF | Tetrahydrofuran |
TFE | 2,2,2-trifluoroethanol |
18-crown-6 | 1,4,7,10,13,16-hexaoxacyclooctadecane |
References
- Chen, F.; Tobimatsu, Y.; Havkin-Frenkel, D.; Dixon, R.A.; Ralph, J. A Polymer of Caffeyl Alcohol in Plant Seeds. Proc. Natl. Acad. Sci. USA 2012, 109, 1772–1777. [Google Scholar] [CrossRef] [PubMed]
- Lahive, C.W.; Kamer, P.C.J.; Lancefield, C.S.; Deuss, P.J. An Introduction to Model Compounds of Lignin Linking Motifs; Synthesis and Selection Considerations for Reactivity Studies. ChemSusChem 2020, 13, 4238–4265. [Google Scholar] [CrossRef] [PubMed]
- Karagoz, P.; Khiawjan, S.; Marques, M.P.C.; Santzouk, S.; Bugg, T.D.H.; Lye, G.J. Pharmaceutical Applications of Lignin-Derived Chemicals and Lignin-Based Materials: Linking Lignin Source and Processing with Clinical Indication. Biomass Conv. Bioref. 2024, 14, 26553–26574. [Google Scholar] [CrossRef] [PubMed]
- Yu, E.-S.; Min, H.-J.; Lee, K.; Lee, M.-S.; Nam, J.-W.; Seo, E.-K.; Hong, J.-H.; Hwang, E.-S. Anti-Inflammatory Activity of p-Coumaryl Alcohol-γ-O-Methyl Ether Is Mediated through Modulation of Interferon-γ Production in Th Cells: CAME Suppresses T-Bet-Mediated IFNγ in Th Cells. Br. J. Pharmacol. 2009, 156, 1107–1114. [Google Scholar] [CrossRef]
- Promraksa, B.; Katrun, P.; Phetcharaburanin, J.; Kittirat, Y.; Namwat, N.; Techasen, A.; Li, J.V.; Loilome, W. Metabolic Changes of Cholangiocarcinoma Cells in Response to Coniferyl Alcohol Treatment. Biomolecules 2021, 11, 476. [Google Scholar] [CrossRef]
- Zhao, Y.; Hao, X.; Lu, W.; Cai, J.; Yu, H.; Sevénet, T.; Guéritte, F. Syntheses of Two Cytotoxic Sinapyl Alcohol Deriv-atives and Isolation of Four New Related Compounds from Ligularia n Elumbifolia. J. Nat. Prod. 2002, 65, 902–908. [Google Scholar] [CrossRef]
- Zou, H.B.; Dong, S.Y.; Zhou, C.X.; Hu, L.H.; Wu, Y.H.; Li, H.B.; Gong, J.X.; Sun, L.L.; Wu, X.M.; Bai, H.; et al. Design, Synthesis, and SAR Analysis of Cytotoxic Sinapyl Alcohol Derivatives. Bioorganic Med. Chem. 2006, 14, 2060–2071. [Google Scholar] [CrossRef]
- Pengsook, A.; Puangsomchit, A.; Yooboon, T.; Bullangpoti, V.; Pluempanupat, W. Insecticidal Activity of Isolated Phenylpropanoids from Alpinia Galanga Rhizomes against Spodoptera Litura. Nat. Prod. Res. 2021, 35, 5261–5265. [Google Scholar] [CrossRef]
- Hao, N.; Liang, S.; Sun, W.; Zhang, S.; Wang, Y.; Tian, X. High Value-Added Application of Natural Products in Crop Protection: Discovery and Exploration of Caffeoyl and Flavonoid Derivatives from Clematis Brevicaudata DC. as Novel Insecticide Candidates. J. Agric. Food Chem. 2024, 72, 7919–7932. [Google Scholar] [CrossRef]
- Gou, M.; Ran, X.; Martin, D.W.; Liu, C.-J. The Scaffold Proteins of Lignin Biosynthetic Cytochrome P450 Enzymes. Nature Plants 2018, 4, 299–310. [Google Scholar] [CrossRef]
- Dixon, R.A.; Srinivasa Reddy, M.S. Biosynthesis of Monolignols. Genomic and Reverse Genetic Approaches. Phytochem. Rev. 2003, 2, 289–306. [Google Scholar] [CrossRef]
- Liu, Q.; Luo, L.; Zheng, L. Lignins: Biosynthesis and Biological Functions in Plants. Int. J. Mol. Sci. 2018, 19, 335. [Google Scholar] [CrossRef] [PubMed]
- Faraji, M.; Fonseca, L.L.; Escamilla-Treviño, L.; Barros-Rios, J.; Engle, N.; Yang, Z.K.; Tschaplinski, T.J.; Dixon, R.A.; Voit, E.O. Mathematical Models of Lignin Biosynthesis. Biotechnol. Biofuels 2018, 11, 34. [Google Scholar] [CrossRef] [PubMed]
- Boerjan, W.; Ralph, J.; Baucher, M. Lignin Biosynthesis. Annu. Rev. Plant Biol. 2003, 54, 519–546. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, D.M.; Finger-Teixeira, A.; Rodrigues Mota, T.; Salvador, V.H.; Moreira-Vilar, F.C.; Correa Molinari, H.B.; Craig Mitchell, R.A.; Marchiosi, R.; Ferrarese-Filho, O.; Dantas dos Santos, W. Ferulic Acid: A Key Component in Grass Lignocellulose Recalcitrance to Hydrolysis. Plant Biotechnol. J. 2015, 13, 1224–1232. [Google Scholar] [CrossRef] [PubMed]
