Muscle Proteome Analysis of Facioscapulohumeral Dystrophy Patients Reveals a Metabolic Rewiring Promoting Oxidative/Reductive Stress Contributing to the Loss of Muscle Function
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Muscle Biopsies
2.2. Protein Extraction for 2D-DIGE and Label-Free LC–ESI–MS/MS Analysis
2.3. Two-Dimensional Difference in Gel Electrophoresis
2.4. Label-Free Liquid Chromatography with Tandem Mass Spectrometry
2.5. Ingenuity Pathway Analysis
2.6. Immunoblotting
2.7. Intracellular NAD+ and NADH Quantification
2.8. Intracellular NADP+ and NADPH Quantification
2.9. Gene Expression
3. Results
3.1. Sample Classification Based on Proteome Analysis by 2D-DIGE
3.2. Proteome Analysis and Molecular Fingerprint of Known DUX4 Targets
3.3. Metabolic Dysregulation
3.4. Lipid Metabolism
3.5. NADP+/NADPH and NAD+/NADH Imbalance
3.6. Stress Response and Hexosamine Biosynthetic Pathway (HBP)
3.7. Inflammation and Immune Response
3.8. Validation of Proteomic Data by Immunoblotting and Quantitative PCR Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2D-DIGE | two-dimensional difference in gel electrophoresis |
CTR | control subjects |
DTT | dithiothreitol |
DUX4 | double homeobox 4 |
FASP | filter-aided sample preparation |
FAT1 | FAT atypical cadherin 1 |
FDR | False discovery rate |
FRG1 | FSHD region gene 1 |
FSHD | facio scapulo humeral dystrophy |
GFAT1 | Glutamine-fructose-6-phosphate aminotransferase 1 |
GLUL | glutamine synthetase |
HAS1 | hyaluronan synthase 1 |
HBP | hexosamine biosynthetic pathway |
IPA | Ingenuity Pathway Analysis |
LAMP2 | lysosome-associated membrane protein 2 |
LC-ESI-MS/MS | liquid chromatography with tandem mass spectrometry |
MALDI-ToF | desorption/ionization–time-of-flight |
OGA | O-GlcNAcase |
OGT | O-GlcNAc transferase |
PAX7 | Paired Box 7 |
PMSF | phenylmethanesulfonyl fluoride |
PPP | pentose phosphate pathway |
SLC25A4 | solute carrier family 25 member 4 (ANT1) |
ACAA2 | 3-ketoacyl-CoA thiolase |
ACADM | medium-chain specific acyl-CoA dehydrogenase |
ACADVL | very long-chain specific acyl-CoA dehydrogenase |
ACAT1 | acetyl-CoA acetyltransferase |
ACO1 | cytosolic aconitate hydratase |
ACO2 | aconitate hydratase |
ACSL1 | long-chain-fatty-acid-CoA ligase 1 |
ACTA1 | alpha-actin |
ACTB | cytoplasmic actin |
ACTC1 | alpha cardiac muscle actin |
ACTN1, ACTN2, ACTN4 | alpha-actinin-1, 2 and 4 |
ADSS1 | adenyl succinate synthase |
AKR1B1 | aldo-keto reductase 1B |
ALDOA, ALDOC | fructose-bisphosphate aldolase A and C |
AMPD1 | AMP deaminase 1 |
APOA2, APOA4, APOB, APOH | apolipoprotein A-II, A-IV, B-100, H |
APRT | adenine phosphoribosyl transferase |
ATIC | bifunctional purine biosynthesis enzyme |
ATP5F1A, ATP5F1B, ATP5MG | ATP synthase F1 subunit alpha, beta and membrane subunit g |
BAG3 | BAG family molecular chaperone regulator 3 |
C1QBP | complement component 1 Q subcomponent-binding protein, mitochondrial |
C3, C4B | complement C3 and C4-B |
C4BPA | C4b-binding protein alpha chain |
CALM1 | calmodulin |
CASP8, CASP1 | caspase 8 and 1 |
CAT | catalase |
CD59 | CD59 glycoprotein |
CFB, CFH | complement factor B and H |
CFL1 | cofilin-1 |
CLU | clusterin |
COL1A1, COL3A1, COL4A1, COL5A1, COL14A1, COL15A1, COL18A1 | collagen alpha-1 (I) chain, (III) chain, (IV) chain, (V) chain, (XIV) chain, (XV) chain and (XVIII) chain |
COL1A2, COL4A2 | collagen alpha-2 (I) chain and (IV) chain |
COL6A1, COL6A2, COL6A3 | collagen alpha-1, alpha-2, and alpha-3 (VI) chain |
COQ8A | atypical kinase COQ8A |
COX5B, COX6B1, COX7A1 | cytochrome c oxidase subunit 5B, 6B1, 7A1 |
CPT1B | carnitine O-palmitoyltransferase 1 |
CS | citrate synthase |
CSTB | cystatin-B |
CYB5R1, CYB5R3 | NADH-cytochrome b5 reductase 1 and 3 |
CYCS | cytochrome C |
CYP27A1 | sterol 26-hydroxylase |
DBI | acyl CoA-binding protein |
DCN | decorin |
DDT | D-dopachrome decarboxylase |
DECR1 | 2,4-dienoyl CoA reductase |
DLAT | dihydrolipoyllysine-residue acetyltransferase |
DLD | dihydrolipoyl dehydrogenase |
DPT | dermatopontin |
ECH1 | delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase |
ECHS1 | enoyl-CoA hydratase |
ECI1 | enoyl CoA delta isomerase 1 |
ECM | extracellular matrix |
ENO1 | alpha-enolase |
ENO3 | enolase 3 |
F2 | prothrombin |
FABP4, FABP5 | fatty acid-binding protein |
FAK | focal adhesion kinases |
FBLN1 | fibulin-1 |
FBN1 | fibrillin-1 |
FBP2 | fructose-bisphosphatase 2 |
FGA, FGB, FGG | fibrinogen a, beta and g chain |
FH | fumarate hydratase |
FHL1 | four-and-a- half LIM domains 1 |
FLNA | filamin A |
FLNC | filamin-C |
FN1 | fibronectin |
GAPDH | glyceraldehyde-3-phosphate dehydrogenase |
GATD3 | glutamine amidotransferase-like class 1 domain-containing protein 3 |
GLRX | cytosolic glutaredoxin-1 |
GLS | gelsolin |
GLUD1 | mitochondrial glutamate dehydrogenase 1 |
GOT1, GOT2 | cytoplasmic and mitochondrial aspartate aminotransferase |
GPI | glucose-6-phosphate isomerase |
GSTM2 | cytosolic glutathione S-transferase mu 2 |
GSTP1 | cytosolic glutathione S-transferase P |
H6PD | hexose-6-phosphate dehydrogenase |
HADH | hydroxyacyl-coenzyme A dehydrogenase |
HADHA | trifunctional enzyme subunit alpha |
HAGH | mitochondrial hydroxyacylglutathione hydrolase |
HEBP2 | heme-binding protein 2 |
HIF1A, HIF3A | hypoxia inducible factor 1 and 3 subunit alpha |
