Evidence of Oxidative Stress as a Mechanism of Pharmaceutical-Induced Toxicity in Amphibians
Abstract
:1. Introduction
1.1. Amphibians
1.2. Emerging Contaminants
1.3. Pharmaceuticals in the Environment
1.4. Oxidative Stress
1.4.1. Oxidative Stress Biomarkers
Oxidative Damage
Antioxidant Defenses
2. Methodology
- Experimental investigations analyzing the impact of drug exposure on oxidative stress biomarkers in amphibians.
- Articles published in peer-reviewed scientific journals in English.
- Studies providing data on at least one oxidative stress biomarker and drug-specific class.
- Research that clearly identifies the amphibian species used in this study.
- Studies using plant extracts or natural compounds instead of synthetic drugs.
- Studies that did not provide quantitative data on biomarkers of oxidative stress.
- Studies that focus exclusively on drug bioaccumulation without evaluating biomarkers of oxidative stress.
- Studies that do not provide sufficient information on experimental conditions.
3. Results
3.1. Antibiotics
3.2. Nonsteroidal Anti-Inflammatory Drugs
3.3. Antivirals
3.4. Antihypertensive
3.5. Glucocorticoids
3.6. Pharmaceutical Mixture
3.7. Anesthetic
3.8. Benzodiazepines
3.9. Antiparasitic
4. Discussion
5. Conclusions and Future Research
Author Contributions
Funding
Conflicts of Interest
References
- Wilkinson, J.L.; Boxall, A.B.A.; Kolpin, D.W.; Leung, K.M.Y.; Lai, R.W.S.; Galban-Malag, C.; Adell, A.D.; Mondon, J.; Metian, M.; Marchant, R.A.; et al. Pharmaceutical Pollution of the World’s Rivers. Proc. Natl. Acad. Sci. USA 2022, 119, e2113947119. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.K.; Lin, C.; Bui, X.T.; Rakib, M.R.J.; Nguyen, H.L.; Truong, Q.M.; Hoang, H.G.; Tran, H.T.; Malafaia, G.; Idris, A.M. Occurrence and Fate of Pharmaceutical Pollutants in Wastewater: Insights on Ecotoxicity, Health Risk, and State–of–the-Art Removal. Chemosphere 2024, 354, 141678. [Google Scholar] [CrossRef]
- Costa, R.N.; Franco, F.; Solé, M.; de Cerqueira Rossa-Feres, D.; Nomura, F. How Pollutants Are Affecting Amphibian Tadpoles. In Toxicology of Amphibian Tadpoles; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Freitas, J.S. Pollutants and Oxidative Stress in Tadpoles. In Toxicology of Amphibian Tadpoles; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Berkovitz, B.; Shellis, P. Amphibians. In The Teeth of Non-Mammalian Vertebrates; Academic Press: Cambridge, MA, USA, 2023; pp. 203–257. [Google Scholar] [CrossRef]
- O’Rourke, D.P.; Rosenbaum, M.D. Biology and Diseases of Amphibians. In Laboratory Animal Medicine, 3rd ed.; Academic Press: Cambridge, MA, USA, 2015; pp. 931–965. [Google Scholar] [CrossRef]
- Vitt, L.J.; Caldwell, J.P. Herpetology: An Introductory Biology of Amphibians and Reptiles, 4th ed.; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Wells, K.D. The Ecology and Behavior of Amphibians; University of Chicago Press: Chicago, IL, USA, 2013. [Google Scholar]
- Gower, D.J.; Wilkinson, M. Conservation Biology of Caecilian Amphibians. Conserv. Biol. 2005, 19, 45–55. [Google Scholar] [CrossRef]
- Rozenblit, F.; Gollisch, T. What the Salamander Eye Has Been Telling the Vision Scientist’s Brain. Semin. Cell Dev. Biol. 2020, 106, 61–71. [Google Scholar] [CrossRef]
- Elinson, R.P.; del Pino, E.M. Developmental Diversity of Amphibians. Wiley Interdiscip. Rev. Dev. Biol. 2012, 1, 345–369. [Google Scholar] [CrossRef]
- Frost, D.R. Amphibian Species of the World; American Museum of Natural History: New York, NY, USA, 2023; Available online: https://amphibiansoftheworld.amnh.org/ (accessed on 9 September 2023).
- Rivera-Correa, M.; Baldo, D.; Candioti, F.V.; Orrico, V.G.D.; Blackburn, D.C.; Castroviejo-Fisher, S.; Chan, K.O.N.N.; Gambale, P.; Gower, D.J.; Quah, E.S.H.; et al. Amphibians in Zootaxa: 20 Years Documenting the Global Diversity of Frogs, Salamanders, and Caecilians. Zootaxa 2021, 4979, 5769. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, D.C.; Wake, D.B. Class Amphibia Gray, 1825. In Animal Biodiversity: An Outline of Higher-Level Classification and Survey of Taxonomic Richness; Zhang, Z.-Q., Ed.; Zootaxa: Auckland, New Zealand, 2011; Volume 3148, pp. 39–55. [Google Scholar] [CrossRef]
- Li, X.; Shen, X.; Jiang, W.; Xi, Y.; Li, S. Comprehensive Review of Emerging Contaminants: Detection Technologies, Environmental Impact, and Management Strategies. Ecotoxicol. Environ. Saf. 2024, 278, 116420. [Google Scholar] [CrossRef]
- Li, Z.; Yuan, D. Global Performance and Trends of Research on Emerging Contaminants in Sewage Sludge: A Bibliometric Analysis from 1990 to 2023. Ecotoxicol. Environ. Saf. 2024, 281, 116597. [Google Scholar] [CrossRef]
- Ahn, C.; Jeung, E.B. Endocrine-Disrupting Chemicals and Disease Endpoints. Int. J. Mol. Sci. 2023, 24, 5342. [Google Scholar] [CrossRef]
- Kumar, M.; Mazumder, P.; Silori, R.; Manna, S.; Panday, D.P.; Das, N.; Sethy, S.K.; Kuroda, K.; Mahapatra, D.M.; Mahlknecht, J.; et al. Prevalence of Pharmaceuticals and Personal Care Products, Microplastics and Co-Infecting Microbes in the Post-COVID-19 Era and Its Implications on Antimicrobial Resistance and Potential Endocrine Disruptive Effects. Sci. Total Environ. 2023, 904, 166419. [Google Scholar] [CrossRef]
- Archer, E.; Wolfaardt, G.M.; van Wyk, J.H. Pharmaceutical and Personal Care Products (PPCPs) as Endocrine Disrupting Contaminants (EDCs) in South African Surface Waters. Water SA 2017, 43, 684–706. [Google Scholar] [CrossRef]
- Evich, M.G.; Davis, M.J.B.; McCord, J.P.; Acrey, B.; Awkerman, J.A.; Knappe, D.R.U.; Lindstrom, A.B.; Speth, T.F.; Tebes-Stevens, C.; Strynar, M.J.; et al. Per- and Polyfluoroalkyl Substances in the Environment. Science 2022, 375, eabg9065. [Google Scholar] [CrossRef] [PubMed]