- Calvo-Flores, F.G.; Dobado, J.A. Lignin as Renewable Raw Material. ChemSusChem 2010, 3, 1227–1235. [Google Scholar] [CrossRef]
- Abdel-Hamid, A.M.; Solbiati, J.O.; Cann, I.K.O. Insights into Lignin Degradation and Its Potential Industrial Applications. In Advances in Applied Microbiology; Elsevier: Amsterdam, The Netherlands, 2013; Volume 82, pp. 1–28. ISBN 978-0-12-407679-2. [Google Scholar]
- Liu, X.; Bouxin, F.P.; Fan, J.; Budarin, V.L.; Hu, C.; Clark, J.H. Recent Advances in the Catalytic Depolymerization of Lignin towards Phenolic Chemicals: A Review. ChemSusChem 2020, 13, 4296–4317. [Google Scholar] [CrossRef]
- Del Río, J.C.; Rencoret, J.; Gutiérrez, A.; Elder, T.; Kim, H.; Ralph, J. Lignin Monomers from beyond the Canonical Monolignol Biosynthetic Pathway: Another Brick in the Wall. ACS Sustain. Chem. Eng. 2020, 8, 4997–5012. [Google Scholar] [CrossRef]
- Lewis, N.G.; Inciong, M.E.J.; Dhara, K.P.; Yamamoto, E. High-Performance Liquid Chromatographic Separation of E- and Z-Monolignols and Their Glucosides. J. Chromatogr. A 1989, 479, 345–352. [Google Scholar] [CrossRef]
- Yamamoto, E.; Inciong, M.E.J.; Davin, L.B.; Lewis, N.G. Formation of Cis-Coniferin in Cell-Free Extracts of Fagus Grandifolia Ehrh Bark. Plant Physiol. 1990, 94, 209–213. [Google Scholar] [CrossRef]
- Kil, Y.-S.; Kwon, J.; Lee, D.; Seo, E.K. Three New Chalcones from the Aerial Parts of Angelica Keiskei. Helv. Chim. Acta 2016, 99, 393–397. [Google Scholar] [CrossRef]
- Whitaker, B.D.; Schmidt, W.F.; Kirk, M.C.; Barnes, S. Novel Fatty Acid Esters of p -Coumaryl Alcohol in Epicuticu-lar Wax of Apple Fruit. J. Agric. Food Chem. 2001, 49, 3787–3792. [Google Scholar] [CrossRef] [PubMed]
- Bongardt, A.; Torres, F. The European Green Deal: More than an Exit Strategy to the Pandemic Crisis, a Building Block of a Sustainable European Economic Model*. J. Common Mark. Stud. 2022, 60, 170–185. [Google Scholar] [CrossRef]
- Vangeel, T.; Schutyser, W.; Renders, T.; Sels, B.F. Perspective on Lignin Oxidation: Advances, Challenges, and Future Directions. In Lignin Chemistry; Topics in Current Chemistry Collections; Serrano, L., Luque, R., Sels, B.F., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 53–68. ISBN 978-3-030-00589-4. [Google Scholar]
- Khan, R.J.; Guan, J.; Lau, C.Y.; Zhuang, H.; Rehman, S.; Leu, S. Monolignol Potential and Insights into Direct Depolymerization of Fruit and Nutshell Remains for High Value Sustainable Aromatics. ChemSusChem 2024, 17, e202301306. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Shen, Q.; Su, S.; Lin, J.; Song, G. The Temptation from Homogeneous Linear Catechyl Lignin. Trends Chem. 2022, 4, 948–961. [Google Scholar] [CrossRef]
- Nar, M.; Rizvi, H.R.; Dixon, R.A.; Chen, F.; Kovalcik, A.; D’Souza, N. Superior Plant Based Carbon Fibers from Electrospun Poly-(Caffeyl Alcohol) Lignin. Carbon 2016, 103, 372–383. [Google Scholar] [CrossRef]
- Su, S.; Wang, S.; Song, G. Disassembling Catechyl and Guaiacyl/Syringyl Lignins Coexisting in Euphorbiaceae Seed Coats. Green Chem. 2021, 23, 7235–7242. [Google Scholar] [CrossRef]
- Shen, Q.; Wang, S.; Song, G. Catechyl Lignin-Reinforced Mechanical Performances of Poly(Vinyl Alcohol)-Based Materials. Compos. Part B Eng. 2023, 264, 110917. [Google Scholar] [CrossRef]
- Song, W.; Du, Q.; Li, X.; Wang, S.; Song, G. Sustainable Production of Bioactive Molecules from C-Lignin-Derived Propenylcatechol. ChemSusChem 2022, 15, e202200646. [Google Scholar] [CrossRef]
- Zhao, Z.-M.; Meng, X.; Pu, Y.; Li, M.; Li, Y.; Zhang, Y.; Chen, F.; Ragauskas, A.J. Bioconversion of Homogeneous Linear C-Lignin to Polyhydroxyalkanoates. Biomacromolecules 2023, 24, 3996–4004. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, K.; Li, H.; Xiao, L.-P.; Song, G. Selective Hydrogenolysis of Catechyl Lignin into Propenylcatechol over an Atomically Dispersed Ruthenium Catalyst. Nat. Commun. 2021, 12, 416. [Google Scholar] [CrossRef] [PubMed]
