Human Supplementation with AM3, Spermidine, and Hesperidin Enhances Immune Function, Decreases Biological Age, and Improves Oxidative–Inflammatory State: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants, Study Design, and Extraction of Blood Samples
2.2. Analysis of Immune Function Parameters
2.2.1. Isolation of Neutrophils and Lymphocytes
2.2.2. Chemotaxis
2.2.3. Phagocytosis
2.2.4. Natural Killer Antitumoral Activity
2.2.5. Lymphoproliferation
2.3. Evaluation of Redox Parameters
2.3.1. Glutathione Reductase Activity
2.3.2. Glutathione Peroxidase Activity
2.3.3. Concentrations of Oxidized Glutathione (GSSG) and Reduced Glutathione (GSH)
2.3.4. Concentration of Thiobarbituric Acid-Reactive Substances (TBARs)
2.3.5. Protein Quantification
2.4. Biological Age Determination
2.5. Cytokine Measurement
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De la Fuente, M.; Miquel, J. An update of the oxidation-inflammation theory of aging: The involvement of the immune system in oxi-inflamm-aging. Curr. Pharm. Des. 2009, 15, 3003–3026. [Google Scholar] [CrossRef] [PubMed]
- Martínez de Toda, I.; Ceprián, N.; Díaz-Del Cerro, E.; De la Fuente, M. The Role of Immune Cells in Oxi-Inflamm-Aging. Cells 2021, 10, 2974. [Google Scholar] [CrossRef] [PubMed]
- Martínez de Toda, I.; Maté, I.; Vida, C.; Cruces, J.; De la Fuente, M. Immune function parameters as markers of biological age and predictors of longevity. Aging 2016, 8, 3110–3119. [Google Scholar] [CrossRef]
- Martínez de Toda, I.; Vida, C.; Díaz-Del Cerro, E.; De la Fuente, M. The Immunity Clock. J. Gerontol. A Biol. Sci. Med. Sci. 2021, 76, 1939–1945. [Google Scholar] [CrossRef]
- De la Fuente, M.; Hernanz, A.; Guayerbas, N.; Victor, V.M.; Arnalich, F. Vitamin E ingestion improves several immune functions in elderly men and women. Free Radic. Res. 2008, 42, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Baeza, I.; De Castro, N.M.; Arranz, L.; De la Fuente, M. Soybean and green tea polyphenols improve immune function and redox status in very old ovariectomized mice. Rejuvenation Res. 2010, 13, 665–674. [Google Scholar] [CrossRef]
- Rojo, J.M.; Rejas, M.T.; Ojeda, G.; Portolés, P.; Barasoain, I. Enhancement of lymphocyte proliferation, interleukin-2 production and NK activity by inmunoferon (AM-3), a fungal immunomodulator: Variations in normal and immunosuppressed mice. Int. J. Immunopharmacol. 1986, 8, 593–597. [Google Scholar] [CrossRef]
- Moya, P.; Baixeras, E.; Barasoain, I.; Rojo, J.M.; Ronda, E.; Alonso, M.L.; Portolés, A. Immunoferon (AM3) enhances the activities of early-type interferon inducers and natural killer cells. Immunopharmacol. Immunotoxicol. 1987, 9, 243–256. [Google Scholar] [CrossRef]
- Sánchez Palacios, A.; García Marrero, J.A.; Schamann, F. Immunologic clinical evaluation of a biological response modifier, AM3, in the treatment of childhood infectious respiratory pathology. Allergol. Immunopathol. 1992, 20, 35–39. [Google Scholar]
- Sánchez, L.; Peña, E.; Civantos, A.; Sada, G.; Alvarez, M.M.; Chirigos, M.A.; Villarrubia, V.G. AM3, an adjuvant to hepatitis B revaccination in non-responder healthy persons. J. Hepatol. 1995, 22, 119–121. [Google Scholar] [CrossRef]