- Kye, H.; Kim, J.; Ju, S.; Lee, J.; Lim, C.; Yoon, Y. Microplastics in Water Systems: A Review of Their Impacts on the Environment and Their Potential Hazards. Heliyon 2023, 9, e14359. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Gao, J.; Yue, T.; Zhang, X.; Liu, J.; Bai, J. Distribution, Chemical Fractionation, and Potential Environmental Risks of Hg, Cr, Cd, Pb, and As in Wastes from Ultra-Low Emission Coal-Fired Industrial Boilers in China. J. Hazard. Mater. 2023, 446, 130606. [Google Scholar] [CrossRef]
- Sorvari, J.; Wahlström, M. Industrial By-Products. In Handbook of Recycling: State-of-the-Art for Practitioners, Analysts, and Scientists; Elsevier: Amsterdam, The Netherlands, 2024; pp. 259–285. [Google Scholar] [CrossRef]
- Bean, T.G.; Chadwick, E.A.; Herrero-Villar, M.; Mateo, R.; Naidoo, V.; Rattner, B.A. Do Pharmaceuticals in the Environment Pose a Risk to Wildlife? Environ. Toxicol. Chem. 2024, 43, 595–610. [Google Scholar] [CrossRef]
- Toutain, P.L.; Ferran, A.; Bousquet-Mélou, A. Species Differences in Pharmacokinetics and Pharmacodynamics. In Comparative and Veterinary Pharmacology; Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2010; Volume 199. [Google Scholar]
- Fernández, C.; Beltrán, E.M.; Tarazona, J.V. Pharmaceuticals Effects in the Environment. In Encyclopedia of Toxicology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 844–848. [Google Scholar] [CrossRef]
- Xu, M.; Huang, H.; Li, N.; Li, F.; Wang, D.; Luo, Q. Occurrence and Ecological Risk of Pharmaceuticals and Personal Care Products (PPCPs) and Pesticides in Typical Surface Watersheds, China. Ecotoxicol. Environ. Saf. 2019, 175, 289–298. [Google Scholar] [CrossRef]
- Kim, S.D.; Cho, J.; Kim, I.S.; Vanderford, B.J.; Snyder, S.A. Occurrence and Removal of Pharmaceuticals and Endocrine Disruptors in South Korean Surface, Drinking, and Waste Waters. Water Res. 2007, 41, 1013–1021. [Google Scholar] [CrossRef]
- Ebele, A.J.; Oluseyi, T.; Drage, D.S.; Harrad, S.; Abou-Elwafa Abdallah, M. Occurrence, Seasonal Variation and Human Exposure to Pharmaceuticals and Personal Care Products in Surface Water, Groundwater and Drinking Water in Lagos State, Nigeria. Emerg. Contam. 2020, 6, 124–132. [Google Scholar] [CrossRef]
- Shen, X.; Chang, H.; Sun, Y.; Wan, Y. Determination and Occurrence of Natural and Synthetic Glucocorticoids in Surface Waters. Environ. Int. 2020, 134, 105278. [Google Scholar] [CrossRef]
- Ashfaq, M.; Li, Y.; Rehman, M.S.U.; Zubair, M.; Mustafa, G.; Nazar, M.F.; Yu, C.P.; Sun, Q. Occurrence, Spatial Variation and Risk Assessment of Pharmaceuticals and Personal Care Products in Urban Wastewater, Canal Surface Water, and Their Sediments: A Case Study of Lahore, Pakistan. Sci. Total Environ. 2019, 688, 653–663. [Google Scholar] [CrossRef]
- Mainero Rocca, L.; Gentili, A.; Caretti, F.; Curini, R.; Pérez-Fernández, V. Occurrence of Non-Steroidal Anti-Inflammatory Drugs in Surface Waters of Central Italy by Liquid Chromatography–Tandem Mass Spectrometry. Int. J. Environ. Anal. Chem. 2015, 95, 685–697. [Google Scholar] [CrossRef]
- Praveena, S.M.; Shaifuddin, S.N.M.; Sukiman, S.; Nasir, F.A.M.; Hanafi, Z.; Kamarudin, N.; Ismail, T.H.T.; Aris, A.Z. Pharmaceuticals Residues in Selected Tropical Surface Water Bodies from Selangor (Malaysia): Occurrence and Potential Risk Assessments. Sci. Total Environ. 2018, 642, 230–240. [Google Scholar] [CrossRef]
- López-Serna, R.; Jurado, A.; Vázquez-Suñé, E.; Carrera, J.; Petrović, M.; Barceló, D. Occurrence of 95 Pharmaceuticals and Transformation Products in Urban Groundwaters Underlying the Metropolis of Barcelona, Spain. Environ. Pollut. 2013, 174, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Björlenius, B.; Ripszám, M.; Haglund, P.; Lindberg, R.H.; Tysklind, M.; Fick, J. Pharmaceutical Residues Are Widespread in Baltic Sea Coastal and Offshore Waters—Screening for Pharmaceuticals and Modelling of Environmental Concentrations of Carbamazepine. Sci. Total Environ. 2018, 633, 1496–1509. [Google Scholar] [CrossRef]
- Alygizakis, N.A.; Gago-Ferrero, P.; Borova, V.L.; Pavlidou, A.; Hatzianestis, I.; Thomaidis, N.S. Occurrence and Spatial Distribution of 158 Pharmaceuticals, Drugs of Abuse and Related Metabolites in Offshore Seawater. Sci. Total Environ. 2016, 541, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Lolić, A.; Paíga, P.; Santos, L.H.M.L.M.; Ramos, S.; Correia, M.; Delerue-Matos, C. Assessment of Non-Steroidal Anti-Inflammatory and Analgesic Pharmaceuticals in Seawaters of North of Portugal: Occurrence and Environmental Risk. Sci. Total Environ. 2015, 508, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sallach, J.B.; Zhang, W.; Boyd, S.A.; Li, H. Insight into the Distribution of Pharmaceuticals in Soil-Water-Plant Systems. Water Res. 2019, 152, 38–46. [Google Scholar] [CrossRef]
- Martínez-Piernas, A.B.; Plaza-Bolaños, P.; García-Gómez, E.; Fernández-Ibáñez, P.; Agüera, A. Determination of Organic Microcontaminants in Agricultural Soils Irrigated with Reclaimed Wastewater: Target and Suspect Approaches. Anal. Chim. Acta 2018, 1030, 115–124. [Google Scholar] [CrossRef]
- Lees, K.; Fitzsimons, M.; Snape, J.; Tappin, A.; Comber, S. Pharmaceuticals in Soils of Lower Income Countries: Physico-Chemical Fate and Risks from Wastewater Irrigation. Environ. Int. 2016, 94, 712–723. [Google Scholar] [CrossRef]
- Fonseca, V.F.; Duarte, I.A.; Duarte, B.; Freitas, A.; Pouca, A.S.V.; Barbosa, J.; Gillanders, B.M.; Reis-Santos, P. Environmental Risk Assessment and Bioaccumulation of Pharmaceuticals in a Large Urbanized Estuary. Sci. Total Environ. 2021, 783, 147021. [Google Scholar] [CrossRef]
- Gunnarsson, L.; Snape, J.R.; Verbruggen, B.; Owen, S.F.; Kristiansson, E.; Margiotta-Casaluci, L.; Österlund, T.; Hutchinson, K.; Leverett, D.; Marks, B.; et al. Pharmacology beyond the Patient—The Environmental Risks of Human Drugs. Environ. Int. 2019, 129, 320–332. [Google Scholar] [CrossRef] [PubMed]