- Berstis, L.; Elder, T.; Crowley, M.; Beckham, G.T. Radical Nature of C-Lignin. ACS Sustain. Chem. Eng. 2016, 4, 5327–5335. [Google Scholar] [CrossRef]
- Li, Y.; Meng, X.; Meng, R.; Cai, T.; Pu, Y.; Zhao, Z.-M.; Ragauskas, A.J. Valorization of Homogeneous Linear Catechyl Lignin: Opportunities and Challenges. RSC Adv. 2023, 13, 12750–12759. [Google Scholar] [CrossRef] [PubMed]
- Luo, F.-X.; Zhou, T.-G.; Li, X.; Luo, Y.-L.; Shi, Z.-J. Fragmentation of Structural Units of Lignin Promoted by Persulfate through Selective C–C Cleavage under Mild Conditions. Org. Chem. Front. 2015, 2, 1066–1070. [Google Scholar] [CrossRef]
- Chen, F.; Tobimatsu, Y.; Jackson, L.; Nakashima, J.; Ralph, J.; Dixon, R.A. Novel Seed Coat Lignins in the C Actaceae: Structure, Distribution and Implications for the Evolution of Lignin Diversity. Plant J. 2013, 73, 201–211. [Google Scholar] [CrossRef]
- Wong, D.W.S. Structure and Action Mechanism of Ligninolytic Enzymes. Appl. Biochem. Biotechnol. 2009, 157, 174–209. [Google Scholar] [CrossRef]
- Jansen, F.; Gillessen, B.; Mueller, F.; Commandeur, U.; Fischer, R.; Kreuzaler, F. Metabolic Engineering for p-coumaryl Alcohol Production in Escherichia Coli by Introducing an Artificial Phenylpropanoid Pathway. Biotech. App. Biochem. 2014, 61, 646–654. [Google Scholar] [CrossRef]
- Liu, S.; Liu, J.; Hou, J.; Chao, N.; Gai, Y.; Jiang, X. Three Steps in One Pot: Biosynthesis of 4-Hydroxycinnamyl Alcohols Using Immobilized Whole Cells of Two Genetically Engineered Escherichia Coli Strains. Microb. Cell Fact. 2017, 16, 104. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, B.; Wu, X.; Xiao, Y. Whole-Cell Bioconversion Systems for Efficient Synthesis of Monolignols from L-Tyrosine in Escherichia coli. J. Agric. Food Chem. 2024, 72, 14799–14808. [Google Scholar] [CrossRef]
- Lambert, F.; Zucca, J.; Ness, F.; Aigle, M. Production of Ferulic Acid and Coniferyl Alcohol by Conversion of Eugenol Using a Recombinant Strain of Saccharomyces Cerevisiae. Flavour. Fragr. J. 2014, 29, 14–21. [Google Scholar] [CrossRef]
- Kao, C.; Yang, F.; Wu, M.; Hung, T.; Hu, C.; Chen, C.; Liou, P.; Mai, T.; Chang, C.; Lin, T.; et al. Systematic Synthesis and Identification of Monolignol Pathway Metabolites. New Phytol. 2024, 244, 1143–1167. [Google Scholar] [CrossRef] [PubMed]
- Rao, X.; Barros, J. Modeling Lignin Biosynthesis: A Pathway to Renewable Chemicals. Trends Plant Sci. 2024, 29, 546–559. [Google Scholar] [CrossRef] [PubMed]
- Aschenbrenner, J.; Marx, P.; Pietruszka, J.; Marienhagen, J. Microbial Production of Natural and Unnatural Monolignols with Escherichia coli. ChemBioChem 2019, 20, 949–954. [Google Scholar] [CrossRef] [PubMed]
- Saha, A.; Guin, S.; Ali, W.; Bhattacharya, T.; Sasmal, S.; Goswami, N.; Prakash, G.; Sinha, S.K.; Chandrashekar, H.B.; Panda, S.; et al. Photoinduced Regioselective Olefination of Arenes at Proximal and Distal Sites. J. Am. Chem. Soc. 2022, 144, 1929–1940. [Google Scholar] [CrossRef] [PubMed]
- Dell, A.; Keith, M.; Zhu, E.Y.; Pence, J.; Duan, Q.; Sultana, S.; Zhu, Y. Economical and Facile Synthesis of Monolignols. Bioenerg. Res. 2024. [Google Scholar] [CrossRef]
- Abu-Omar, M.M.; Barta, K.; Beckham, G.T.; Luterbacher, J.S.; Ralph, J.; Rinaldi, R.; Román-Leshkov, Y.; Samec, J.S.M.; Sels, B.F.; Wang, F. Guidelines for Performing Lignin-First Biorefining. Energy Environ. Sci. 2021, 14, 262–292. [Google Scholar] [CrossRef]
- Makris, D.; Boskou, D. Plant-Derived Antioxidants as Food Additives. In Plants as a Source of Natural Antioxidants; CAB International: Wallingford, UK, 2014; pp. 169–190. ISBN 978-1-78064-266-6. [Google Scholar]
- P-Coumaryl Alcohol 4-O-Glucoside | Natural Antioxidant and Anti-Inflammatory Compound. Available online: https://www.sigmaaldrich.com/SI/en/product/sigma/smb00234?srsltid=AfmBOooB0Du6C0d0DZHGdZZ8N6y8duqDv5CPPkpUFSR-sr1NINr36V6K (accessed on 6 November 2024).