HIF1AN | HIF1A inhibitor |
HP | haptoglobin |
HPX | hemopexin |
HSD17B10 | 3-hydroxyacyl-CoA dehydrogenase type-2 |
HSD17B12 | very-long-chain 3-oxoacyl-CoA reductase |
HSPA4 | heat shock 70 kDa protein 4 |
HSPB1, HSPB2, HSPB6, HSPB7 | heat shock proteins |
HSPE1 | 10 kDa heat shock protein |
HSPG2 | heparan sulfate proteoglycan 2 |
ICAM1 | intercellular adhesion molecule 1 |
IDH1 | cytoplasmic NADP+-dependent isocitrate dehydrogenase |
IDH2 | mitochondrial NADP+-dependent isocitrate dehydrogenase |
IDH3A | mitochondrial isocitrate dehydrogenase [NAD] subunit alpha |
IGHA1 | Ig alpha-1 chain C region |
IGHG1, IGHG2, IGHG3, IGHG4 | Ig gamma C region 1, 2, 3, 4 chain |
IGHM | Ig mu chain C region |
IGKC | Ig kappa chain C region |
IGLC6 | Ig lambda-6 chain C region |
IL1B, IL1R1 | interleukin 1 beta and receptor type 1 |
IL6R | interleukin 6 receptor |
KLHL41 | Kelch-like protein 41 |
KNG1 | kininogen-1 |
LAMA2 | laminin 2 |
LAMA4, LAMA5, LAMB1, LAMB2, LAMC1 | laminin subunit alpha-4, alpha-5, beta-1, beta-2, gamma-1 |
LDHA, LDHB | L-lactate dehydrogenase A chain and B chain |
LGALS1 | galectin-1 |
LMNA | pre-laminin |
LUM | lumican |
MDH1 | cytosolic malate dehydrogenase |
MDH2 | malate dehydrogenase 2 |
MHC | major histocompatibility complex |
MIF | macrophage migration inhibitory factor |
MYBPC1, MYBPC2 | myosin-binding protein C slow and fast type |
MYH11 | myosin-11 |
MYH2 | myosin-2 |
MYH9 | myosin-9 |
MYL6 | myosin light polypeptide 6 |
MYL9 | myosin regulatory light polypeptide 9 |
MYOM1, MYOM2, MYOM3 | myomesin subunits |
MYOT | myotilin |
NDUFA5, NDUFA6 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 5 and 6 |
NDUFS3, NDUFS4, NDUFS5, NDUFS6, NDUFS8 | NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, 4, 5, 6, 8 |
NDUFV2 | NADH dehydrogenase [ubiquinone] flavoprotein 2 |
NEB | nebulin |
NID1, NID2 | nidogen-1 and -2 |
NNT | NAD(P) transhydrogenase mitochondrial |
NOS3 | nitric oxide synthase 3 |
OGDH | 2-oxoglutarate dehydrogenase |
PADI2 | peptidyl arginine deiminase 2 |
PARK7 | protein deglycase DJ-1 |
PCMT1 | protein-L-isoaspartate (D-aspartate) O-methyltransferase |
PDHA1, PDHB | pyruvate dehydrogenase E1 component subunit alpha and beta |
PFKM | ATP-dependent 6-phosphofructokinase muscle type |
PGAM1, PGAM2 | phosphoglycerate mutase 1 and 2 |
PGD | phosphogluconate dehydrogenase |
PGK1 | phosphoglycerate kinase 1 |
PKM | pyruvate kinase |
PLIN4 | perilipin-4 |
PNP | purine nucleoside phosphorylase |
PPIA | peptidyl-prolyl cis-trans isomerase A |
PRDX2 | peroxiredoxin 2 |
PRDX3 | thioredoxin-dependent peroxide reductase, mitochondrial |
PRDX6 | peroxiredoxin 6 |
PRELP | prolargin |
RAP1B | Ras-related protein Rap-1b |
S100A10, S100A11, S100A13, S100A4, S100A6, S100A8 | protein S100 |
SDHA | succinate dehydrogenase [ubiquinone] flavoprotein subunit |
SDHB | succinate dehydrogenase [ubiquinone] iron-sulfur subunit |
SLC25A11 | mitochondrial 2-oxoglutarate/malate carrier protein |
SLC25A12 | calcium-binding mitochondrial carrier protein Aralar1 |
SLC25A4 | ADP/ATP translocase 1 |
SLC2A1 | solute carrier family 2 member 1 |
SOD1 | superoxide dismutase [Cu-Zn] |
SOD2 | superoxide dismutase [Mn], mitochondrial |
ST13 | hsc70-interacting protein |
SUCLA2 | succinyl-CoA ligase [ADP-forming] subunit beta |
SYPL2 | synaptophysin-like protein 2 |
TALDO | transaldolase |
THBS4 | thrombospondin-4 |
TIMP1 | metallopeptidase inhibitor 1 |
TKT | transketolase |
TLN1, TLN2 | talin 1 and 2 |
TMOD1 | tropomodulin-1 |
TNXB | tenascin-X |
TPI1 | triosephosphate isomerase |
TPM4 | tropomyosin 4 |
TRIM72 | tripartite motif protein |
TTN | titin |
TXN | thioredoxin |
UQCRC1, UQCRH, UQCRB, UQCR11 | cytochrome b-c1 complex subunit 1, 6, 7, 10 |
VAMP2 | vesicle associated membrane protein 2 |
VCAM1 | vascular cell adhesion molecule 1 |
VCL | vinculin |
VEGFA | vascular endothelial growth factor A |
VIM | vimentin |
WDR1 | WD repeat-containing protein 1 |
References
- Dixit, M.; Ansseau, E.; Tassin, A.; Winokur, S.; Shi, R.; Qian, H.; Sauvage, S.; Matteotti, C.; van Acker, A.M.; Leo, O.; et al. DUX4, a Candidate Gene of Facioscapulohumeral Muscular Dystrophy, Encodes a Transcriptional Activator of PITX1. Proc. Natl. Acad. Sci. USA 2007, 104, 18157–18162. [Google Scholar] [CrossRef] [PubMed]
- Snider, L.; Geng, L.N.; Lemmers, R.J.; Kyba, M.; Ware, C.B.; Nelson, A.M.; Tawil, R.; Filippova, G.N.; van der Maarel, S.M.; Tapscott, S.J.; et al. Facioscapulohumeral Dystrophy: Incomplete Suppression of a Retrotransposed Gene. PLoS Genet. 2010, 6, e1001181. [Google Scholar] [CrossRef] [PubMed]
- Vanderplanck, C.; Ansseau, E.; Charron, S.; Stricwant, N.; Tassin, A.; Laoudj-Chenivesse, D.; Wilton, S.D.; Coppee, F.; Belayew, A. The FSHD Atrophic Myotube Phenotype Is Caused by DUX4 Expression. PLoS ONE 2011, 6, e26820. [Google Scholar] [CrossRef]
- Pandya, S.; King, W.M.; Tawil, R. Facioscapulohumeral Dystrophy. Phys. Ther. 2008, 88, 105–113. [Google Scholar] [CrossRef]
- Schätzl, T.; Kaiser, L.; Deigner, H.-P. Facioscapulohumeral Muscular Dystrophy: Genetics, Gene Activation and Downstream Signalling with Regard to Recent Therapeutic Approaches: An Update. Orphanet J. Rare Dis. 2021, 16, 129. [Google Scholar] [CrossRef]
- Tawil, R.; Van Der Maarel, S.M. Facioscapulohumeral Muscular Dystrophy. Muscle Nerve 2006, 34, 1–15. [Google Scholar] [CrossRef]