- Jacob, R.S.; Araújo, C.V.M.; de Souza Santos, L.V.; Moreira, V.R.; Lebron, Y.A.R.; Lange, L.C. The Environmental Risks of Pharmaceuticals beyond Traditional Toxic Effects: Chemical Differences That Can Repel or Entrap Aquatic Organisms. Environ. Pollut. 2021, 268, 115902. [Google Scholar] [CrossRef] [PubMed]
- del Carmen Gómez-Regalado, M.; Martín, J.; Santos, J.L.; Aparicio, I.; Alonso, E.; Zafra-Gómez, A. Bioaccumulation/Bioconcentration of Pharmaceutical Active Compounds in Aquatic Organisms: Assessment and Factors Database. Sci. Total Environ. 2023, 861, 160638. [Google Scholar] [CrossRef] [PubMed]
- Grabicova, K.; Grabic, R.; Fedorova, G.; Fick, J.; Cerveny, D.; Kolarova, J.; Turek, J.; Zlabek, V.; Randak, T. Bioaccumulation of Psychoactive Pharmaceuticals in Fish in an Effluent Dominated Stream. Water Res. 2017, 124, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Lu, G.; Yan, Z.; Liu, J.; Wang, P.; Wang, Y. Bioaccumulation and Trophic Transfer of Pharmaceuticals in Food Webs from a Large Freshwater Lake. Environ. Pollut. 2017, 222, 356–366. [Google Scholar] [CrossRef]
- Sengar, A.; Vijayanandan, A. Human Health and Ecological Risk Assessment of 98 Pharmaceuticals and Personal Care Products (PPCPs) Detected in Indian Surface and Wastewaters. Sci. Total Environ. 2022, 807, 150677. [Google Scholar] [CrossRef]
- Teran-Velasquez, G.; Helm, B.; Krebs, P. High Spatiotemporal Model-Based Tracking and Environmental Risk-Exposure of Wastewater-Derived Pharmaceuticals across River Networks in Saxony, Germany. Water 2023, 15, 2001. [Google Scholar] [CrossRef]
- Sies, H. Oxidative Stress: Eustress and Distress in Redox Homeostasis. In Stress: Physiology, Biochemistry, and Pathology Handbook of Stress Series; Academic Press: Cambridge, MA, USA, 2019; Volume 3. [Google Scholar]
- Singh, A.K.; Rana, H.K.; Pandey, A.K. The Oxidative Stress: Causes, Free Radicals, Targets, Mechanisms, Affected Organs, Effects, Indicators. In Antioxidants Effects in Health: The Bright and the Dark Side; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Jomova, K.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Several Lines of Antioxidant Defense against Oxidative Stress: Antioxidant Enzymes, Nanomaterials with Multiple Enzyme-Mimicking Activities, and Low-Molecular-Weight Antioxidants. Arch. Toxicol. 2024, 98, 1323–1367. [Google Scholar] [CrossRef]
- Chaudhary, P.; Janmeda, P.; Docea, A.O.; Yeskaliyeva, B.; Abdull Razis, A.F.; Modu, B.; Calina, D.; Sharifi-Rad, J. Oxidative Stress, Free Radicals and Antioxidants: Potential Crosstalk in the Pathophysiology of Human Diseases. Front. Chem. 2023, 11, 1158198. [Google Scholar] [CrossRef]
- El-SiKaily, A.; Shabaka, S. Biomarkers in Aquatic Systems: Advancements, Applications and Future Directions. Egypt. J. Aquat. Res. 2024, 50, 169–182. [Google Scholar] [CrossRef]
- Valavanidis, A.; Vlahogianni, T.; Dassenakis, M.; Scoullos, M. Molecular Biomarkers of Oxidative Stress in Aquatic Organisms in Relation to Toxic Environmental Pollutants. Ecotoxicol. Environ. Saf. 2006, 64, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Klran, T.R.; Otlu, O.; Karabulut, A.B. Oxidative Stress and Antioxidants in Health and Disease. J. Lab. Med. 2023, 47, 1–11. [Google Scholar]
- Kisty, E.A.; Falco, J.A.; Weerapana, E. Redox Proteomics Combined with Proximity Labeling Enables Monitoring of Localized Cysteine Oxidation in Cells. Cell Chem. Biol. 2023, 30, 321–336. [Google Scholar] [CrossRef] [PubMed]
- Chiorcea-Paquim, A.M. 8-Oxoguanine and 8-Oxodeoxyguanosine Biomarkers of Oxidative DNA Damage: A Review on HPLC–ECD Determination. Molecules 2022, 27, 1620. [Google Scholar] [CrossRef]
- Castillo-González, C.; Barcenilla, B.B.; Young, P.G.; Hall, E.; Shippen, D.E. Quantification of 8-OxoG in Plant Telomeres. Int. J. Mol. Sci. 2022, 23, 4990. [Google Scholar] [CrossRef]
- Yang, H.Y.; Lee, T.H. Antioxidant Enzymes as Redox-Based Biomarkers: A Brief Review. BMB Rep. 2015, 48, 200. [Google Scholar] [CrossRef]
- Bajaj, S.; Singh, S.; Sharma, P. Role of Antioxidants in Neutralizing Oxidative Stress. In Nutraceutical Fruits and Foods for Neurodegenerative Disorders; Academic Press: Cambridge, MA, USA, 2024; pp. 353–378. [Google Scholar] [CrossRef]
- Ighodaro, O.M.; Akinloye, O.A. First Line Defence Antioxidants-Superoxide Dismutase (SOD), Catalase (CAT) and Glutathione Peroxidase (GPX): Their Fundamental Role in the Entire Antioxidant Defence Grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef]
- Stephenie, S.; Chang, Y.P.; Gnanasekaran, A.; Esa, N.M.; Gnanaraj, C. An Insight on Superoxide Dismutase (SOD) from Plants for Mammalian Health Enhancement. J. Funct. Foods 2020, 68, 103917. [Google Scholar] [CrossRef]
- Jing, M.; Han, G.; Wan, J.; Zhang, S.; Yang, J.; Zong, W.S.; Niu, Q.; Liu, R. Catalase and Superoxide Dismutase Response and the Underlying Molecular Mechanism for Naphthalene. Sci. Total Environ. 2020, 736, 139567. [Google Scholar] [CrossRef]
- Flohé, L.; Toppo, S.; Orian, L. The Glutathione Peroxidase Family: Discoveries and Mechanism. Free Radic. Biol. Med. 2022, 187, 113–122. [Google Scholar] [CrossRef]
- Lacroix, C.; Schueler, F.W.; Rollinson, N. A 91% Decline in a Common Anuran in an Otherwise Stable Amphibian Community Inferred from 17 Years of Rapid Road Surveys. Anim. Conserv. 2024, 27, 37–52. [Google Scholar] [CrossRef]
- Campbell Grant, E.H.; Amburgey, S.M.; Gratwicke, B.; Acosta-Chaves, V.; Belasen, A.M.; Bickford, D.; Brühl, C.A.; Calatayud, N.E.; Clemann, N.; Clulow, S.; et al. Priority Research Needs to Inform Amphibian Conservation in the Anthropocene. Conserv. Sci. Pract. 2023, 5, e12988. [Google Scholar] [CrossRef]
- Johnson, M.S.; Aubee, C.; Salice, C.J.; Leigh, K.B.; Liu, E.; Pott, U.; Pillard, D. A Review of Ecological Risk Assessment Methods for Amphibians: Comparative Assessment of Testing Methodologies and Available Data. Integr. Environ. Assess. Manag. 2017, 13, 601–613. [Google Scholar] [CrossRef] [PubMed]