- Pérez-García, R.; Pérez-García, A.; Verbeelen, D.; Bernstein, E.D.; Villarrubia, V.G.; Alvarez-Mon, M. AM3 (Inmunoferón) as an adjuvant to hepatitis B vaccination in hemodialysis patients. Kidney Int. 2002, 61, 1845–1852. [Google Scholar] [CrossRef]
- Alvarez-Mon, M.; Miravitlles, M.; Morera, J.; Callol, L.; Alvarez-Sala, J.L. Treatment with the immunomodulator AM3 improves the health-related quality of life of patients with COPD. Chest 2005, 127, 1212–1218. [Google Scholar]
- Serrano-Gómez, D.; Martínez-Nuñez, R.T.; Sierra-Filardi, E.; Izquierdo, N.; Colmenares, M.; Pla, J.; Rivas, L.; Martinez-Picado, J.; Jimenez-Barbero, J.; Alonso-Lebrero, J.L.; et al. AM3 modulates dendritic cell pathogen recognition capabilities by targeting DC-SIGN. Antimicrob. Agents Chemother. 2007, 51, 2313–2323. [Google Scholar] [CrossRef]
- Martín-Vilchez, S.; Molina-Jiménez, F.; Alonso-Lebrero, J.L.; Sanz-Cameno, P.; Rodríguez-Muñoz, Y.; Benedicto, I.; Roda-Navarro, P.; Trapero, M.; Aragoneses-Fenoll, L.; González, S.; et al. AM3, a natural glycoconjugate, induces the functional maturation of human dendritic cells. Br. J. Pharmacol. 2008, 154, 698–708. [Google Scholar] [CrossRef]
- Albillos, A.; Nieto, M.; Ubeda, M.; Muñoz, L.; Fraile, B.; Reyes, E.; Lledó, L.; Blanco, I.; Pastor, O.; Salas, C.; et al. The biological response modifier AM3 attenuates the inflammatory cell response and hepatic fibrosis in rats with biliary cirrhosis. Gut 2010, 59, 943–952. [Google Scholar] [CrossRef]
- Yuan, C.L.; Lin, S.W.; Cheng, M.H. Inhibition of Molecular Signaling in Huh-7 Cells by AM3: A Novel Chemotherapeutic Agent for Hepatocellular Carcinoma. Med. Chem. 2016, 13, 49–56. [Google Scholar] [CrossRef]
- Geckin, B.; Kilic, G.; Debisarun, P.A.; Föhse, K.; Rodríguez-Luna, A.; Fernández-González, P.; Sánchez, A.L.; Domínguez-Andrés, J. The fungal-derived compound AM3 modulates pro-inflammatory cytokine production and skews the differentiation of human monocytes. Front. Immunol. 2023, 14, 1165683. [Google Scholar] [CrossRef]
- Jimenez-Gómez, N.; López-Suárez, A.; Haro, S.; Fernández-González, P.; Monserrat, J.; Eraña-Tomás, I.; Cuevas-Santos, J.; Rodríguez-Luna, A.; Ortega, M.A.; Gómez-Sánchez, M.J.; et al. Immunomodulation with AM3 and antioxidants creates an adequate framework for skin repair and decreases the monocyte proinflammatory stage in smoker women. Biomed. Pharmacother. 2024, 170, 115929. [Google Scholar] [CrossRef]
- Prieto, A.; Reyes, E.; Bernstein, E.D.; Martinez, B.; Monserrat, J.; Izquierdo, J.L.; Callol, L.; de, L.P.; Alvarez-Sala, R.; Alvarez-Sala, J.L.; et al. Defective natural killer and phagocytic activities in chronic obstructive pulmonary disease are restored by glycophosphopeptical (inmunoferón). Am. J. Respir. Crit. Care Med. 2001, 163, 1578–1583. [Google Scholar] [CrossRef]
- Reyes, E.; Prieto, A.; de la Hera, A.; de Lucas, P.; Alvarez-Sala, R.; Alvarez-Sala, J.L.; Alvarez-Mon, M. Treatment with AM3 restores defective T-cell function in COPD patients. Chest 2006, 129, 527–535. [Google Scholar] [CrossRef]