- Richards, M.; Coppée, F.; Thomas, N.; Belayew, A.; Upadhyaya, M. Facioscapulohumeral Muscular Dystrophy (FSHD): An Enigma Unravelled? Hum. Genet. 2012, 131, 325–340. [Google Scholar] [CrossRef]
- Banerji, C.R.S.; Panamarova, M.; Hebaishi, H.; White, R.B.; Relaix, F.; Severini, S.; Zammit, P.S. PAX7 Target Genes Are Globally Repressed in Facioscapulohumeral Muscular Dystrophy Skeletal Muscle. Nat. Commun. 2017, 8, 2152. [Google Scholar] [CrossRef]
- Haynes, P.; Kernan, K.; Zhou, S.L.; Miller, D.G. Expression Patterns of FSHD-Causing DUX4 and Myogenic Transcription Factors PAX3 and PAX7 Are Spatially Distinct in Differentiating Human Stem Cell Cultures. Skelet. Muscle 2017, 7, 13. [Google Scholar] [CrossRef]
- Nikolic, A.; Jones, T.I.; Govi, M.; Mele, F.; Maranda, L.; Sera, F.; Ricci, G.; Ruggiero, L.; Vercelli, L.; Portaro, S.; et al. Interpretation of the Epigenetic Signature of Facioscapulohumeral Muscular Dystrophy in Light of Genotype-Phenotype Studies. Int. J. Mol. Sci. 2020, 21, 2635. [Google Scholar] [CrossRef]
- Ganassi, M.; Zammit, P.S. Involvement of Muscle Satellite Cell Dysfunction in Neuromuscular Disorders: Expanding the Portfolio of Satellite Cell-Opathies. Eur. J. Transl. Myol. 2022, 32, 10064. [Google Scholar] [CrossRef] [PubMed]
- Morgan, J.E.; Zammit, P.S. Direct Effects of the Pathogenic Mutation on Satellite Cell Function in Muscular Dystrophy. Exp. Cell Res. 2010, 316, 3100–3108. [Google Scholar] [CrossRef] [PubMed]
- Banerji, C.R.S.; Henderson, D.; Tawil, R.N.; Zammit, P.S. Skeletal Muscle Regeneration in Facioscapulohumeral Muscular Dystrophy Is Correlated with Pathological Severity. Hum. Mol. Genet. 2020, 29, 2746–2760. [Google Scholar] [CrossRef] [PubMed]
- Laberthonniere, C.; Novoa-Del-Toro, E.M.; Delourme, M.; Chevalier, R.; Broucqsault, N.; Mazaleyrat, K.; Streichenberger, N.; Manel, V.; Bernard, R.; Salort Campana, E.; et al. Facioscapulohumeral Dystrophy Weakened Sarcomeric Contractility Is Mimicked in Induced Pluripotent Stem Cells-Derived Innervated Muscle Fibres. J. Cachexia Sarcopenia Muscle 2022, 13, 621–635. [Google Scholar] [CrossRef]
- Park, H.J.; Lee, W.; Kim, S.H.; Lee, J.H.; Shin, H.Y.; Kim, S.M.; Park, K.D.; Choi, Y.C. FAT1 Gene Alteration in Facioscapulohumeral Muscular Dystrophy Type 1. Yonsei Med. J. 2018, 59, 337–340. [Google Scholar] [CrossRef]
- Gabellini, D.; D’Antona, G.; Moggio, M.; Prelle, A.; Zecca, C.; Adami, R.; Angeletti, B.; Ciscato, P.; Pellegrino, M.A.; Bottinelli, R.; et al. Facioscapulohumeral Muscular Dystrophy in Mice Overexpressing FRG1. Nature 2006, 439, 973–977. [Google Scholar] [CrossRef]
- Caruso, N.; Herberth, B.; Bartoli, M.; Puppo, F.; Dumonceaux, J.; Zimmermann, A.; Denadai, S.; Lebosse, M.; Roche, S.; Geng, L.; et al. Deregulation of the Protocadherin Gene FAT1 Alters Muscle Shapes: Implications for the Pathogenesis of Facioscapulohumeral Dystrophy. PLoS Genet. 2013, 9, e1003550. [Google Scholar] [CrossRef]
- Thijssen, P.E.; Balog, J.; Yao, Z.; Pham, T.P.; Tawil, R.; Tapscott, S.J.; Van der Maarel, S.M. DUX4 Promotes Transcription of FRG2 by Directly Activating Its Promoter in Facioscapulohumeral Muscular Dystrophy. Skelet. Muscle 2014, 4, 19. [Google Scholar] [CrossRef]
- Laoudj-Chenivesse, D.; Carnac, G.; Bisbal, C.; Hugon, G.; Bouillot, S.; Desnuelle, C.; Vassetzky, Y.; Fernandez, A. Increased Levels of Adenine Nucleotide Translocator 1 Protein and Response to Oxidative Stress Are Early Events in Facioscapulohumeral Muscular Dystrophy Muscle. J. Mol. Med. 2005, 83, 216–224. [Google Scholar] [CrossRef]
- Wallace, L.M.; Garwick, S.E.; Mei, W.; Belayew, A.; Coppee, F.; Ladner, K.J.; Guttridge, D.; Yang, J.; Harper, S.Q. DUX4, a Candidate Gene for Facioscapulohumeral Muscular Dystrophy, Causes P53-Dependent Myopathy in Vivo. Ann. Neurol. 2011, 69, 540–552. [Google Scholar] [CrossRef]
- Kowaljow, V.; Marcowycz, A.; Ansseau, E.; Conde, C.B.; Sauvage, S.; Matteotti, C.; Arias, C.; Corona, E.D.; Nunez, N.G.; Leo, O.; et al. The DUX4 Gene at the FSHD1A Locus Encodes a Pro-Apoptotic Protein. Neuromuscul. Disord. 2007, 17, 611–623. [Google Scholar] [CrossRef] [PubMed]
- Bosnakovski, D.; Lamb, S.; Simsek, T.; Xu, Z.; Belayew, A.; Perlingeiro, R.; Kyba, M. DUX4c, an FSHD Candidate Gene, Interferes with Myogenic Regulators and Abolishes Myoblast Differentiation. Exp. Neurol. 2008, 214, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Dmitriev, P.; Bou Saada, Y.; Dib, C.; Ansseau, E.; Barat, A.; Hamade, A.; Dessen, P.; Robert, T.; Lazar, V.; Louzada, R.A.N.; et al. DUX4-Induced Constitutive DNA Damage and Oxidative Stress Contribute to Aberrant Differentiation of Myoblasts from FSHD Patients. Free Radic. Biol. Med. 2016, 99, 244–258. [Google Scholar] [CrossRef] [PubMed]
- Banerji, C.R.S.; Zammit, P.S. Pathomechanisms and Biomarkers in Facioscapulohumeral Muscular Dystrophy: Roles of DUX4 and PAX7. EMBO Mol. Med. 2021, 13, e13695. [Google Scholar] [CrossRef]
- Banerji, C.R.; Knopp, P.; Moyle, L.A.; Severini, S.; Orrell, R.W.; Teschendorff, A.E.; Zammit, P.S. Beta-Catenin Is Central to DUX4-Driven Network Rewiring in Facioscapulohumeral Muscular Dystrophy. J. R. Soc. Interface 2015, 12, 20140797. [Google Scholar] [CrossRef]