- Cox, L.; Zhu, Y.; Smith, P.J.; Christensen, K.E.; Sidera Portela, M.; Donohoe, T.J. Alcohols as Alkylating Agents in the Cation-Induced Formation of Nitrogen Heterocycles. Angew. Chem. Int. Ed. 2022, 61, e202206800. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Xue, J.; Zhao, Y.; Zhang, Y. A Novel and Efficient Procedure for the Preparation of Allylic Alcohols from α,β-Unsaturated Carboxylic Esters Using LiAlH4/BnCl. Tetrahedron Lett. 2009, 50, 413–415. [Google Scholar] [CrossRef]
- Shu, P.; Xu, H.; Zhang, L.; Li, J.; Liu, H.; Luo, Y.; Yang, X.; Ju, Z.; Xu, Z. Synthesis of (Z)-Cinnamate Derivatives via Visible-Light-Driven E-to-Z Isomerization. SynOpen 2019, 03, 103–107. [Google Scholar] [CrossRef]
- Naksomboon, K.; Valderas, C.; Gómez-Martínez, M.; Álvarez-Casao, Y.; Fernández-Ibáñez, M.Á. S,O-Ligand-Promoted Palladium-Catalyzed C–H Functionalization Reactions of Nondirected Arenes. ACS Catal. 2017, 7, 6342–6346. [Google Scholar] [CrossRef]
- Patra, T.; Bag, S.; Kancherla, R.; Mondal, A.; Dey, A.; Pimparkar, S.; Agasti, S.; Modak, A.; Maiti, D. Palladium-Catalyzed Directed Para C−H Functionalization of Phenols. Angew. Chem. Int. Ed. 2016, 55, 7751–7755. [Google Scholar] [CrossRef] [PubMed]
- Amer, H.; Mimini, V.; Schild, D.; Rinner, U.; Bacher, M.; Potthast, A.; Rosenau, T. Gram-Scale Economical Synthesis of Trans-Coniferyl Alcohol and Its Corresponding Thiol. Holzforschung 2020, 74, 197–202. [Google Scholar] [CrossRef]
- Romanov-Michailidis, F.; Viton, F.; Fumeaux, R.; Lévèques, A.; Actis-Goretta, L.; Rein, M.; Williamson, G.; Barron, D. Epicatechin B-Ring Conjugates: First Enantioselective Synthesis and Evidence for Their Occurrence in Human Biological Fluids. Org. Lett. 2012, 14, 3902–3905. [Google Scholar] [CrossRef] [PubMed]
- Konrádová, D.; Kozubíková, H.; Doležal, K.; Pospíšil, J. Microwave-Assisted Synthesis of Phenylpropanoids and Coumarins: Total Synthesis of Osthol: Microwave-Assisted Synthesis of Phenylpropanoids and Coumarins: Total Synthesis of Osthol. Eur. J. Org. Chem. 2017, 2017, 5204–5213. [Google Scholar] [CrossRef]
- Manral, A.; Saini, V.; Meena, P.; Tiwari, M. Multifunctional Novel Diallyl Disulfide (DADS) Derivatives with β-Amyloid-Reducing, Cholinergic, Antioxidant and Metal Chelating Properties for the Treatment of Alzheimer’s Disease. Bioorganic Med. Chem. 2015, 23, 6389–6403. [Google Scholar] [CrossRef]
- Graf, E. Antioxidant Potential of Ferulic Acid. Free Radic. Biol. Med. 1992, 13, 435–448. [Google Scholar] [CrossRef]
- Kumar, N.; Pruthi, V. Potential Applications of Ferulic Acid from Natural Sources. Biotechnol. Rep. 2014, 4, 86–93. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, L.; Qiu, W.; Shi, Y. Ferulic Acid Exhibits Anti-Inflammatory Effects by Inducing Autophagy and Blocking NLRP3 Inflammasome Activation. Mol. Cell. Toxicol. 2022, 18, 509–519. [Google Scholar] [CrossRef]