- Córdova, A.; Sureda, A.; Pons, A.; Alvarez-Mon, M. Modulation of TNF-α, TNF-α receptors and IL-6 after treatment with AM3 in professional cyclists. J. Sports Med. Phys. Fit. 2015, 55, 345–351. [Google Scholar]
- Fernández-Lázaro, D.; Fernandez-Lazaro, C.I.; Mielgo-Ayuso, J.; Adams, D.P.; García Hernández, J.L.; González-Bernal, J.; González-Gross, M. Glycophosphopeptical AM3 Food Supplement: A Potential Adjuvant in the Treatment and Vaccination of SARS-CoV-2. Front. Immunol. 2021, 12, 698672. [Google Scholar] [CrossRef]
- Villarrubia, V.G.; Moreno Koch, M.C.; Calvo, C.; González, S.; Alvarez-Mon, M. The immunosenescent phenotype in mice and humans can be defined by alterations in the natural immunity reversal by immunomodulation with oral AM3. Immunopharmacol. Immunotoxicol. 1997, 19, 53–74. [Google Scholar]
- Majano, P.; Alonso-Lebrero, J.L.; Janczyk, A.; Martín-Vichez, S.; Molina-Jiménez, F.; Brieva, A.; Pivel, J.P.; González, S.; López-Cabrera, M.; Moreno-Otero, R. AM3 inhibits LPS-induced iNOS expression in mice. Int. Immunopharmacol. 2005, 5, 1165–1170. [Google Scholar] [CrossRef]
- Yu, L.; Pan, J.; Guo, M.; Duan, H.; Zhang, H.; Narbad, A.; Zhai, Q.; Tian, F.; Chen, W. Gut microbiota and anti-aging: Focusing on spermidine. Crit. Rev. Food Sci. Nutr. 2023, 64, 10419–10437. [Google Scholar] [CrossRef]
- Guarente, L.; Sinclair, D.A.; Kroemer, G. Human trials exploring anti-aging medicines. Cell Metab. 2024, 36, 354–376. [Google Scholar] [CrossRef]
- Larqué, E.; Sabater-Molina, M.; Zamora, S. Biological significance of dietary polyamines. Nutrition 2007, 23, 87–95. [Google Scholar] [CrossRef]
- Ramani, D.; De Bandt, J.P.; Cynober, L. Aliphatic polyamines in physiology and diseases. Clin. Nutr. 2014, 33, 14–22. [Google Scholar] [CrossRef]
- Hesterberg, R.S.; Cleveland, J.L.; Epling-Burnette, P.K. Role of Polyamines in Immune Cell Functions. Med. Sci. 2018, 6, 22. [Google Scholar] [CrossRef]
- Handa, A.K.; Fatima, T.; Mattoo, A.K. Polyamines: Bio-Molecules with Diverse Functions in Plant and Human Health and Disease. Front. Chem. 2018, 6, 10. [Google Scholar] [CrossRef]
- Muñoz-Esparza, N.C.; Latorre-Moratalla, M.L.; Comas-Basté, O.; Toro-Funes, N.; Veciana-Nogués, M.T.; Vidal-Carou, M.C. Polyamines in Food. Front. Nutr. 2019, 6, 108. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Molina, B.; Queipo-Ortuño, M.I.; Lambertos, A.; Tinahones, F.J.; Peñafiel, R. Dietary and Gut Microbiota Polyamines in Obesity- and Age-Related Diseases. Front. Nutr. 2019, 6, 24. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, S.; Cleveland, J.L. Polyamine Homeostasis in Development and Disease. Med. Sci. 2021, 9, 28. [Google Scholar] [CrossRef] [PubMed]
- Sagar, N.A.; Tarafdar, S.; Agarwal, S.; Tarafdar, A.; Sharma, S. Polyamines: Functions, Metabolism, and Role in Human Disease Management. Med. Sci. 2021, 9, 44. [Google Scholar] [CrossRef]
- Négrel, S.; Brunel, J.M. Synthesis and Biological Activities of Naturally Functionalized Polyamines: An Overview. Curr. Med. Chem. 2021, 28, 3406–3448. [Google Scholar] [CrossRef]