- Lek, A.; Zhang, Y.; Woodman, K.G.; Huang, S.; DeSimone, A.M.; Cohen, J.; Ho, V.; Conner, J.; Mead, L.; Kodani, A.; et al. Applying Genome-Wide CRISPR-Cas9 Screens for Therapeutic Discovery in Facioscapulohumeral Muscular Dystrophy. Sci. Transl. Med. 2020, 12, eaay0271. [Google Scholar] [CrossRef]
- Yao, Z.; Snider, L.; Balog, J.; Lemmers, R.J.; Van Der Maarel, S.M.; Tawil, R.; Tapscott, S.J. DUX4-Induced Gene Expression Is the Major Molecular Signature in FSHD Skeletal Muscle. Hum. Mol. Genet. 2014, 23, 5342–5352. [Google Scholar] [CrossRef]
- Jagannathan, S.; Shadle, S.C.; Resnick, R.; Snider, L.; Tawil, R.N.; van der Maarel, S.M.; Bradley, R.K.; Tapscott, S.J. Model Systems of DUX4 Expression Recapitulate the Transcriptional Profile of FSHD Cells. Hum. Mol. Genet. 2016, 25, 4419–4431. [Google Scholar] [CrossRef]
- Corasolla Carregari, V.; Monforte, M.; Di Maio, G.; Pieroni, L.; Urbani, A.; Ricci, E.; Tasca, G. Proteomics of Muscle Microdialysates Identifies Potential Circulating Biomarkers in Facioscapulohumeral Muscular Dystrophy. Int. J. Mol. Sci. 2020, 22, 290. [Google Scholar] [CrossRef]
- Heier, C.; Zhang, A.; Nguyen, N.; Tully, C.; Panigrahi, A.; Gordish-Dressman, H.; Pandey, S.; Guglieri, M.; Ryan, M.; Clemens, P.; et al. Multi-Omics Identifies Circulating MiRNA and Protein Biomarkers for Facioscapulohumeral Dystrophy. J. Pers. Med. 2020, 10, 236. [Google Scholar] [CrossRef]
- Petek, L.M.; Rickard, A.M.; Budech, C.; Poliachik, S.L.; Shaw, D.; Ferguson, M.R.; Tawil, R.; Friedman, S.D.; Miller, D.G. A Cross Sectional Study of Two Independent Cohorts Identifies Serum Biomarkers for Facioscapulohumeral Muscular Dystrophy (FSHD). Neuromuscul. Disord. 2016, 26, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Statland, J.; Donlin-Smith, C.M.; Tapscott, S.J.; van der Maarel, S.M.; Tawil, R. Multiplex Screen of Serum Biomarkers in Facioscapulohumeral Muscular Dystrophy. J. Neuromuscul. Dis. 2014, 1, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Jagannathan, S.; Ogata, Y.; Gafken, P.R.; Tapscott, S.J.; Bradley, R.K. Quantitative Proteomics Reveals Key Roles for Post-Transcriptional Gene Regulation in the Molecular Pathology of Facioscapulohumeral Muscular Dystrophy. Elife 2019, 8, e41740. [Google Scholar] [CrossRef]
- Brennan, C.M.; Hill, A.S.; St Andre, M.; Li, X.; Madeti, V.; Breitkopf, S.; Garren, S.; Xue, L.; Gilbert, T.; Hadjipanayis, A.; et al. DUX4 Expression Activates JNK and P38 MAP Kinases in Myoblasts. Dis. Model. Mech. 2022, 15, dmm049516. [Google Scholar] [CrossRef]
- Nishimura, Y.; Bittel, A.J.; Stead, C.A.; Chen, Y.W.; Burniston, J.G. Facioscapulohumeral Muscular Dystrophy Is Associated with Altered Myoblast Proteome Dynamics. Mol. Cell Proteom. 2023, 22, 100605. [Google Scholar] [CrossRef]
- Celegato, B.; Capitanio, D.; Pescatori, M.; Romualdi, C.; Pacchioni, B.; Cagnin, S.; Vigano, A.; Colantoni, L.; Begum, S.; Ricci, E.; et al. Parallel Protein and Transcript Profiles of FSHD Patient Muscles Correlate to the D4Z4 Arrangement and Reveal a Common Impairment of Slow to Fast Fibre Differentiation and a General Deregulation of MyoD-Dependent Genes. Proteomics 2006, 6, 5303–5321. [Google Scholar] [CrossRef]
- Tassin, A.; Leroy, B.; Laoudj-Chenivesse, D.; Wauters, A.; Vanderplanck, C.; Le Bihan, M.C.; Coppee, F.; Wattiez, R.; Belayew, A. FSHD Myotubes with Different Phenotypes Exhibit Distinct Proteomes. PLoS ONE 2012, 7, e51865. [Google Scholar] [CrossRef]
- Wong, C.-J.; Wang, L.H.; Friedman, S.D.; Shaw, D.; Campbell, A.E.; Budech, C.B.; Lewis, L.M.; Lemmers, R.J.F.L.; Statland, J.M.; van der Maarel, S.M.; et al. Longitudinal Measures of RNA Expression and Disease Activity in FSHD Muscle Biopsies. Hum. Mol. Genet. 2020, 29, 1030–1043. [Google Scholar] [CrossRef]
- van den Heuvel, A.; Lassche, S.; Mul, K.; Greco, A.; San León Granado, D.; Heerschap, A.; Küsters, B.; Tapscott, S.J.; Voermans, N.C.; van Engelen, B.G.M.; et al. Facioscapulohumeral Dystrophy Transcriptome Signatures Correlate with Different Stages of Disease and Are Marked by Different MRI Biomarkers. Sci. Rep. 2022, 12, 1426. [Google Scholar] [CrossRef]
- Lamperti, C.; Fabbri, G.; Vercelli, L.; D’Amico, R.; Frusciante, R.; Bonifazi, E.; Fiorillo, C.; Borsato, C.; Cao, M.; Servida, M.; et al. A Standardized Clinical Evaluation of Patients Affected by Facioscapulohumeral Muscular Dystrophy: The FSHD Clinical Score. Muscle Nerve 2010, 42, 213–217. [Google Scholar] [CrossRef]
- Ricci, G.; Ruggiero, L.; Vercelli, L.; Sera, F.; Nikolic, A.; Govi, M.; Mele, F.; Daolio, J.; Angelini, C.; Antonini, G.; et al. A Novel Clinical Tool to Classify Facioscapulohumeral Muscular Dystrophy Phenotypes. J. Neurol. 2016, 263, 1204–1214. [Google Scholar] [CrossRef] [PubMed]
- Moriggi, M.; Vasso, M.; Fania, C.; Capitanio, D.; Bonifacio, G.; Salanova, M.; Blottner, D.; Rittweger, J.; Felsenberg, D.; Cerretelli, P.; et al. Long Term Bed Rest with and without Vibration Exercise Countermeasures: Effects on Human Muscle Protein Dysregulation. Proteomics 2010, 10, 3756–3774. [Google Scholar] [CrossRef] [PubMed]
- Moriggi, M.; Capitanio, D.; Torretta, E.; Barbacini, P.; Bragato, C.; Sartori, P.; Moggio, M.; Maggi, L.; Mora, M.; Gelfi, C. Muscle Proteomic Profile before and after Enzyme Replacement Therapy in Late-Onset Pompe Disease. Int. J. Mol. Sci. 2021, 22, 2850. [Google Scholar] [CrossRef]