- Sumanasekara, V.D.W.; Dissanayake, D.M.M.R.; Seneviratne, H.T.J. Review on Use of Amphibian Taxa as a Bio-Indicator for Watershed Health and Stresses. In Proceedings of the NBRO Symposium, Colombo, Sri Lanka, 22 December 2015. [Google Scholar]
- Melvin, S.D. Oxidative Stress, Energy Storage, and Swimming Performance of Limnodynastes Peronii Tadpoles Exposed to a Sub-Lethal Pharmaceutical Mixture throughout Development. Chemosphere 2016, 150, 790–797. [Google Scholar] [CrossRef]
- Falfushynska, H.; Gnatyshyna, L.; Horyn, O.; Sokolova, I.; Stoliar, O. Endocrine and Cellular Stress Effects of Zinc Oxide Nanoparticles and Nifedipine in Marsh Frogs Pelophylax Ridibundus. Aquat. Toxicol. 2017, 185, 171–182. [Google Scholar] [CrossRef]
- Falfushynska, H.I.; Gnatyshyna, L.L.; Horyn, O.; Stoliar, O.B. Vulnerability of Marsh Frog Pelophylax Ridibundus to the Typical Wastewater Effluents Ibuprofen, Triclosan and Estrone, Detected by Multi-Biomarker Approach. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2017, 202, 26–38. [Google Scholar] [CrossRef]
- Peltzer, P.M.; Lajmanovich, R.C.; Attademo, A.M.; Junges, C.M.; Teglia, C.M.; Martinuzzi, C.; Curi, L.; Culzoni, M.J.; Goicoechea, H.C. Ecotoxicity of Veterinary Enrofloxacin and Ciprofloxacin Antibiotics on Anuran Amphibian Larvae. Environ. Toxicol. Pharmacol. 2017, 51, 114–123. [Google Scholar] [CrossRef]
- Peltzer, P.M.; Lajmanovich, R.C.; Martinuzzi, C.; Attademo, A.M.; Curi, L.M.; Sandoval, M.T. Biotoxicity of Diclofenac on Two Larval Amphibians: Assessment of Development, Growth, Cardiac Function and Rhythm, Behavior and Antioxidant System. Sci. Total Environ. 2019, 683, 624–637. [Google Scholar] [CrossRef]
- Cuzziol Boccioni, A.P.; Peltzer, P.M.; Martinuzzi, C.S.; Attademo, A.M.; León, E.J.; Lajmanovich, R.C. Morphological and Histological Abnormalities of the Neotropical Toad, Rhinella arenarum (Anura: Bufonidae) Larvae Exposed to Dexamethasone. J. Environ. Sci. Health B 2020, 56, 41–53. [Google Scholar] [CrossRef]
- Fernández, L.P.; Brasca, R.; Attademo, A.M.; Peltzer, P.M.; Lajmanovich, R.C.; Culzoni, M.J. Bioaccumulation and Glutathione S-Transferase Activity on Rhinella arenarum Tadpoles after Short-Term Exposure to Antiretrovirals. Chemosphere 2020, 246, 125830. [Google Scholar] [CrossRef]
- da Luz, T.M.; da Costa Araújo, A.P.; Estrela, F.N.; Braz, H.L.B.; Jorge, R.J.B.; Charlie-Silva, I.; Malafaia, G. Can Use of Hydroxychloroquine and Azithromycin as a Treatment of COVID-19 Affect Aquatic Wildlife? A Study Conducted with Neotropical Tadpole. Sci. Total Environ. 2021, 780, 146553. [Google Scholar] [CrossRef] [PubMed]
- Fogliano, C.; Motta, C.M.; Venditti, P.; Fasciolo, G.; Napolitano, G.; Avallone, B.; Carotenuto, R. Environmental Concentrations of a Delorazepam-Based Drug Impact on Embryonic Development of Non-Target Xenopus Laevis. Aquat. Toxicol. 2022, 250, 106244. [Google Scholar] [CrossRef]
- Lourido, M.; Peluso, J.; Aronzon, C.M. Lethal and Sublethal Effects of the Emerging Contaminant Oxytetracycline on the Embryo-Larval Development of Rhinella arenarum. Environ. Toxicol. Pharmacol. 2022, 89, 103783. [Google Scholar] [CrossRef]
- Rutkoski, C.F.; Grott, S.C.; Israel, N.G.; Carneiro, F.E.; de Campos Guerreiro, F.; Santos, S.; Horn, P.A.; Trentini, A.A.; Barbosa da Silva, E.; Coelho de Albuquerque, C.A.; et al. Hepatic and Blood Alterations in Lithobates catesbeianus Tadpoles Exposed to Sulfamethoxazole and Oxytetracycline. Chemosphere 2022, 307, 136215. [Google Scholar] [CrossRef] [PubMed]
- Gavrilović, B.R.; Despotović, S.G.; Petrović, T.G.; Radovanović, T.B.; Gavrić, J.P.; Mirč, M.; Anđelković, M.; Vukov, T.; Tomašević Kolarov, N.; Prokić, M.D. Does the Anesthetic Tricaine Methanesulfonate (MS-222) Distort Oxidative Status Parameters in Tadpoles? Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2024, 278, 109859. [Google Scholar] [CrossRef]
- Laçin, C.; Turhan, D.O.; Güngördü, A. Assessing the Impact of Antiviral Drugs Commonly Utilized during the COVID-19 Pandemic on the Embryonic Development of Xenopus laevis. J. Hazard. Mater. 2024, 472, 134462. [Google Scholar] [CrossRef] [PubMed]
- Peluso, J.; Martínez Chehda, A.; Olivelli, M.S.; Aronzon, C.M. Ecotoxicological Effects of the Emerging Contaminant Ivermectin on Rhinella arenarum: A Comparative Study of Active Ingredient and Commercial Formulation. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2024, 283, 109965. [Google Scholar] [CrossRef] [PubMed]
- Peluso, J.; Chehda, A.M.; Aronzon, C.M. A Multi-Approach Analysis of the Toxicity of a Commercial Formulation of Monensin on Rhinella arenarum Embryos and Larvae. Environ. Toxicol. Pharmacol. 2024, 108, 104454. [Google Scholar] [CrossRef]
- Rutkoski, C.F.; Grott, S.C.; Israel, N.G.; de Campos Guerreiro, F.; Carneiro, F.E.; Bitschinski, D.; Warsneski, A.; Horn, P.A.; Lima, D.; Bastolla, C.L.V.; et al. Prednisone and Prednisolone Effects on Development, Blood, Biochemical and Histopathological Markers of Aquarana catesbeianus Tadpoles. Aquat. Toxicol. 2024, 268, 106869. [Google Scholar] [CrossRef]
- Alishiri, M.; Abdollahi, S.A.; Neysari, A.N.; Ranjbar, S.F.; Abdoli, N.; Afsharjahanshahi, M. Removal of Ciprofloxacin and Cephalexin Antibiotics in Water Environment by Magnetic Graphene Oxide Nanocomposites; Optimization Using Response Surface Methodology. Results Eng. 2023, 20, 101507. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, Y.; Chen, S.; Guan, X.; Zhong, Y.; Yang, Q. Occurrence, Risk Assessment, and in Vitro and in Vivo Toxicity of Antibiotics in Surface Water in China. Ecotoxicol. Environ. Saf. 2023, 255, 114817. [Google Scholar] [CrossRef]
- Wat, C.C.Y.; Xin, X.; Lai, R.W.S.; Mao, X.; Leung, K.M.Y. Impact of Environmental Factors Changes Induced by Marine Heatwaves and Heavy Precipitation on Antibiotic Toxicity to Isochrysis galbana: Implications for Climate Change Adaptation. Mar. Pollut. Bull. 2024, 203, 116453. [Google Scholar] [CrossRef]