- Niechcial, A.; Schwarzfischer, M.; Wawrzyniak, M.; Atrott, K.; Laimbacher, A.; Morsy, Y.; Katkeviciute, E.; Häfliger, J.; Westermann, P.; Akdis, C.A.; et al. Spermidine Ameliorates Colitis via Induction of Anti-Inflammatory Macrophages and Prevention of Intestinal Dysbiosis. J. Crohns Colitis 2023, 17, 1489–1503. [Google Scholar] [CrossRef]
- Ueno, D.; Ikeda, K.; Yamazaki, E.; Katayama, A.; Urata, R.; Matoba, S. Spermidine improves angiogenic capacity of senescent endothelial cells, and enhances ischemia-induced neovascularization in aged mice. Sci. Rep. 2023, 13, 8338. [Google Scholar] [CrossRef]
- Hibino, S.; Eto, S.; Hangai, S.; Endo, K.; Ashitani, S.; Sugaya, M.; Osawa, T.; Soga, T.; Taniguchi, T.; Yanai, H. Tumor cell-derived spermidine is an oncometabolite that suppresses TCR clustering for intratumoral CD8(+) T cell activation. Proc. Natl. Acad. Sci. USA 2023, 120, e2305245120. [Google Scholar] [CrossRef]
- Zimmermann, A.; Hofer, S.J.; Madeo, F. Molecular targets of spermidine: Implications for cancer suppression. Cell Stress 2023, 7, 50–58. [Google Scholar] [CrossRef]
- Đorđievski, S.; Vukašinović, E.L.; Čelić, T.V.; Pihler, I.; Kebert, M.; Kojić, D.; Purać, J. Spermidine dietary supplementation and polyamines level in reference to survival and lifespan of honey bees. Sci. Rep. 2023, 13, 4329. [Google Scholar] [CrossRef]
- Coeli-Lacchini, F.B.; da Silva, G.; Belentani, M.; Alves, J.S.F.; Ushida, T.R.; Lunardelli, G.T.; Garcia, C.B.; Silva, T.A.; Lopes, N.P.; Leopoldino, A.M. Spermidine Suppresses Oral Carcinogenesis through Autophagy Induction, DNA Damage Repair, and Oxidative Stress Reduction. Am. J. Pathol. 2023, 193, 2172–2181. [Google Scholar] [CrossRef] [PubMed]
- Barreca, D.; Gattuso, G.; Bellocco, E.; Calderaro, A.; Trombetta, D.; Smeriglio, A.; Laganà, G.; Daglia, M.; Meneghini, S.; Nabavi, S.M. Flavanones: Citrus phytochemical with health-promoting properties. Biofactors 2017, 43, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, A.; Mirzaei, A.; Najjar Khalilabad, S.; Askari, V.R.; Baradaran Rahimi, V. Promising influences of hesperidin and hesperetin against diabetes and its complications: A systematic review of molecular, cellular, and metabolic effects. Excli. J. 2023, 22, 1235–1263. [Google Scholar]
- Madureira, M.B.; Concato, V.M.; Cruz, E.M.S.; Bitencourt de Morais, J.M.; Inoue, F.S.R.; Concimo Santos, N.; Gonçalves, M.D.; Cremer de Souza, M.; Basso Scandolara, T.; Fontana Mezoni, M.; et al. Naringenin and Hesperidin as Promising Alternatives for Prevention and Co-Adjuvant Therapy for Breast Cancer. Antioxidants 2023, 12, 586. [Google Scholar] [CrossRef]
- Li, S.; Hao, L.; Hu, X.; Li, L. A systematic study on the treatment of hepatitis B-related hepatocellular carcinoma with drugs based on bioinformatics and key target reverse network pharmacology and experimental verification. Infect. Agents Cancer 2023, 18, 41. [Google Scholar] [CrossRef]
- Hosawi, S. Current Update on Role of Hesperidin in Inflammatory Lung Diseases: Chemistry, Pharmacology, and Drug Delivery Approaches. Life 2023, 13, 937. [Google Scholar] [CrossRef] [PubMed]