- Wisniewski, J.R.; Zougman, A.; Nagaraj, N.; Mann, M. Universal Sample Preparation Method for Proteome Analysis. Nat. Methods 2009, 6, 359–362. [Google Scholar] [CrossRef]
- Blottner, D.; Moriggi, M.; Trautmann, G.; Hastermann, M.; Capitanio, D.; Torretta, E.; Block, K.; Rittweger, J.; Limper, U.; Gelfi, C.; et al. Space Omics and Tissue Response in Astronaut Skeletal Muscle after Short and Long Duration Missions. Int. J. Mol. Sci. 2023, 24, 4095. [Google Scholar] [CrossRef]
- Kramer, A.; Green, J.; Pollard, J., Jr.; Tugendreich, S. Causal Analysis Approaches in Ingenuity Pathway Analysis. Bioinformatics 2014, 30, 523–530. [Google Scholar] [CrossRef]
- de la Serna, I.L.; Ohkawa, Y.; Berkes, C.A.; Bergstrom, D.A.; Dacwag, C.S.; Tapscott, S.J.; Imbalzano, A.N. MyoD Targets Chromatin Remodeling Complexes to the Myogenin Locus Prior to Forming a Stable DNA-Bound Complex. Mol. Cell Biol. 2005, 25, 3997–4009. [Google Scholar] [CrossRef]
- Williams, L.M.; McCann, F.E.; Cabrita, M.A.; Layton, T.; Cribbs, A.; Knezevic, B.; Fang, H.; Knight, J.; Zhang, M.; Fischer, R.; et al. Identifying Collagen VI as a Target of Fibrotic Diseases Regulated by CREBBP/EP300. Proc. Natl. Acad. Sci. USA 2020, 117, 20753–20763. [Google Scholar] [CrossRef]
- Patton, B.L. Basal Lamina and the Organization of Neuromuscular Synapses. J. Neurocytol. 2003, 32, 883–903. [Google Scholar] [CrossRef]
- Falcetta, D.; Quirim, S.; Cocchiararo, I.; Chabry, F.; Théodore, M.; Stiefvater, A.; Lin, S.; Tintignac, L.; Ivanek, R.; Kinter, J.; et al. CaMKIIβ Deregulation Contributes to Neuromuscular Junction Destabilization in Myotonic Dystrophy Type I. Skelet. Muscle 2024, 14, 11. [Google Scholar] [CrossRef]
- Steil, A.W.; Kailing, J.W.; Armstrong, C.J.; Walgenbach, D.G.; Klein, J.C. The Calmodulin Redox Sensor Controls Myogenesis. PLoS ONE 2020, 15, e0239047. [Google Scholar] [CrossRef] [PubMed]
- Rancourt, A.; Dufresne, S.S.; St-Pierre, G.; Lévesque, J.; Nakamura, H.; Kikuchi, Y.; Satoh, M.S.; Frenette, J.; Sato, S. Galectin-3 and N-acetylglucosamine Promote Myogenesis and Improve Skeletal Muscle Function in the Mdx Model of Duchenne Muscular Dystrophy. FASEB J. 2018, 32, 6445–6455. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.J.; Lee, Y.-S.; Kim, D.A.; Moon, S.A.; Lee, S.E.; Lee, S.H.; Koh, J.-M. Lumican, an Exerkine, Protects against Skeletal Muscle Loss. Int. J. Mol. Sci. 2022, 23, 10031. [Google Scholar] [CrossRef] [PubMed]
- Brennan, C.M.; Emerson, C.P.; Owens, J.; Christoforou, N. P38 MAPKs—Roles in Skeletal Muscle Physiology, Disease Mechanisms, and as Potential Therapeutic Targets. JCI Insight 2021, 6, e149915. [Google Scholar] [CrossRef]
- Singh, P.; Carraher, C.; Schwarzbauer, J.E. Assembly of Fibronectin Extracellular Matrix. Annu. Rev. Cell Dev. Biol. 2010, 26, 397–419. [Google Scholar] [CrossRef]
- Hsu, K.-S.; Dunleavey, J.M.; Szot, C.; Yang, L.; Hilton, M.B.; Morris, K.; Seaman, S.; Feng, Y.; Lutz, E.M.; Koogle, R.; et al. Cancer Cell Survival Depends on Collagen Uptake into Tumor-Associated Stroma. Nat. Commun. 2022, 13, 7078. [Google Scholar] [CrossRef]
- Csapo, R.; Gumpenberger, M.; Wessner, B. Skeletal Muscle Extracellular Matrix—What Do We Know About Its Composition, Regulation, and Physiological Roles? A Narrative Review. Front. Physiol. 2020, 11, 253. [Google Scholar] [CrossRef]
- Wang, L.; Geist, J.; Grogan, A.; Hu, L.R.; Kontrogianni-Konstantopoulos, A. Thick Filament Protein Network, Functions, and Disease Association. In Comprehensive Physiology; Wiley: Hoboken, NJ, USA, 2018; pp. 631–709. [Google Scholar]
- Vasyutina, E.; Martarelli, B.; Brakebusch, C.; Wende, H.; Birchmeier, C. The Small G-Proteins Rac1 and Cdc42 Are Essential for Myoblast Fusion in the Mouse. Proc. Natl. Acad. Sci. USA 2009, 106, 8935–8940. [Google Scholar] [CrossRef]
- Dalkilic, I.; Schienda, J.; Thompson, T.G.; Kunkel, L.M. Loss of FilaminC (FLNc) Results in Severe Defects in Myogenesis and Myotube Structure. Mol. Cell Biol. 2006, 26, 6522–6534. [Google Scholar] [CrossRef]
- Zhu, H.; Yang, H.; Zhao, S.; Zhang, J.; Liu, D.; Tian, Y.; Shen, Z.; Su, Y. Role of the Cofilin 2 Gene in Regulating the Myosin Heavy Chain Genes in Mouse Myoblast C2C12 Cells. Int. J. Mol. Med. 2018, 41, 1096–1102. [Google Scholar] [CrossRef]
- Keduka, E.; Hayashi, Y.K.; Shalaby, S.; Mitsuhashi, H.; Noguchi, S.; Nonaka, I.; Nishino, I. In Vivo Characterization of Mutant Myotilins. Am. J. Pathol. 2012, 180, 1570–1580. [Google Scholar] [CrossRef] [PubMed]
- Bloch, R.J.; Hall, Z.W. Cytoskeletal Components of the Vertebrate Neuromuscular Junction: Vinculin, Alpha-Actinin, and Filamin. J. Cell Biol. 1983, 97, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Yorifuji, H.; Hirokawa, N. Cytoskeletal Architecture of Neuromuscular Junction: Localization of Vinculin. J. Electron. Microsc. Tech. 1989, 12, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Blondelle, J.; Tallapaka, K.; Seto, J.T.; Ghassemian, M.; Clark, M.; Laitila, J.M.; Bournazos, A.; Singer, J.D.; Lange, S. Cullin-3–Dependent Deregulation of ACTN1 Represents a Pathogenic Mechanism in Nemaline Myopathy. JCI Insight 2019, 4, e125665. [Google Scholar] [CrossRef]