- Lee, C.-C.; Wang, C.-C.; Huang, H.-M.; Lin, C.-L.; Leu, S.-J.; Lee, Y.-L. Ferulic Acid Induces Th1 Responses by Modulating the Function of Dendritic Cells and Ameliorates Th2-Mediated Allergic Airway Inflammation in Mice. Evid. Based Complement. Altern. Med. 2015, 2015, 1–16. [Google Scholar] [CrossRef]
- Krishnan, D.N.; Prasanna, N.; Sabina, E.P.; Rasool, M. Hepatoprotective and Antioxidant Potential of Ferulic Acid against Acetaminophen-Induced Liver Damage in Mice. Comp. Clin. Pathol. 2013, 22, 1177–1181. [Google Scholar] [CrossRef]
- Alazzouni, A.S.; Dkhil, M.A.; Gadelmawla, M.H.A.; Gabri, M.S.; Farag, A.H.; Hassan, B.N. Ferulic Acid as Anticarcinogenic Agent against 1,2-Dimethylhydrazine Induced Colon Cancer in Rats. J. King Saud. Univ. Sci. 2021, 33, 101354. [Google Scholar] [CrossRef]
- Shuai, S.; Yue, G. Ferulic Acid, A Potential Antithrombotic Drug. J. Lung Health Dis. 2018, 2, 25–28. [Google Scholar] [CrossRef]
- Ralph, J.; Zhang, Y. A New Synthesis of (Z)-Coniferyl Alcohol, and Characterization of Its Derived Synthetic Lignin. Tetrahedron 1998, 54, 1349–1354. [Google Scholar] [CrossRef]
- Choi, J.; Shin, K.-M.; Park, H.-J.; Jung, H.-J.; Kim, H.J.; Lee, Y.S.; Rew, J.-H.; Lee, K.-T. Anti-Inflammatory and Antinociceptive Effects of Sinapyl Alcohol and its Glucoside Syringin. Planta Med. 2004, 70, 1027–1032. [Google Scholar] [CrossRef]
- Arapova, O.V.; Chistyakov, A.V.; Tsodikov, M.V.; Moiseev, I.I. Lignin as a Renewable Resource of Hydrocarbon Products and Energy Carriers (A Review). Pet. Chem. 2020, 60, 227–243. [Google Scholar] [CrossRef]
- Dong, H.; Wu, M.; Wang, Y.; Du, W.; He, Y.; Shi, Z. Total Syntheses and Anti-Inflammatory Activities of Syringin and Its Natural Analogues. J. Nat. Prod. 2021, 84, 2866–2874. [Google Scholar] [CrossRef]
- Gangar, M.; Ittuveetil, A.; Goyal, S.; Pal, A.; Harikrishnan, M.; Nair, V.A. Anti Selective Glycolate Aldol Reactions of (S)-4-Isopropyl-1-[(R)-1-Phenylethyl]Imidazolidin-2-One: Application towards the Asymmetric Synthesis of 8-4′-Oxyneolignans. RSC Adv. 2016, 6, 102116–102126. [Google Scholar] [CrossRef]
- Fraaije, M.W.; Veeger, C.; Van Berkel, W.J.H. Substrate Specificity of Flavin-Dependent Vanillyl-Alcohol Oxidase from Penicillium Simplicissimum: Evidence for the Production of 4-Hydroxycinnamyl Alcohols from 4-Allylphenols. Eur. J. Biochem. 1995, 234, 271–277. [Google Scholar] [CrossRef]
- Humphreys, J.M.; Chapple, C. Rewriting the Lignin Roadmap. Curr. Opin. Plant Biol. 2002, 5, 224–229. [Google Scholar] [CrossRef]
- Caffeyl Alcohol | S626465. Available online: https://www.smolecule.com/products/s626465 (accessed on 24 April 2023).