- Kaviani, F.; Baratpour, I.; Ghasemi, S. The Antidiabetic Mechanisms of Hesperidin: Hesperidin Nanocarriers as Promising Therapeutic Options for Diabetes. Curr. Mol. Med. 2023, 14, 1483–1493. [Google Scholar] [CrossRef]
- Shylaja, H.; Viswanatha, G.L.; Sunil, V.; Hussain, S.M.; Farhana, S.A. Effect of hesperidin on blood pressure and lipid profile: A systematic review and meta-analysis of randomized controlled trials. Phytother. Res. 2024, 38, 2560–2571. [Google Scholar] [CrossRef]
- Ji, Z.; Deng, W.; Chen, D.; Liu, Z.; Shen, Y.; Dai, J.; Zhou, H.; Zhang, M.; Xu, H.; Dai, B. Recent understanding of the mechanisms of the biological activities of hesperidin and hesperetin and their therapeutic effects on diseases. Heliyon 2024, 10, e26862. [Google Scholar] [CrossRef]
- Bansal, K.; Singh, V.; Singh, S.; Mishra, S. Neuroprotective Potential of Hesperidin as Therapeutic Agent in the Treatment of Brain Disorders: Preclinical Evidence-based Review. Curr. Mol. Med. 2024, 24, 316–326. [Google Scholar] [CrossRef]
- Lee, H.J.; Im, A.R.; Kim, S.M.; Kang, H.S.; Lee, J.D.; Chae, S. The flavonoid hesperidin exerts anti-photoaging effect by downregulating matrix metalloproteinase (MMP)-9 expression via mitogen activated protein kinase (MAPK)-dependent signaling pathways. BMC Complement. Altern. Med. 2018, 18, 39. [Google Scholar] [CrossRef] [PubMed]
- Morshedzadeh, N.; Ramezani Ahmadi, A.; Behrouz, V.; Mir, E. A narrative review on the role of hesperidin on metabolic parameters, liver enzymes, and inflammatory markers in nonalcoholic fatty liver disease. Food Sci. Nutr. 2023, 11, 7523–7533. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Wang, J.; Ran, Q.; Lou, G.; Peng, C.; Gan, Q.; Hu, J.; Sun, J.; Yao, R.; Huang, Q. Hesperidin: A Therapeutic Agent For Obesity. Drug Des. Dev. Ther. 2019, 13, 3855–3866. [Google Scholar] [CrossRef] [PubMed]
- Tejada, S.; Pinya, S.; Martorell, M.; Capó, X.; Tur, J.A.; Pons, A.; Sureda, A. Potential Anti-inflammatory Effects of Hesperidin from the Genus Citrus. Curr. Med. Chem. 2018, 25, 4929–4945. [Google Scholar] [CrossRef]
- Hajialyani, M.; Hosein Farzaei, M.; Echeverría, J.; Nabavi, S.M.; Uriarte, E.; Sobarzo-Sánchez, E. Hesperidin as a Neuroprotective Agent: A Review of Animal and Clinical Evidence. Molecules 2019, 24, 648. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Schluesener, H. Health-promoting effects of the citrus flavanone hesperidin. Crit. Rev. Food Sci. Nutr. 2017, 57, 613–631. [Google Scholar] [CrossRef]
- Estruel-Amades, S.; Massot-Cladera, M.; Pérez-Cano, F.J.; Franch, À.; Castell, M.; Camps-Bossacoma, M. Hesperidin Effects on Gut Microbiota and Gut-Associated Lymphoid Tissue in Healthy Rats. Nutrients 2019, 11, 324. [Google Scholar] [CrossRef]
- Camps-Bossacoma, M.; Franch, À.; Pérez-Cano, F.J.; Castell, M. Influence of Hesperidin on the Systemic and Intestinal Rat Immune Response. Nutrients 2017, 9, 580. [Google Scholar] [CrossRef]
- Diaz-Del Cerro, E.; Martinez de Toda, I.; Félix, J.; Baca, A.; De la Fuente, M. Components of the Glutathione Cycle as Markers of Biological Age: An Approach to Clinical Application in Aging. Antioxidants 2023, 12, 1529. [Google Scholar] [CrossRef]