- Fu, L.; Huang, T.; Wang, S.; Wang, X.; Su, L.; Li, C.; Zhao, Y. Toxicity of 13 Different Antibiotics towards Freshwater Green Algae Pseudokirchneriella subcapitata and Their Modes of Action. Chemosphere 2017, 168, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.; Guimarães, L.; Guilhermino, L. Chronic Toxicity of the Veterinary Antibiotic Florfenicol to Daphnia magna Assessed at Two Temperatures. Environ. Toxicol. Pharmacol. 2013, 36, 1022–1032. [Google Scholar] [CrossRef] [PubMed]
- Yisa, A.G.; Chia, M.A.; Gadzama, I.M.K.; Oniye, S.J.; Sha’aba, R.I.; Gauje, B. Immobilization, Oxidative Stress and Antioxidant Response of Daphnia magna to Amoxicillin and Ciprofloxacin. Environ. Toxicol. Pharmacol. 2023, 98, 104078. [Google Scholar] [CrossRef] [PubMed]
- Bawa-Allah, K.A.; Ehimiyein, A.O. Ecotoxicological Effects of Human and Veterinary Antibiotics on Water Flea (Daphnia magna). Environ. Toxicol. Pharmacol. 2022, 94, 103932. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Shen, Z.; Ding, J.; Qu, M.; Li, T.; Tong, M.; Di, Y. Sulfamethoxazole Induced Systematic and Tissue-Specific Antioxidant Defense in Marine Mussels (Mytilus galloprovincialis): Implication of Antibiotic’s Ecotoxicity. Chemosphere 2021, 279, 130634. [Google Scholar] [CrossRef]
- Lacaze, E.; Pédelucq, J.; Fortier, M.; Brousseau, P.; Auffret, M.; Budzinski, H.; Fournier, M. Genotoxic and Immunotoxic Potential Effects of Selected Psychotropic Drugs and Antibiotics on Blue Mussel (Mytilus edulis) Hemocytes. Environ. Pollut. 2015, 202, 177–186. [Google Scholar] [CrossRef]
- Giannessi, J.; De Marchi, L.; Meucci, V.; Intorre, L.; Monni, G.; Baratti, M.; Pretti, C. Subcellular Tissue-Specific Responses of Mytilus galloprovincialis to Fluoroquinolone Antibiotics. Environ. Toxicol. Pharmacol. 2023, 104, 104306. [Google Scholar] [CrossRef]
- Liang, X.; Wang, F.; Li, K.; Nie, X.; Fang, H. Effects of Norfloxacin Nicotinate on the Early Life Stage of Zebrafish (Danio rerio): Developmental Toxicity, Oxidative Stress and Immunotoxicity. Fish Shellfish Immunol. 2020, 96, 262–269. [Google Scholar] [CrossRef]
- Wang, X.; Hu, M.; Gu, H.; Zhang, L.; Shang, Y.; Wang, T.; Wang, T.; Zeng, J.; Ma, L.; Huang, W.; et al. Short-Term Exposure to Norfloxacin Induces Oxidative Stress, Neurotoxicity and Microbiota Alteration in Juvenile Large Yellow Croaker Pseudosciaena crocea. Environ. Pollut. 2020, 267, 115397. [Google Scholar] [CrossRef]
- Rodrigues, S.; Antunes, S.C.; Nunes, B.; Correia, A.T. Histological Alterations in Gills and Liver of Rainbow Trout (Oncorhynchus mykiss) after Exposure to the Antibiotic Oxytetracycline. Environ. Toxicol. Pharmacol. 2017, 53, 164–176. [Google Scholar] [CrossRef]
- Rodrigues, S.; Antunes, S.C.; Correia, A.T.; Golovko, O.; Žlábek, V.; Nunes, B. Assessment of Toxic Effects of the Antibiotic Erythromycin on the Marine Fish Gilthead Seabream (Sparus aurata L.) by a Multi-Biomarker Approach. Chemosphere 2019, 216, 234–247. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Lin, J.; Bian, Y.; Ren, C.; Ni, X.-l.; Yang, C.; Xu, X.-x.; Feng, X. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in the Environment: Updates on Pretreatment and Determination Methods. Ecotoxicol. Environ. Saf. 2023, 267, 115624. [Google Scholar] [CrossRef]
- Russo, C.; Nugnes, R.; Orlo, E.; di Matteo, A.; De Felice, B.; Montanino, C.; Lavorgna, M.; Isidori, M. Diclofenac Eco-Geno-Toxicity in Freshwater Algae, Rotifers and Crustaceans. Environ. Pollut. 2023, 335, 122251. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Jin, M.; Mao, W.; Chen, C.; Fu, L.; Li, Z.; Du, S.; Liu, H. Photosynthetic Toxicity of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) on Green Algae Scenedesmus Obliquus. Sci. Total Environ. 2020, 707, 136176. [Google Scholar] [CrossRef] [PubMed]
- Mezzelani, M.; Gorbi, S.; Da Ros, Z.; Fattorini, D.; d’Errico, G.; Milan, M.; Bargelloni, L.; Regoli, F. Ecotoxicological Potential of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in Marine Organisms: Bioavailability, Biomarkers and Natural Occurrence in Mytilus galloprovincialis. Mar. Environ. Res. 2016, 121, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Piedade, F.; Bio, S.; Nunes, B. Effects of Common Pharmaceutical Drugs (Paracetamol and Acetylsalicylic Acid) Short Term Exposure on Biomarkers of the Mussel Mytilus spp. Environ. Toxicol. Pharmacol. 2020, 73, 103276. [Google Scholar] [CrossRef]
- Chabchoubi, I.B.; Bouchhima, R.A.; Louhichi, N.; Baanannou, A.; Masmoudi, S.; Hentati, O. Short-Term Effects of Various Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) on Danio rerio Embryos. MethodsX 2023, 10, 102215. [Google Scholar] [CrossRef]
- Mikula, P.; Hollerova, A.; Hodkovicova, N.; Doubkova, V.; Marsalek, P.; Franc, A.; Sedlackova, L.; Hesova, R.; Modra, H.; Svobodova, Z.; et al. Long-Term Dietary Exposure to the Non-Steroidal Anti-Inflammatory Drugs Diclofenac and Ibuprofen Can Affect the Physiology of Common Carp (Cyprinus carpio) on Multiple Levels, Even at “Environmentally Relevant” Concentrations. Sci. Total Environ. 2024, 917, 170296. [Google Scholar] [CrossRef]
- Stancová, V.; Ziková, A.; Svobodová, Z.; Kloas, W. Effects of the Non-Steroidal Anti-Inflammatory Drug(NSAID) Naproxen on Gene Expression of Antioxidant Enzymes in Zebrafish (Danio rerio). Environ. Toxicol. Pharmacol. 2015, 40, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Luo, J.; Li, C.; Chen, J.; Zhu, N. Antiviral Drugs in Wastewater Are on the Rise as Emerging Contaminants: A Comprehensive Review of Spatiotemporal Characteristics, Removal Technologies and Environmental Risks. J. Hazard. Mater. 2023, 457, 131694. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.R.; Barbosa, F.A.R.; Mol, M.P.G.; Magalhães, S.M.S. Toxicity for Aquatic Organisms of Antiretroviral Tenofovir Disoproxil. J. Environ. Prot. 2019, 10, 1565–1577. [Google Scholar] [CrossRef]