- Spagnol, C.M.; Assis, R.P.; Brunetti, I.L.; Isaac, V.L.B.; Salgado, H.R.N.; Corrêa, M.A. In Vitro Methods to Determine the Antioxidant Activity of Caffeic Acid. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 219, 358–366. [Google Scholar] [CrossRef]
- Zeb, A. Concept, Mechanism, and Applications of Phenolic Antioxidants in Foods. J. Food Biochem. 2020, 44. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Losada-Barreiro, S.; Paiva-Martins, F.; Bravo-Díaz, C.; Romsted, L.S. A Direct Correlation between the Antioxidant Efficiencies of Caffeic Acid and Its Alkyl Esters and Their Concentrations in the Interfacial Region of Olive Oil Emulsions. The Pseudophase Model Interpretation of the “Cut-off” Effect. Food Chem. 2015, 175, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Tschaplinski, T.J.; Standaert, R.F.; Engle, N.L.; Martin, M.Z.; Sangha, A.K.; Parks, J.M.; Smith, J.C.; Samuel, R.; Jiang, N.; Pu, Y.; et al. Down-Regulation of the Caffeic Acid O-Methyltransferase Gene in Switchgrass Reveals a Novel Monolignol Analog. Biotechnol. Biofuels 2012, 5, 71. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Marita, J.M.; Lapierre, C.; Jouanin, L.; Morreel, K.; Boerjan, W.; Ralph, J. Sequencing around 5-Hydroxyconiferyl Alcohol-Derived Units in Caffeic Acid O -Methyltransferase-Deficient Poplar Lignins. Plant Physiol. 2010, 153, 569–579. [Google Scholar] [CrossRef] [PubMed]
- Jun, S.-Y.; Walker, A.M.; Kim, H.; Ralph, J.; Vermerris, W.; Sattler, S.E.; Kang, C. The Enzyme Activity and Substrate Specificity of Two Major Cinnamyl Alcohol Dehydrogenases in Sorghum (Sorghum bicolor), SbCAD2 and SbCAD4. Plant Physiol. 2017, 174, 2128–2145. [Google Scholar] [CrossRef]
- Elder, T.; Berstis, L.; Beckham, G.T.; Crowley, M.F. Coupling and Reactions of 5-Hydroxyconiferyl Alcohol in Lignin Formation. J. Agric. Food Chem. 2016, 64, 4742–4750. [Google Scholar] [CrossRef]
- Tobimatsu, Y.; Elumalai, S.; Grabber, J.H.; Davidson, C.L.; Pan, X.; Ralph, J. Hydroxycinnamate Conjugates as Potential Monolignol Replacements: In Vitro Lignification and Cell Wall Studies with Rosmarinic Acid. ChemSusChem 2012, 5, 676–686. [Google Scholar] [CrossRef]
- Regner, M.; Bartuce, A.; Padmakshan, D.; Ralph, J.; Karlen, S.D. Reductive Cleavage Method for Quantitation of Monolignols and Low-Abundance Monolignol Conjugates. ChemSusChem 2018, 11, 1600–1605. [Google Scholar] [CrossRef]
- Ha, J.-H.; Lee, D.-U.; Lee, J.-T.; Kim, J.-S.; Yong, C.-S.; Kim, J.-A.; Ha, J.-S.; Huh, K. 4-Hydroxybenzaldehyde from Gastrodia Elata B1. Is Active in the Antioxidation and GABAergic Neuromodulation of the Rat Brain. J. Ethnopharmacol. 2000, 73, 329–333. [Google Scholar] [CrossRef]
- Fache, M.; Boutevin, B.; Caillol, S. Vanillin Production from Lignin and Its Use as a Renewable Chemical. ACS Sustain. Chem. Eng. 2016, 4, 35–46. [Google Scholar] [CrossRef]
- Yancheva, D.; Velcheva, E.; Glavcheva, Z.; Stamboliyska, B.; Smelcerovic, A. Insights in the Radical Scavenging Mechanism of Syringaldehyde and Generation of Its Anion. J. Mol. Struct. 2016, 1108, 552–559. [Google Scholar] [CrossRef]
- Sasson, A.; Monselise, S.P. Malonic Acid, a Proposed Indicator of Orange Fruit Senescence. Experientia 1976, 32, 1116–1117. [Google Scholar] [CrossRef]
- Lang, Y.; Li, C.-J.; Zeng, H. Photo-Induced Transition-Metal and External Photosensitizer-Free Organic Reactions. Org. Chem. Front. 2021, 8, 3594–3613. [Google Scholar] [CrossRef]
- Li, Y.; Chen, M.; Shi, Q.-S.; Xie, X.; Guo, Y. Biomass Fractionation Techniques Impact on the Structure and Antioxidant Properties of Isolated Lignins. Sep. Purif. Technol. 2024, 330, 125499. [Google Scholar] [CrossRef]
- Ohkatsu, Y.; Kubota, S.; Sato, T. Antioxidant and Photo-Antioxidant Activities of Phenylpropanoids. J. Jpn. Petrol. Inst. 2008, 51, 348–355. [Google Scholar] [CrossRef]
- Yeh, Y.-H.; Lee, Y.-T.; Hsieh, H.-S.; Hwang, D.-F. Dietary Caffeic Acid, Ferulic Acid and Coumaric Acid Supplements on Cholesterol Metabolism and Antioxidant Activity in Rats. J. Food Drug Anal. 2020, 17. [Google Scholar] [CrossRef]
- Trinh, T.A.; Nguyen, T.L.; Kim, J. Lignin-Based Antioxidant Hydrogel Patch for the Management of Atopic Dermatitis by Mitigating Oxidative Stress in the Skin. ACS Appl. Mater. Interfaces 2024, 16, 33135–33148. [Google Scholar] [CrossRef]
- Barclay, L.R.C.; Xi, F.; Norris, J.Q. Antioxidant Properties of Phenolic Lignin Model Compounds. J. Wood Chem. Technol. 1997, 17, 73–90. [Google Scholar] [CrossRef]
- Moon, J.-H.; Terao, J. Antioxidant Activity of Caffeic Acid and Dihydrocaffeic Acid in Lard and Human Low-Density Lipoprotein. J. Agric. Food Chem. 1998, 46, 5062–5065. [Google Scholar] [CrossRef]
- Vieira, T.M.; Barco, J.G.; Paula, L.A.L.; Felix, P.C.A.; Bastos, J.K.; Magalhães, L.G.; Crotti, A.E.M. In Vitro Evaluation of the Antileishmanial and Antischistosomal Activities of p -Coumaric Acid Prenylated Derivatives. Chem. Biodivers. 2024, 21, e202400491. [Google Scholar] [CrossRef]
- The Wittig Reaction. In Greener Organic Transformations; The Royal Society of Chemistry: London, UK, 2022; pp. 178–182. ISBN 978-1-78801-203-4.