- Gu, L.; Du, Y.; Chen, J.; Hasan, M.N.; Clayton, Y.D.; Matye, D.J.; Friedman, J.E.; Li, T. Cullin 3 RING E3 Ligase Inactivation Causes NRF2-Dependent NADH Reductive Stress, Hepatic Lipodystrophy, and Systemic Insulin Resistance. Proc. Natl. Acad. Sci. USA 2024, 121, e2320934121. [Google Scholar] [CrossRef]
- Leary, S.C.; Battersby, B.J.; Hansford, R.G.; Moyes, C.D. Interactions between Bioenergetics and Mitochondrial Biogenesis. Biochim. Biophys. Acta (BBA)-Bioenerg. 1998, 1365, 522–530. [Google Scholar] [CrossRef]
- Heher, P.; Ganassi, M.; Weidinger, A.; Engquist, E.N.; Pruller, J.; Nguyen, T.H.; Tassin, A.; Declèves, A.-E.; Mamchaoui, K.; Banerji, C.R.S.; et al. Interplay between Mitochondrial Reactive Oxygen Species, Oxidative Stress and Hypoxic Adaptation in Facioscapulohumeral Muscular Dystrophy: Metabolic Stress as Potential Therapeutic Target. Redox Biol. 2022, 51, 102251. [Google Scholar] [CrossRef]
- Mueller, P.S.; Quick, D.T. Studies of Glucose, Insulin, and Lipid Metabolism in Amyotrophic Lateral Sclerosis and Other Neuromuscular Disorders. J. Lab. Clin. Med. 1970, 76, 190–201. [Google Scholar]
- Bansal, D.; Miyake, K.; Vogel, S.S.; Groh, S.; Chen, C.-C.; Williamson, R.; McNeil, P.L.; Campbell, K.P. Defective Membrane Repair in Dysferlin-Deficient Muscular Dystrophy. Nature 2003, 423, 168–172. [Google Scholar] [CrossRef]
- Schneider, S.M.; Sridhar, V.; Bettis, A.K.; Heath-Barnett, H.; Balog-Alvarez, C.J.; Guo, L.-J.; Johnson, R.; Jaques, S.; Vitha, S.; Glowcwski, A.C.; et al. Glucose Metabolism as a Pre-Clinical Biomarker for the Golden Retriever Model of Duchenne Muscular Dystrophy. Mol. Imaging Biol. 2018, 20, 780–788. [Google Scholar] [CrossRef]
- Fuentes-Lemus, E.; Reyes, J.S.; Figueroa, J.D.; Davies, M.J.; López-Alarcón, C. The Enzymes of the Oxidative Phase of the Pentose Phosphate Pathway as Targets of Reactive Species: Consequences for NADPH Production. Biochem. Soc. Trans. 2023, 51, 2173–2187. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, M.J.; de Wilde, J.R.A.; Bartels, M.; Kuo, K.H.M.; Glenthøj, A.; Rab, M.A.E.; van Beers, E.J.; van Wijk, R. Activation of Pyruvate Kinase as Therapeutic Option for Rare Hemolytic Anemias: Shedding New Light on an Old Enzyme. Blood Rev. 2023, 61, 101103. [Google Scholar] [CrossRef] [PubMed]
- Birsoy, K.; Wang, T.; Chen, W.W.; Freinkman, E.; Abu-Remaileh, M.; Sabatini, D.M. An Essential Role of the Mitochondrial Electron Transport Chain in Cell Proliferation Is to Enable Aspartate Synthesis. Cell 2015, 162, 540–551. [Google Scholar] [CrossRef]
- Metallo, C.M.; Gameiro, P.A.; Bell, E.L.; Mattaini, K.R.; Yang, J.; Hiller, K.; Jewell, C.M.; Johnson, Z.R.; Irvine, D.J.; Guarente, L.; et al. Reductive Glutamine Metabolism by IDH1 Mediates Lipogenesis under Hypoxia. Nature 2012, 481, 380–384. [Google Scholar] [CrossRef]
- Chen, Q.; Kirk, K.; Shurubor, Y.I.; Zhao, D.; Arreguin, A.J.; Shahi, I.; Valsecchi, F.; Primiano, G.; Calder, E.L.; Carelli, V.; et al. Rewiring of Glutamine Metabolism Is a Bioenergetic Adaptation of Human Cells with Mitochondrial DNA Mutations. Cell Metab. 2018, 27, 1007–1025. [Google Scholar] [CrossRef]
- Mullen, A.R.; DeBerardinis, R.J. Genetically-Defined Metabolic Reprogramming in Cancer. Trends Endocrinol. Metab. 2012, 23, 552–559. [Google Scholar] [CrossRef]
- Fan, J.; Kamphorst, J.J.; Mathew, R.; Chung, M.K.; White, E.; Shlomi, T.; Rabinowitz, J.D. Glutamine-driven Oxidative Phosphorylation Is a Major ATP Source in Transformed Mammalian Cells in Both Normoxia and Hypoxia. Mol. Syst. Biol. 2013, 9, 712. [Google Scholar] [CrossRef]
- Fraser, M.E.; Hayakawa, K.; Hume, M.S.; Ryan, D.G.; Brownie, E.R. Interactions of GTP with the ATP-Grasp Domain of GTP-Specific Succinyl-CoA Synthetase. J. Biol. Chem. 2006, 281, 11058–11065. [Google Scholar] [CrossRef]
- Perl, A.; Hanczko, R.; Telarico, T.; Oaks, Z.; Landas, S. Oxidative Stress, Inflammation and Carcinogenesis Are Controlled through the Pentose Phosphate Pathway by Transaldolase. Trends Mol. Med. 2011, 17, 395–403. [Google Scholar] [CrossRef]
- Choi, S.-W.; Song, J.-K.; Yim, Y.-S.; Yun, H.-G.; Chun, K.-H. Glucose Deprivation Triggers Protein Kinase C-Dependent β-Catenin Proteasomal Degradation. J. Biol. Chem. 2015, 290, 9863–9873. [Google Scholar] [CrossRef]
- Nowosad, A.; Besson, A. Lysosomes at the Crossroads of Cell Metabolism, Cell Cycle, and Stemness. Int. J. Mol. Sci. 2022, 23, 2290. [Google Scholar] [CrossRef] [PubMed]
- Marambio, P.; Toro, B.; Sanhueza, C.; Troncoso, R.; Parra, V.; Verdejo, H.; García, L.; Quiroga, C.; Munafo, D.; Díaz-Elizondo, J.; et al. Glucose Deprivation Causes Oxidative Stress and Stimulates Aggresome Formation and Autophagy in Cultured Cardiac Myocytes. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2010, 1802, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Horn, M.; Denzel, S.I.; Srinivasan, B.; Allmeroth, K.; Schiffer, I.; Karthikaisamy, V.; Miethe, S.; Breuer, P.; Antebi, A.; Denzel, M.S. Hexosamine Pathway Activation Improves Protein Homeostasis through the Integrated Stress Response. iScience 2020, 23, 100887. [Google Scholar] [CrossRef]
- Hoek, J.B.; Rydström, J. Physiological Roles of Nicotinamide Nucleotide Transhydrogenase. Biochem. J. 1988, 254, 1–10. [Google Scholar] [CrossRef]