- Godoy, A.A.; Kummrow, F.; Pamplin, P.A.Z. Occurrence, Ecotoxicological Effects and Risk Assessment of Antihypertensive Pharmaceutical Residues in the Aquatic Environment—A Review. Chemosphere 2015, 138, 281–291. [Google Scholar] [CrossRef]
- Andrade de Sousa, J.; Hermes Pusceddu, F.; Dos Santos Barbosa Ortega, A.; de Carvalho Ueda de Carvalho, M.U.; Amaral Gomes dos Santos, R.; Moledo de Souza Abessa, D.; Dias Seabra Pereira, C.; Alves Maranho, L. Biological Effects Caused by the Pharmaceuticals Losartan and Diclofenac, and Their Mixture on Marine Organisms. Ecotoxicol. Environ. Contam. 2022, 17, 114–123. [Google Scholar] [CrossRef]
- Godoy, A.A.; Kummrow, F.; Pamplin, P.A.Z. Ecotoxicological Evaluation of Propranolol Hydrochloride and Losartan Potassium to Lemna minor L. (1753) Individually and in Binary Mixtures. Ecotoxicology 2015, 24, 1112–1123. [Google Scholar] [CrossRef]
- Reque, R.; Carneiro, R.D.; Yamamoto, F.Y.; Ramsdorf, W.A.; Martins, L.R.; Guiloski, I.C.; de Freitas, A.M. Ecotoxicity of Losartan Potassium in Aquatic Organisms of Different Trophic Levels. Environ. Toxicol. Pharmacol. 2021, 87, 103727. [Google Scholar] [CrossRef]
- Timmermans, S.; Souffriau, J.; Libert, C. A General Introduction to Glucocorticoid Biology. Front. Immunol. 2019, 10, 1545. [Google Scholar] [CrossRef] [PubMed]
- Hardy, R.S.; Raza, K.; Cooper, M.S. Therapeutic Glucocorticoids: Mechanisms of Actions in Rheumatic Diseases. Nat. Rev. Rheumatol. 2020, 16, 133–144. [Google Scholar] [CrossRef]
- Hamilton, C.M.; Winter, M.J.; Margiotta-Casaluci, L.; Owen, S.F.; Tyler, C.R. Are Synthetic Glucocorticoids in the Aquatic Environment a Risk to Fish? Environ. Int. 2022, 162, 107163. [Google Scholar] [CrossRef]
- Mezzelani, M.; Peruzza, L.; d’Errico, G.; Milan, M.; Gorbi, S.; Regoli, F. Mixtures of Environmental Pharmaceuticals in Marine Organisms: Mechanistic Evidence of Carbamazepine and Valsartan Effects on Mytilus galloprovincialis. Sci. Total Environ. 2023, 860, 160465. [Google Scholar] [CrossRef] [PubMed]
- Ayala-Soldado, N.; Mora-Medina, R.; Lora-Benítez, A.J.; de Paula Gonçalves Reis, L.; Molina-López, A.M.; del Rosario Moyano-Salvago, M. Comparative Study of Tricaine Methanesulfonate (MS-222) and Eugenol as Euthanasia Agents in Zebrafish (Danio rerio) as an Experimental Model. Lab. Anim. 2023, 57, 236–246. [Google Scholar] [CrossRef]
- Balko, J.A.; Posner, L.P.; Chinnadurai, S.K. Immersion in Tricaine Methanesulfonate (MS-222) Is Not Sufficient for Euthanasia of Smokey Jungle Frogs (Leptodactylus pentadactylus). J. Zoo Wildl. Med. 2019, 50, 89–95. [Google Scholar] [CrossRef]
- Engin, E. GABAA Receptor Subtypes and Benzodiazepine Use, Misuse, and Abuse. Front. Psychiatry 2023, 13, 1060949. [Google Scholar] [CrossRef]
- Soyka, M.; Wild, I.; Caulet, B.; Leontiou, C.; Lugoboni, F.; Hajak, G. Long-Term Use of Benzodiazepines in Chronic Insomnia: A European Perspective. Front. Psychiatry 2023, 14, 1212028. [Google Scholar] [CrossRef]
- Fogliano, C.; Carotenuto, R.; Panzuto, R.; Spennato, V.; De Bonis, S.; Simoniello, P.; Raggio, A.; Avallone, B.; Agnisola, C.; Motta, C.M. Behavioral Alterations and Gills Damage in Mytilus galloprovincialis Exposed to an Environmental Concentration of Delorazepam. Environ. Toxicol. Pharmacol. 2023, 97, 104030. [Google Scholar] [CrossRef] [PubMed]
- Lebreton, M.; Sire, S.; Carayon, J.L.; Malgouyres, J.M.; Vignet, C.; Géret, F.; Bonnafé, E. Low Concentrations of Oxazepam Induce Feeding and Molecular Changes in Radix Balthica Juveniles. Aquat. Toxicol. 2021, 230, 105694. [Google Scholar] [CrossRef] [PubMed]
- Cerveny, D.; Brodin, T.; Cisar, P.; McCallum, E.S.; Fick, J. Bioconcentration and Behavioral Effects of Four Benzodiazepines and Their Environmentally Relevant Mixture in Wild Fish. Sci. Total Environ. 2020, 702, 134780. [Google Scholar] [CrossRef] [PubMed]
- Pohl, J.; Ahrens, L.; Carlsson, G.; Golovko, O.; Norrgren, L.; Weiss, J.; Örn, S. Embryotoxicity of Ozonated Diclofenac, Carbamazepine, and Oxazepam in Zebrafish (Danio rerio). Chemosphere 2019, 225, 191–199. [Google Scholar] [CrossRef]
- Campbell, W.C. History of Avermectin and Ivermectin, with Notes on the History of Other Macrocyclic Lactone Antiparasitic Agents. Curr. Pharm. Biotechnol. 2012, 13, 853–865. [Google Scholar] [CrossRef]
- Sulik, M.; Antoszczak, M.; Huczyński, A.; Steverding, D. Antiparasitic Activity of Ivermectin: Four Decades of Research into a “Wonder Drug”. Eur. J. Med. Chem. 2023, 261, 115838. [Google Scholar] [CrossRef] [PubMed]
- Conforti, S.; Dietrich, J.; Kuhn, T.; van Koppenhagen, N.; Baur, J.; Rohner, P.T.; Blanckenhorn, W.U.; Schäfer, M.A. Comparative Effects of the Parasiticide Ivermectin on Survival and Reproduction of Adult Sepsid Flies. Ecotoxicol. Environ. Saf. 2018, 163, 215–222. [Google Scholar] [CrossRef]
- Garric, J.; Vollat, B.; Duis, K.; Péry, A.; Junker, T.; Ramil, M.; Fink, G.; Ternes, T.A. Effects of the Parasiticide Ivermectin on the Cladoceran Daphnia magna and the Green Alga Pseudokirchneriella subcapitata. Chemosphere 2007, 69, 903–910. [Google Scholar] [CrossRef] [PubMed]
- González-Tokman, D.; Martínez M., I.; Villalobos-Ávalos, Y.; Munguía-Steyer, R.; del Rosario Ortiz-Zayas, M.; Cruz-Rosales, M.; Lumaret, J.P. Ivermectin Alters Reproductive Success, Body Condition and Sexual Trait Expression in Dung Beetles. Chemosphere 2017, 178, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Powrie, Y.; Strydom, M.; Aucamp, M.; Schellack, N.; Steenkamp, V.; Smith, C. Zebrafish Behavioral Response to Ivermectin: Insights into Potential Neurological Risk. Med. Drug Discov. 2022, 16, 100141. [Google Scholar] [CrossRef]
- Lorente, C.J.; Mesa, L.; Montalto, L.; Gutiérrez, M.F.; Miró, M.V.; Lifschitz, A. Ivermectin Bioaccumulation and Transfer through Developmental Stages in Culex pipiens (Diptera: Culicidae). Chemosphere 2023, 322, 138106. [Google Scholar] [CrossRef]