- Muralidhar, L.; Girija, C.R. Simple and Practical Procedure for Knoevenagel Condensation under Solvent-Free Conditions. J. Saudi Chem. Soc. 2014, 18, 541–544. [Google Scholar] [CrossRef]
- Ando, D.; Lu, F.; Kim, H.; Eugene, A.; Tobimatsu, Y.; Vanholme, R.; Elder, T.J.; Boerjan, W.; Ralph, J. Incorporation of Catechyl Monomers into Lignins: Lignification from the Non-Phenolic End via Diels–Alder Cycloaddition? Green Chem. 2021, 23, 8995–9013. [Google Scholar] [CrossRef]
Structure | Identification Code # | IUPAC Name |
---|---|---|
1 | (E)-4-(3-hydroxyprop-1-en-1-yl)phenol | |
2 | (E)-4-(3-hydroxyprop-1-en-1-yl)-2-methoxyphenol | |
3 | (E)-4-(3-hydroxyprop-1-en-1-yl)-2,6-dimethoxyphenol | |
4 | 4-hydroxybenzaldehyde | |
5 | Ethyl 2-(triphenyl-λ5-phosphaneylidene)acetate | |
6 | Ethyl (E)-3-(4-hydroxyphenyl)acrylate | |
7 | Chlorobis(2-phenylpyridine)iridium(III)dimer | |
8 | Methyl (Z)-3-(4-hydroxyphenyl)acrylate | |
9 | (Z)-4-(3-hydroxyprop-1-en-1-yl)phenol | |
10 | Phenol | |
11 | 3-methyl-2-(phenylthio)butanoic acid | |
12 | Ethyl acrylate | |
13 | 4′-(bromomethyl)-[1,1′-biphenyl]-2-carbonitrile | |
14 | Chlorodiisopropylsilane | |
15 | 4′-((diisopropylsilyl)methyl)-[1,1′-biphenyl]-2-carbonitrile | |
16 | 4′-((diisopropyl(phenoxy)silyl)methyl)-[1,1′-biphenyl]-2-carbonitrile | |
17 | Ethyl (E)-3-(4-((((2′-cyano-[1,1′-biphenyl]-4-yl)methyl)diisopropylsilyl)oxy)phenyl)acrylate | |
18 | 4-hydroxy-3-methoxybenzaldehyde | |
19 | Ethyl (E)-3-(4-hydroxy-3-methoxyphenyl)acrylate | |
20 | Methyl 2-(triphenyl-λ5-phosphaneylidene)acetate | |
21 | Methyl (E)-3-(4-hydroxy-3-methoxyphenyl)acrylate | |
22 | Malonic acid | |
23 | (E)-3-(4-hydroxy-3-methoxyphenyl)acrylic acid | |
24 | 2-methoxyphenol | |
25 | 4′-((diisopropyl(2-methoxyphenoxy)silyl)methyl)-[1,1′-biphenyl]-2-carbonitrile | |
26 | Ethyl (E)-3-(4-((((2′-cyano-[1,1′-biphenyl]-4-yl)methyl)diisopropylsilyl)oxy)phenyl)acrylate | |
27 | Acrylic acid | |
28 | 5-methyl-3-nitropyridin-2-ol | |
29 | 4-formyl-2-methoxyphenyl acetate | |
30 | Methyl 2-(bis(2,2,2-trifluoroethoxy)phosphoryl)acetate | |
31 | Methyl (Z)-3-(4-acetoxy-3-methoxyphenyl)acrylate | |
32 | (Z)-4-(3-hydroxyprop-1-en-1-yl)-2-methoxyphenol | |
33 | 4-hydroxy-3,5-dimethoxybenzaldehyde | |
34 | Methyl (E)-3-(4-hydroxy-3,5-dimethoxyphenyl)acrylate | |
35 | (E)-3-(4-hydroxy-3,5-dimethoxyphenyl)acrylic acid | |
36 | 4-((tert-butyldimethylsilyl)oxy)-3,5-dimethoxybenzaldehyde | |
37 | Ethyl 2-(diethoxyphosphoryl)acetate | |
38 | Ethyl (E)-3-(4-hydroxy-3,5-dimethoxyphenyl)acrylate | |
39 | (Z)-4-(3-hydroxyprop-1-en-1-yl)-2,6-dimethoxyphenol | |
40 | 4-allylphenol | |
41 | 4-allyl-2-methoxyphenol | |
42 | (E)-4-(3-hydroxyprop-1-en-1-yl)benzene-1,2-diol | |
43 | 3,4-dihydroxybenzaldehyde | |
44 | Methyl (E)-3-(3,4-dihydroxyphenyl)acrylate | |
45 | 3-methoxy-3-oxopropanoic acid | |
46 | 3-hydroxy-4,5-dimethoxybenzaldehyde | |
47 | Ethyl (E)-3-(3-hydroxy-4,5-dimethoxyphenyl)acrylate | |
48 | (E)-5-(3-hydroxyprop-1-en-1-yl)-2,3-dimethoxyphenol | |
49 | 5-formyl-3-methoxy-1,2-phenylene diacetate | |