- Gómez-Virgilio, L.; Silva-Lucero, M.-C.; Flores-Morelos, D.-S.; Gallardo-Nieto, J.; Lopez-Toledo, G.; Abarca-Fernandez, A.-M.; Zacapala-Gómez, A.-E.; Luna-Muñoz, J.; Montiel-Sosa, F.; Soto-Rojas, L.O.; et al. Autophagy: A Key Regulator of Homeostasis and Disease: An Overview of Molecular Mechanisms and Modulators. Cells 2022, 11, 2262. [Google Scholar] [CrossRef]
- Palorini, R.; Cammarata, F.P.; Balestrieri, C.; Monestiroli, A.; Vasso, M.; Gelfi, C.; Alberghina, L.; Chiaradonna, F. Glucose Starvation Induces Cell Death in K-Ras-Transformed Cells by Interfering with the Hexosamine Biosynthesis Pathway and Activating the Unfolded Protein Response. Cell Death Dis. 2013, 4, e732. [Google Scholar] [CrossRef]
- Palorini, R.; Votta, G.; Pirola, Y.; De Vitto, H.; De Palma, S.; Airoldi, C.; Vasso, M.; Ricciardiello, F.; Lombardi, P.P.; Cirulli, C.; et al. Protein Kinase A Activation Promotes Cancer Cell Resistance to Glucose Starvation and Anoikis. PLoS Genet. 2016, 12, e1005931. [Google Scholar] [CrossRef]
- Klooster, R.; Straasheijm, K.; Shah, B.; Sowden, J.; Frants, R.; Thornton, C.; Tawil, R.; van der Maarel, S. Comprehensive Expression Analysis of FSHD Candidate Genes at the MRNA and Protein Level. Eur. J. Hum. Genet. 2009, 17, 1615–1624. [Google Scholar] [CrossRef]
- Macaione, V.; Aguennouz, M.; Rodolico, C.; Mazzeo, A.; Patti, A.; Cannistraci, E.; Colantone, L.; Di Giorgio, R.M.; De Luca, G.; Vita, G. RAGE-NF-?B Pathway Activation in Response to Oxidative Stress in Facioscapulohumeral Muscular Dystrophy. Acta Neurol. Scand. 2007, 115, 115–121. [Google Scholar] [CrossRef]
- Kim, E.; Rich, J.; Karoutas, A.; Tarlykov, P.; Cochet, E.; Malysheva, D.; Mamchaoui, K.; Ogryzko, V.; Pirozhkova, I. ZNF555 Protein Binds to Transcriptional Activator Site of 4qA Allele and ANT1: Potential Implication in Facioscapulohumeral Dystrophy. Nucleic Acids Res. 2015, 43, 8227–8242. [Google Scholar] [CrossRef]
- Arbogast, S.; Kotzur, H.; Frank, C.; Compagnone, N.; Sutra, T.; Pillard, F.; Pietri, S.; Hmada, N.; Moussa, D.M.A.; Bride, J.; et al. ANT1 Overexpression Models: Some Similarities with Facioscapulohumeral Muscular Dystrophy. Redox Biol. 2022, 56, 102450. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.C.; Yu, Y.C.; Sung, Y.; Han, J.M. Glutamine Reliance in Cell Metabolism. Exp. Mol. Med. 2020, 52, 1496–1516. [Google Scholar] [CrossRef] [PubMed]
- Fendt, S.-M.; Bell, E.L.; Keibler, M.A.; Olenchock, B.A.; Mayers, J.R.; Wasylenko, T.M.; Vokes, N.I.; Guarente, L.; Vander Heiden, M.G.; Stephanopoulos, G. Reductive Glutamine Metabolism Is a Function of the α-Ketoglutarate to Citrate Ratio in Cells. Nat. Commun. 2013, 4, 2236. [Google Scholar] [CrossRef]
- Liang, X.; Liu, L.; Fu, T.; Zhou, Q.; Zhou, D.; Xiao, L.; Liu, J.; Kong, Y.; Xie, H.; Yi, F.; et al. Exercise Inducible Lactate Dehydrogenase B Regulates Mitochondrial Function in Skeletal Muscle. J. Biol. Chem. 2016, 291, 25306–25318. [Google Scholar] [CrossRef]
- Dahlqvist, J.R.; Andersen, G.; Khawajazada, T.; Vissing, C.; Thomsen, C.; Vissing, J. Relationship between Muscle Inflammation and Fat Replacement Assessed by MRI in Facioscapulohumeral Muscular Dystrophy. J. Neurol. 2019, 266, 1127–1135. [Google Scholar] [CrossRef]
- Zadoorian, A.; Du, X.; Yang, H. Lipid Droplet Biogenesis and Functions in Health and Disease. Nat. Rev. Endocrinol. 2023, 19, 443–459. [Google Scholar] [CrossRef]
- Barrera, G. Oxidative Stress and Lipid Peroxidation Products in Cancer Progression and Therapy. ISRN Oncol. 2012, 2012, 137289. [Google Scholar] [CrossRef]
- Gaschler, M.M.; Stockwell, B.R. Lipid Peroxidation in Cell Death. Biochem. Biophys. Res. Commun. 2017, 482, 419–425. [Google Scholar] [CrossRef]
- Turki, A.; Hayot, M.; Carnac, G.; Pillard, F.; Passerieux, E.; Bommart, S.; de Mauverger, E.R.; Hugon, G.; Pincemail, J.; Pietri, S.; et al. Functional Muscle Impairment in Facioscapulohumeral Muscular Dystrophy Is Correlated with Oxidative Stress and Mitochondrial Dysfunction. Free Radic. Biol. Med. 2012, 53, 1068–1079. [Google Scholar] [CrossRef]
- Sasaki-Honda, M.; Jonouchi, T.; Arai, M.; Hotta, A.; Mitsuhashi, S.; Nishino, I.; Matsuda, R.; Sakurai, H. A Patient-Derived IPSC Model Revealed Oxidative Stress Increases Facioscapulohumeral Muscular Dystrophy-Causative DUX4. Hum. Mol. Genet. 2018, 27, 4024–4035. [Google Scholar] [CrossRef]
- Niu, X.; Stancliffe, E.; Gelman, S.J.; Wang, L.; Schwaiger-Haber, M.; Rowles, J.L., 3rd; Shriver, L.P.; Patti, G.J. Cytosolic and Mitochondrial NADPH Fluxes Are Independently Regulated. Nat. Chem. Biol. 2023, 19, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Torres, I.; Guarner-Lans, V.; Rubio-Ruiz, M.E. Reductive Stress in Inflammation-Associated Diseases and the Pro-Oxidant Effect of Antioxidant Agents. Int. J. Mol. Sci. 2017, 18, 2098. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Loscalzo, J. Metabolic Responses to Reductive Stress. Antioxid. Redox Signal 2020, 32, 1330–1347. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, S.R.; Heinz, A.; Hiller, K.; Field, M.S. Erythritol Synthesis Is Elevated in Response to Oxidative Stress and Regulated by the Non-Oxidative Pentose Phosphate Pathway in A549 Cells. Front. Nutr. 2022, 9, 1–15. [Google Scholar] [CrossRef]
- Liu, T.; Lv, Y.-F.; Zhao, J.-L.; You, Q.-D.; Jiang, Z.-Y. Regulation of Nrf2 by Phosphorylation: Consequences for Biological Function and Therapeutic Implications. Free Radic. Biol. Med. 2021, 168, 129–141. [Google Scholar] [CrossRef]