- dos Reis Martinez, C.B.; Aguiar, A. Effects of Pharmaceutical Compounds in Tadpoles. In Toxicology of Amphibian Tadpoles; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Sedeño-Díaz, J.E.; López-López, E. Oxidative Stress in Physella Acuta: An Integrative Response of Exposure to Water from Two Rivers of Atlantic Mexican Slope. Front. Physiol. 2022, 13, 932537. [Google Scholar] [CrossRef]
- Zhou, X.; Gao, S.; Yue, M.; Zhu, S.; Liu, Q.; Zhao, X.E. Recent Advances in Analytical Methods of Oxidative Stress Biomarkers Induced by Environmental Pollutant Exposure. TrAC—Trends Anal. Chem. 2023, 160, 116978. [Google Scholar] [CrossRef]
- Jose, J.; Sandra Pinto, J.; Kotian, B.; Mathew Thomas, A.; Narayana Charyulu, R. Comparison of the Regulatory Outline of Ecopharmacovigilance of Pharmaceuticals in Europe, USA, Japan and Australia. Sci. Total Environ. 2020, 709, 134815. [Google Scholar] [CrossRef]
- Oldenkamp, R.; Hamers, T.; Wilkinson, J.; Slootweg, J.; Posthuma, L. Regulatory Risk Assessment of Pharmaceuticals in the Environment: Current Practice and Future Priorities. Environ. Toxicol. Chem. 2024, 43, 611–622. [Google Scholar] [CrossRef]
- Nori, J.; Lemes, P.; Urbina-Cardona, N.; Baldo, D.; Lescano, J.; Loyola, R. Amphibian Conservation, Land-Use Changes and Protected Areas: A Global Overview. Biol. Conserv. 2015, 191, 367–374. [Google Scholar] [CrossRef]
- Saber, S.; Tito, W.; Said, R. Amphibians as Bioindicators of the Health of Some Wetlands in Ethiopia. Egypt. J. Hosp. Med. 2017, 66, 66–73. [Google Scholar] [CrossRef]
- Toropov, A.A.; Di Nicola, M.R.; Toropova, A.P.; Roncaglioni, A.; Carnesecchi, E.; Kramer, N.I.; Williams, A.J.; Ortiz-Santaliestra, M.E.; Benfenati, E.; Dorne, J.L.C.M. A Regression-Based QSAR-Model to Predict Acute Toxicity of Aromatic Chemicals in Tadpoles of the Japanese Brown Frog (Rana japonica): Calibration, Validation, and Future Developments to Support Risk Assessment of Chemicals in Amphibians. Sci. Total Environ. 2022, 830, 154795. [Google Scholar] [CrossRef] [PubMed]
Reactive Species | Formation | Neutralization/Elimination |
---|---|---|
Reactive Oxygen Species (ROS) | ||
.O2− Superoxide anion | It is primarily generated as a byproduct of the electron transport chain in the mitochondria, as well as by the activity of enzymes such as NADPH oxidases and xanthine oxidase. | Superoxide dismutase (SOD) catalyzes the dismutation of superoxide to hydrogen peroxide. Spontaneous dismutation may also occur. |
∙OH Hydroxyl radical | Formed through the Fenton reaction, where hydrogen peroxide reacts with metal ions, such as iron. It can also be generated via water radiolysis. | Neutralized by antioxidants such as glutathione, ascorbate, and mannitol. |
H2O2 Hydrogen peroxide | This is induced by the dismutation of superoxide and the action of some oxidases. | It is primarily eliminated by the action of enzymes, such as catalase, peroxidases, and glutathione peroxidase. |
1O2 Singlet oxygen | Generated from triplet molecular oxygen through photoexcitation or photochemical reactions. | Deactivated by glutathione, carotenoids, and tocopherols, which act as energy quenchers. |
Reactive Nitrogen Species (RNS) | ||
NO∙ Nitric Oxide | Enzymatically synthesized by nitric oxide synthase (NOS). | It reacts rapidly with oxygen, superoxide, and hemoglobin to form other nitrogen compounds. |
ONOO− Peroxynitrite | This was induced by the reaction of nitric oxide with superoxide radicals. | It is eliminated by the action of glutathione peroxidase, peroxiredoxins, or by spontaneous decomposition. |
NO2∙ Nitrogen dioxide | It is generated by the oxidation of nitric oxide or peroxynitrite. | Reacts with antioxidants (glutathione, ascorbate) and water to form nitrite and nitrate. |
Specie | Pharmaceutical | Sample Size and Stage | Concentration (μgL−1) | Time of Exposure | Methodology | Main Findings | References |
---|---|---|---|---|---|---|---|
Limnodynastes peronii | Diclofenac Naproxen Atenolol Gemfibrozil | 50 full operculum-stage larvae (Gosner stage 25) were used for each treatment. | 0.1, 1, 10, and 100 | 30 days | All biomarkers were analyzed using a FLUOstar Omega plate reader. | A significant increase in peroxidase activity was observed at the highest concentration of the drug mixture. | [69] |
Pelophylax ridibundus | Nifedipine | 40 adult male frogs were utilized for oxidative stress experimentation. | 3463.4 | 14 days | Absorbance was measured with a UV/Vis spectrophotometer “LOMO-56” and fluorescence was measured with the f-max fluorescence microplate reader. | Increased ROS production, elevated SOD activity, and higher GSH and GSSG levels. | [70] |
Pelophylax ridibundus | Ibuprofen Estrone | 15 adult male frogs per experimental group were used. | 0.25 0.1 | 14 days | The absorbance was measured on the UV/Vis spectrophotometer “LOMO-56” (LOMO, Russian Federation), and the fluorescence was measured on the f-max fluorescence microplate reader. | Exposure can induce oxidative stress, although the magnitude of this effect varies depending on the compound. | [71] |
Rhinella arenarum | Enrofloxacin Ciprofloxacin | For the oxidative stress tests, 10 larvae per treatment at Gosner stages 28–29 were used. | 1, 10, 100, and 1000 | 96 h | Spectrophotometric methods. | An increase in LPO, decrease in CAT activity, and increase in GST activity was observed, particularly at the highest exposure concentrations. | [72] |
Trachycephalus typhonius Physalaemus albonotatus | Diclofenac | 10 larvae per treatment and control per species were used. | 125 to 4000 125 to 2000 | 96 h 22 and 20 days | Using a Jenway 6405 UV/Vis spectrophotometer. | An imbalance between ROS production and antioxidant systems was observed in both species, whereas GST activity exhibited interspecies variation. | [73] |