50 | (E)-5-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-methoxy-1,2-phenylene diacetate | |
51 | (E)-5-(3-hydroxyprop-1-en-1-yl)-3-methoxybenzene-1,2-diol | |
52 | 2,6-di-tert-butyl-4-methylphenol |
Synthesis of Monolignols | ||||
---|---|---|---|---|
Name of Monolignol | Reaction/Strategy | Yield | Regioselectivity | Reference |
p-coumaryl alcohol (1) | Wittig reaction | 90% | E | [51] |
p-coumaryl alcohol (9) | Reacting 1 with with blue led light and an iridium catalyst 7, Ir2(ppy)4Cl2 | Not reported | Z | [53] |
p-coumaryl alcohol (1) | Reagents: glycine, sodium hydroxide, and the enzyme vanillyl alcohol oxidase; substrate: chavicol | Not reported | E | [72] |
coniferyl alcohol (2) | Wittig reaction | 82% | E | [57] |
coniferyl alcohol (2) | Microwave-assisted Wittig reaction. | Not reported | E | [58] |
coniferyl alcohol (2) | Knoevenagel condensation to make ferulic acid, followed by reduction via DIBALH | Not reported | E | [59] |
coniferyl alcohol (2) | Reagents: glycine, sodium hydroxide, and the enzyme vanillyl alcohol oxidase; substrate: eugenol | Not reported | E | [72] |
(Z)-coniferyl alcohol 32 | Still and Gennari’s olefination | Not reported | Z | [67] |
Sinapyl alcohol (3) | Microwave-assisted Wittig reaction. | 95% (ester) Alcohol: not reported | E | [58] |
Sinapyl alcohol (3) | Knoevenagel condensation followed by esterification and reduction | 93% | E | [70] |
Sinapyl alcohol (3) | Horner–Wadsworth–Emmons reaction (HWE) | Not reported | E | [71] |
(Z)-sinapyl alcohol (39) | Still and Gennari’s olefination | Not reported | Z | [67] |
caffeyl alcohol 40 | Microwave-assisted Wittig reaction. | 92% (ester) Alcohol: not reported | E | [58] |
caffeyl alcohol 40 | Knoevenagel reaction (Doebner modification) to prepare ester followed by reduction | Not reported | E | [77] |
iso-sinapyl alcohol (46) | Wittig reaction | Not reported | E | [78] |
5-hydroxyconiferyl alcohol (49) | Horner–Wadsworth–Emmons reaction (HWE) | 94% (ester) Alcohol: not reported | E | [79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiz, D.B.; Tofani, G.; Vicente, F.A.; Likozar, B. Chemical Synthesis of Monolignols: Traditional Methods, Recent Advances, and Future Challenges in Sustainable Processes. Antioxidants 2024, 13, 1387. https://doi.org/10.3390/antiox13111387
Tiz DB, Tofani G, Vicente FA, Likozar B. Chemical Synthesis of Monolignols: Traditional Methods, Recent Advances, and Future Challenges in Sustainable Processes. Antioxidants. 2024; 13(11):1387. https://doi.org/10.3390/antiox13111387
Chicago/Turabian StyleTiz, Davide Benedetto, Giorgio Tofani, Filipa A. Vicente, and Blaž Likozar. 2024. "Chemical Synthesis of Monolignols: Traditional Methods, Recent Advances, and Future Challenges in Sustainable Processes" Antioxidants 13, no. 11: 1387. https://doi.org/10.3390/antiox13111387
APA StyleTiz, D. B., Tofani, G., Vicente, F. A., & Likozar, B. (2024). Chemical Synthesis of Monolignols: Traditional Methods, Recent Advances, and Future Challenges in Sustainable Processes. Antioxidants, 13(11), 1387. https://doi.org/10.3390/antiox13111387