- Bond, M.R.; Hanover, J.A. O-GlcNAc Cycling: A Link Between Metabolism and Chronic Disease. Annu. Rev. Nutr. 2013, 33, 205–229. [Google Scholar] [CrossRef]
- Mannino, M.P.; Hart, G.W. The Beginner’s Guide to O-GlcNAc: From Nutrient Sensitive Pathway Regulation to Its Impact on the Immune System. Front. Immunol. 2022, 13, 828648. [Google Scholar] [CrossRef]
- Banerjee, S.; Sangwan, V.; McGinn, O.; Chugh, R.; Dudeja, V.; Vickers, S.M.; Saluja, A.K. Triptolide-Induced Cell Death in Pancreatic Cancer Is Mediated by O-GlcNAc Modification of Transcription Factor Sp1. J. Biol. Chem. 2013, 288, 33927–33938. [Google Scholar] [CrossRef]
- Altun, M.; Besche, H.C.; Overkleeft, H.S.; Piccirillo, R.; Edelmann, M.J.; Kessler, B.M.; Goldberg, A.L.; Ulfhake, B. Muscle Wasting in Aged, Sarcopenic Rats Is Associated with Enhanced Activity of the Ubiquitin Proteasome Pathway. J. Biol. Chem. 2010, 285, 39597–39608. [Google Scholar] [CrossRef]
- Hipp, M.S.; Kasturi, P.; Hartl, F.U. The Proteostasis Network and Its Decline in Ageing. Nat. Rev. Mol. Cell Biol. 2019, 20, 421–435. [Google Scholar] [CrossRef]
- Xiao, W.; Wang, R.-S.; Handy, D.E.; Loscalzo, J. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism. Antioxid. Redox Signal 2018, 28, 251–272. [Google Scholar] [CrossRef] [PubMed]
- Mullen, A.R.; Hu, Z.; Shi, X.; Jiang, L.; Boroughs, L.K.; Kovacs, Z.; Boriack, R.; Rakheja, D.; Sullivan, L.B.; Linehan, W.M.; et al. Oxidation of Alpha-Ketoglutarate Is Required for Reductive Carboxylation in Cancer Cells with Mitochondrial Defects. Cell Rep. 2014, 7, 1679–1690. [Google Scholar] [CrossRef] [PubMed]
- Blottner, D.; Capitanio, D.; Trautmann, G.; Furlan, S.; Gambara, G.; Moriggi, M.; Block, K.; Barbacini, P.; Torretta, E.; Py, G.; et al. Nitrosative Redox Homeostasis and Antioxidant Response Defense in Disused Vastus Lateralis Muscle in Long-Term Bedrest (Toulouse Cocktail Study). Antioxidants 2021, 10, 378. [Google Scholar] [CrossRef] [PubMed]
- Andersen, G.; Prahm, K.P.; Dahlqvist, J.R.; Citirak, G.; Vissing, J. Aerobic Training and Postexercise Protein in Facioscapulohumeral Muscular Dystrophy. Neurology 2015, 85, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Olsen, D.B.; Ørngreen, M.C.; Vissing, J. Aerobic Training Improves Exercise Performance in Facioscapulohumeral Muscular Dystrophy. Neurology 2005, 64, 1064–1066. [Google Scholar] [CrossRef]
- Denny, A.P.; Heather, A.K. Are Antioxidants a Potential Therapy for FSHD? A Review of the Literature. Oxid. Med. Cell Longev. 2017, 2017, 7020295. [Google Scholar] [CrossRef]
- Le Gall, L.; Sidlauskaite, E.; Mariot, V.; Dumonceaux, J. Therapeutic Strategies Targeting DUX4 in FSHD. J. Clin. Med. 2020, 9, 2886. [Google Scholar] [CrossRef]
- Passerieux, E.; Hayot, M.; Jaussent, A.; Carnac, G.; Gouzi, F.; Pillard, F.; Picot, M.-C.; Böcker, K.; Hugon, G.; Pincemail, J.; et al. Effects of Vitamin C, Vitamin E, Zinc Gluconate, and Selenomethionine Supplementation on Muscle Function and Oxidative Stress Biomarkers in Patients with Facioscapulohumeral Dystrophy: A Double-Blind Randomized Controlled Clinical Trial. Free Radic. Biol. Med. 2015, 81, 158–169. [Google Scholar] [CrossRef]
- Wilson, V.D.; Bommart, S.; Passerieux, E.; Thomas, C.; Pincemail, J.; Picot, M.C.; Mercier, J.; Portet, F.; Arbogast, S.; Laoudj-Chenivesse, D. Muscle Strength, Quantity and Quality and Muscle Fat Quantity and Their Association with Oxidative Stress in Patients with Facioscapulohumeral Muscular Dystrophy: Effect of Antioxidant Supplementation. Free Radic. Biol. Med. 2024, 219, 112–126. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moriggi, M.; Ruggiero, L.; Torretta, E.; Zoppi, D.; Arosio, B.; Ferri, E.; Castegna, A.; Fiorillo, C.; Gelfi, C.; Capitanio, D. Muscle Proteome Analysis of Facioscapulohumeral Dystrophy Patients Reveals a Metabolic Rewiring Promoting Oxidative/Reductive Stress Contributing to the Loss of Muscle Function. Antioxidants 2024, 13, 1406. https://doi.org/10.3390/antiox13111406
Moriggi M, Ruggiero L, Torretta E, Zoppi D, Arosio B, Ferri E, Castegna A, Fiorillo C, Gelfi C, Capitanio D. Muscle Proteome Analysis of Facioscapulohumeral Dystrophy Patients Reveals a Metabolic Rewiring Promoting Oxidative/Reductive Stress Contributing to the Loss of Muscle Function. Antioxidants. 2024; 13(11):1406. https://doi.org/10.3390/antiox13111406
Chicago/Turabian StyleMoriggi, Manuela, Lucia Ruggiero, Enrica Torretta, Dario Zoppi, Beatrice Arosio, Evelyn Ferri, Alessandra Castegna, Chiara Fiorillo, Cecilia Gelfi, and Daniele Capitanio. 2024. "Muscle Proteome Analysis of Facioscapulohumeral Dystrophy Patients Reveals a Metabolic Rewiring Promoting Oxidative/Reductive Stress Contributing to the Loss of Muscle Function" Antioxidants 13, no. 11: 1406. https://doi.org/10.3390/antiox13111406
APA StyleMoriggi, M., Ruggiero, L., Torretta, E., Zoppi, D., Arosio, B., Ferri, E., Castegna, A., Fiorillo, C., Gelfi, C., & Capitanio, D. (2024). Muscle Proteome Analysis of Facioscapulohumeral Dystrophy Patients Reveals a Metabolic Rewiring Promoting Oxidative/Reductive Stress Contributing to the Loss of Muscle Function. Antioxidants, 13(11), 1406. https://doi.org/10.3390/antiox13111406