Rhinella arenarum | Dexamethasone | 10 surviving larvae (Gosner stage 38) from each dexamethasone treatment and control were used. | 1–1000 | 22 days | Spectrophotometrically using a JENWAY UV/Vis spectrophotometer. | GST activity significantly increased in larvae exposed to the drug. | [74] |
Rhinella arenarum | Lamivudine Stavudine Zidovudine Nevirapine | 15 tadpoles per treatment were utilized at Gosner stage 26–28. | 500, 1000, 2000, and 4000 | 48 h | A Jenway 6405 UV/Vis spectrophotometer was utilized to evaluate enzymatic activities | Biochemical imbalance between ROS production and induction of antioxidant systems. | [75] |
Physalaemus cuvieri | Hydroxychloroquine Azithromycin | 96 tadpoles at Gosner stage 26 were used per group. | 12.5 | 72 h | Absorbance was measured with a UV/Vis spectrophotometer and fluorescence was measured with a f-max fluorescence microplate reader. | Exposure to drugs did not elicit a significant oxidative stress response in tadpoles, potentially because of the activity of antioxidant enzymes. | [76] |
Xenopus laevis | Delorazepam | In total, 360 embryos were used in this study. The embryos were exposed starting at the 4/8 cell stage. | 1, 5 and 10 | 96 h | The absorbance for HPs, GPX, and GR was measured using a multi-mode microplate reader (Synergy™ HTX Multi-Mode Microplate Reader, BioTek). | Delorazepam alters redox equilibrium in embryos, potentially resulting in adverse effects on their development and viability. | [77] |
Rhinella arenarum | Oxytetracycline | A cohort of 50 embryos (stage 4) and an equal number of larvae (stage 25) were exposed to sublethal concentrations of OTC. | 1, 3, and 6 × 107 | 96 h | All biochemical determinations were performed in duplicate using a Perkin Elmer UV/Vis Lambda 35 spectrometer. | Exposure induced oxidative stress in both embryos and larvae, as evidenced by increased lipoperoxidation and altered antioxidant enzyme activities. | [78] |
Lithobates catesbeianus | Sulfamethoxazole Oxytetracycline | This investigation employed 160 tadpoles, specifically those in developmental stages 32–36. | 0.02, 0.09, and 0.46 | 16 days | Oxidative stress biomarkers were determined using spectrophotometric and high-performance liquid chromatography (HPLC) techniques. | Drug exposure induced OS in tadpoles as evidenced by the inhibition of antioxidant enzymes and increased oxidative damage to proteins. | [79] |
Hyla arborea | Ethyl 3-aminobenzoate methanesulfonate (MS-222) | A total of 96 tadpoles at Gosner stage 40 were used to assess the effects of MS-222 on oxidative status parameters. | 1 × 105, 1, and 5 × 106 | 15 min | A UV/Vis spectrophotometer (UV-1800, Shimadzu, Japan) was used to determine antioxidant parameters, and a plate reader (Synergy H1, BioTek Instruments, Winooski, VT, USA) was used to measure the levels of LPO and PCO. | MS-222 may potentially interfere with investigations of OS biomarkers, particularly those associated with GSH. | [80] |
Xenopus laevis | Favipiravir Oseltamivir | A total of 32 embryos at stage 8–11 were used. | 3.29 × 104 to 2.5 × 105 8.2 × 103 to 6.25 × 104 | 96 h | A spectrophotometer (Shimadzu, UV-1601) was used to determine the catalase (CAT) activity. A microplate reader (VersaMax, Molecular Devices Corp., San Jose, CA, USA) was used to determine the levels of oxidative stress biomarkers GST, GR, CaE, and AChE. | Biomarker responses indicate distinct detoxification and oxidative stress processes during organogenesis and the subsequent developmental stages. | [81] |
Rhinella arenarum | Ivermectin | 50 embryos (stages 4–6, blastula to gastrula) or 50 larvae (stage 25, complete operculum) were used. | 1.25, 10 and 100 | 96 h | A plate reader (Synergy H1, BioTek Instruments, USA) was used to measure oxidative stress biomarkers. | Induced OS, even at low concentrations, and the commercial formulation may exhibit higher toxicity than the active ingredient alone. | [82] |
Rhinella arenarum | Monensin | 50 embryos at stage 4 (blastula) and 50 larvae at stage 25 (complete operculum) were used to evaluate the effect of monensin on oxidative stress biomarkers. | 4, 12 and 120 | 96 h | A spectrophotometer (Perkin Elmer UV/Vis Lambda 35) was used to determine CAT, GST, GSH, and TBARS levels. | A decrease in GST activity and GSH levels was observed, which was accompanied by an increase in TBARS levels. | [83] |
Aquarana catesbeianus | Prednisone Prednisolone | A total of 16 tadpoles at Gosner stage 26–27 were used to assess the effects on oxidative status parameters. | 0.1, 1 and 10 | 16 days | A spectrophotometer (SHIMADZU 1650 PC) and microplate reader (FLUOstar Omega BMG LABTECH) were used to determine the oxidative stress biomarkers. | Elevated SOD, CAT, GPx, and GST activities as well as increased MDA levels were observed in tadpoles exposed to prednisone. | [84] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso-Vera, J.D.; Islas-Flores, H.; Pérez-Alvarez, I.; Díaz-Camal, N. Evidence of Oxidative Stress as a Mechanism of Pharmaceutical-Induced Toxicity in Amphibians. Antioxidants 2024, 13, 1399. https://doi.org/10.3390/antiox13111399
Cardoso-Vera JD, Islas-Flores H, Pérez-Alvarez I, Díaz-Camal N. Evidence of Oxidative Stress as a Mechanism of Pharmaceutical-Induced Toxicity in Amphibians. Antioxidants. 2024; 13(11):1399. https://doi.org/10.3390/antiox13111399
Chicago/Turabian StyleCardoso-Vera, Jesús Daniel, Hariz Islas-Flores, Itzayana Pérez-Alvarez, and Nidya Díaz-Camal. 2024. "Evidence of Oxidative Stress as a Mechanism of Pharmaceutical-Induced Toxicity in Amphibians" Antioxidants 13, no. 11: 1399. https://doi.org/10.3390/antiox13111399
APA StyleCardoso-Vera, J. D., Islas-Flores, H., Pérez-Alvarez, I., & Díaz-Camal, N. (2024). Evidence of Oxidative Stress as a Mechanism of Pharmaceutical-Induced Toxicity in Amphibians. Antioxidants, 13(11), 1399. https://doi.org/10.3390/antiox13111399