- Zhang, H.; Simon, A.K. Polyamines reverse immune senescence via the translational control of autophagy. Autophagy 2020, 16, 181–182. [Google Scholar] [CrossRef]
- Lian, J.; Liang, Y.; Zhang, H.; Lan, M.; Ye, Z.; Lin, B.; Qiu, X.; Zeng, J. The role of polyamine metabolism in remodeling immune responses and blocking therapy within the tumor immune microenvironment. Front. Immunol. 2022, 13, 912279. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, H.; Tracey, K.J. Regulation of macrophage activation and inflammation by spermine: A new chapter in an old story. Crit. Care Med. 2000, 28 (Suppl. 4), N60–N66. [Google Scholar] [CrossRef] [PubMed]
- Félix, J.; Baca, A.; Taboada, L.; Álvarez-Calatayud, G.; De la Fuente, M. Consumption of a Probiotic Blend with Vitamin D Improves Immunity, Redox, and Inflammatory State, Decreasing the Rate of Aging—A Pilot Study. Biomolecules 2024, 14, 1360. [Google Scholar] [CrossRef]
- Félix, J.; Martínez de Toda, I.; Díaz-Del Cerro, E.; Gil-Agudo, F.; De la Fuente, M. The immunity and redox clocks in mice, markers of lifespan. Sci. Rep. 2024, 14, 1703. [Google Scholar] [CrossRef]
- Kanďár, R. The ratio of oxidized and reduced forms of selected antioxidants as a possible marker of oxidative stress in humans. Biomed. Chromatogr. 2016, 30, 13–28. [Google Scholar] [CrossRef]
- Tylutka, A.; Walas, Ł.; Zembron-Lacny, A. Level of IL-6, TNF, and IL-1β and age-related diseases: A systematic review and meta-analysis. Front. Immunol. 2024, 15, 1330386. [Google Scholar] [CrossRef] [PubMed]
- Martínez de Toda, I.; Vida, C.; De la Fuente, M. An Appropriate Modulation of Lymphoproliferative Response and Cytokine Release as Possible Contributors to Longevity. Int. J. Mol. Sci. 2017, 18, 1598. [Google Scholar] [CrossRef]
- Al-Qahtani, A.A.; Alhamlan, F.S.; Al-Qahtani, A.A. Pro-Inflammatory and Anti-Inflammatory Interleukins in Infectious Diseases: A Comprehensive Review. Trop. Med. Infect. Dis. 2024, 9, 13. [Google Scholar] [CrossRef]
- Mosteiro, L.; Pantoja, C.; de Martino, A.; Serrano, M. Senescence promotes in vivo reprogramming through p16(INK)(4a) and IL-6. Aging Cell 2018, 17, e12711. [Google Scholar] [CrossRef]
- Eisenberg, T.; Abdellatif, M.; Schroeder, S.; Primessnig, U.; Stekovic, S.; Pendl, T.; Harger, A.; Schipke, J.; Zimmermann, A.; Schmidt, A.; et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat. Med. 2016, 22, 1428–1438. [Google Scholar] [CrossRef]
- Ge, Y.; Chen, H.; Wang, J.; Liu, G.; Cui, S.W.; Kang, J.; Jiang, Y.; Wang, H. Naringenin prolongs lifespan and delays aging mediated by IIS and MAPK in Caenorhabditis elegans. Food Funct. 2021, 12, 12127–12141. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Fu, Q.; Li, Z.; Liu, H.; Wang, Y.; Lin, X.; He, R.; Zhang, X.; Ju, Z.; Campisi, J.; et al. The flavonoid procyanidin C1 has senotherapeutic activity and increases lifespan in mice. Nat. Metab. 2021, 3, 1706–1726. [Google Scholar] [CrossRef] [PubMed]
Placebo (N = 15) | Supplement (N = 20) | |
---|---|---|
Demographic Variables | ||
Gender N (% females) | 8 (53.3%) | 10 (50%) |
Age M (SD) | 46.4 (6.2) | 47.1 (6.9) |
Health Measures | ||
Current smoker N (%) | 0 (0%) | 4 (20%) |
Currently tired N (%) | 4 (26.6%) | 2 (10%) |
Balanced diet N (%) | 13 (86.6%) | 17 (85%) |
Physical activity N (%) | 14 (93.3%) | 17 (85%) |
Sleep well N (%) | 12 (80%) | 15 (75%) |
Perceived Stress | ||
Low N (%) | 2 (13.3%) | 8 (40%) |
Medium N (%) | 13 (86.7%) | 12 (60%) |
Anxiety | ||
Low N (%) | 1 (6.6%) | 1 (5%) |
Moderate N (%) | 14 (93.4%) | 19 (95%) |
Resilience | ||
High N (%) | 13 (86.7%) | 20 (100%) |
Moderate N (%) | 2 (13.3%) | 0 (0%) |
Placebo | Supplement | |||
---|---|---|---|---|
Initial | Post-Treatment | Initial | Post-Treatment | |
Immune Function Parameters | ||||
Phagocytic efficacy | 65 ± 6 | 69 ± 7 | 62 ± 10 | 75 ± 15 ** |
Natural Killer activity (% Lysis of tumoral cells) | 51.8 ± 26.2 | 50.5 ± 22.1 | 58.8 ± 26 | 52.4 ± 23.1 |
Proliferative response to LPS (c.p.m) | 4637 ± 2651 | 4952 ± 1783 | 4973 ± 2556 | 6594 ± 2199 * |
Inflammation Parameters in Plasma | ||||
IL-6 concentration (pg/mL) | 2.6 ± 2.2 | 3.7 ± 2.8 | 4.8 ± 3.8 | 10.4 ± 6.7 *** |
IL-2 concentration (pg/mL) | 2.4 ± 2 | 1.9 ± 1.4 | 2.3 ± 1.3 | 0.9 ± 0.6 ** |
Inflammation Parameters in Monocyte Cultures | ||||
Basal proliferative response (c.p.m) | 607 ± 243 | 577 ± 232 | 686 ± 131 | 580 ± 216 * |
TNFα concentration (pg/mL) | 340 ± 183 | 494 ± 143 | 350 ± 177 | 386 ± 132 |
IL-1β concentration (pg/mL) | 759 ± 571 | 994 ± 180 | 749 ± 593 | 573 ± 202 *** |
IL-6 concentration (pg/mL) | 1109 ± 337 | 1283 ± 266 | 930 ± 418 | 1311 ± 251 *** |
TNFα/IL-10 ratio (pg/mL) | 0.68 ± 0.62 | 0.53 ± 0.46 | 0.64 ± 0.54 | 0.32 ± 0.26 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Félix, J.; Díaz-Del Cerro, E.; Baca, A.; López-Ballesteros, A.; Gómez-Sánchez, M.J.; De la Fuente, M. Human Supplementation with AM3, Spermidine, and Hesperidin Enhances Immune Function, Decreases Biological Age, and Improves Oxidative–Inflammatory State: A Randomized Controlled Trial. Antioxidants 2024, 13, 1391. https://doi.org/10.3390/antiox13111391
Félix J, Díaz-Del Cerro E, Baca A, López-Ballesteros A, Gómez-Sánchez MJ, De la Fuente M. Human Supplementation with AM3, Spermidine, and Hesperidin Enhances Immune Function, Decreases Biological Age, and Improves Oxidative–Inflammatory State: A Randomized Controlled Trial. Antioxidants. 2024; 13(11):1391. https://doi.org/10.3390/antiox13111391
Chicago/Turabian StyleFélix, Judith, Estefanía Díaz-Del Cerro, Adriana Baca, Ana López-Ballesteros, María José Gómez-Sánchez, and Mónica De la Fuente. 2024. "Human Supplementation with AM3, Spermidine, and Hesperidin Enhances Immune Function, Decreases Biological Age, and Improves Oxidative–Inflammatory State: A Randomized Controlled Trial" Antioxidants 13, no. 11: 1391. https://doi.org/10.3390/antiox13111391
APA StyleFélix, J., Díaz-Del Cerro, E., Baca, A., López-Ballesteros, A., Gómez-Sánchez, M. J., & De la Fuente, M. (2024). Human Supplementation with AM3, Spermidine, and Hesperidin Enhances Immune Function, Decreases Biological Age, and Improves Oxidative–Inflammatory State: A Randomized Controlled Trial. Antioxidants, 13(11), 1391. https://doi.org/10.3390/antiox13111391