Determination of the Botanical Origin and Physicochemical Properties of a Propolis Sample Through an Integrated Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection Method
2.3. Pollen Extraction via the Soxhlet Method
2.4. Extraction Methods with Solvents of Different Polarities
2.4.1. Ethanolic Extract of Propolis (EEP), (Figure 2) [18]
- 1.1
- One hundred grams of PS was placed in a flask with 70% ethanol at a 1:5 ratio and covered at room temperature in the dark for 72 h.
- 1.2.
- After 72 h, the contents of the flask were filtered through Whatman filter paper to obtain an ethanolic extract.
- 1.2.1.
- The residue obtained after the filtration process was preserved.
- 1.3.
- The ethanolic extract obtained was distilled via a rotary evaporator at 40 °C to ensure that the extract was dry.
- 1.4.
- The extract obtained from the distillation mixture was brought to total dryness at room temperature, after which it was spread in glass containers and named ethanolic extract of propolis (EEP).
- 1.4.1.
- Once the totality of the solvent was evaporated, it was stored in closed glass jars and kept frozen at −20 °C.
- 1.5.
- The extract obtained was used in individual portions for physical and chemical analysis, according to the quantities indicated in each technique.
2.4.2. Hexane Extract of Propolis (EHP) (Figure 2) [18]
- 2.1.
- The residues obtained from the filtration process in Step 1.2.1 were placed in a flask with hexane at a 5:1 ratio and covered at room temperature in the dark for 72 h.
- 2.2.
- After 72 h and inside an extraction hood, the contents of the flask were filtered through Whatman filter paper to obtain a hexanic extract.
- 2.2.1.
- The residue obtained after the filtration process was preserved.
- 2.3.
- The obtained hexanic extract was distilled Via a rotary evaporator at 26 °C to ensure that the extract was dry and named hexane extract of propolis (EHP).
- 2.4.
- The hexanic extract obtained from the distillation was brought to total dryness in an extraction hood at room temperature, and the extract was extended in glass containers.
- 2.4.1.
- Once the totality of the solvent was evaporated, it was stored in closed glass jars and kept frozen at −20 °C.
- 2.5
- The obtained hexanic extract was used in individual portions for physical and chemical analysis according to the quantities indicated in each technique.
2.4.3. Cleaning of the Pollen Content (Figure 2)
- 3.1
- The residues obtained from the filtering process described in Step 2.2.1 were disintegrated in 70% ethanol and shaken vigorously until the mixture was homogenized.
- 3.2.
- The obtained mixture was filtered through sterile gauze, which retained persistent impurities, as well as resins not dissolved in the medium.
- 3.2.1.
- The previous process was carried out many times until a fine residue that was left to precipitate was obtained.
- 3.2.2.
- Once the precipitate formed, the solvent was withdrawn until a volume of 50 mL was obtained.
- 3.2.3.
- The obtained volume was deposited in a 50 mL centrifuge tube.
2.4.4. Extraction of Pollen Content (Figure 2)
- 4.1.
- The mixture obtained at point 3.2.3 was centrifuged at 2500 rpm for 10 min.
- 4.2.
- At the end of the centrifugation process, the supernatant was removed, and the pellet, which was a wax matrix with pollen, was retained (Figure 2).
- 4.3.
- Recovery of the pollen content of the wax–pollen matrix.
- 4.4.
- The pellet (wax-pollen matrix) inside the 50 mL centrifuge tube was disintegrated in 25 mL of 96% ethanol. Once the pellet was dissolved, 25 mL of hexane was added to the tube, and it was shaken gently until both solvents were incorporated.
- 4.4.1.
- Once the sample was homogenized, it was centrifuged at 2500 rpm for 10 min.
- 4.4.2.
- After this time, a double phase is formed where the elements are separated in the following order from bottom to top: pollen tablet and some impurities, ethanol, hexane with dissolved waxes, and persistent resins (Figure 2).
- 4.4.3.
- To finalize the process of obtaining pollen, the liquid phase was removed, and the pellet was preserved.
- 4.5.
- The obtained pellet disintegrated in 70% ethanol, with the purpose of removing the impurities that the pollen grains could have accumulated on the ornamentation of the exine of each species.
- 4.5.1.
- The disintegrated pellet was filtered with gauze, the filtrate obtained was deposited in a centrifuge tube, and if necessary, it was gauged to 50 mL with 70% ethanol.
- 4.5.2.
- Later, the sample was centrifuged at 2500 rpm for 10 min.
- 4.5.3.
- After centrifugation, the pellet was recovered, and the supernatant was removed.
2.4.5. Sample Mounting via the Technique of Loveux [21] Modified by Sawyer [22]
- 5.1
- With the aid of a micropipette, 100 µL of glycerogelatin with basic fuchsin was taken and added to the pellet.
- 5.1.1.
- With the aid of a micropipette, the gelatin is retracted with pieces of the pellet many times until the mixture is homogenized.
- 5.2.
- Place the homogenized mixture on an object holder with the help of an object cover to distend the mixture.
- 5.2.1.
- Once the sample is mounted, it is sealed with transparent varnish.
- 5.3.
- The obtained slides were reserved for palynological analysis.
2.5. Physicochemical Analysis
2.5.1. Waxes
2.5.2. Total Phenols
Calibration Curve
Preparation of EEP
Analysis
2.5.3. Total Flavonoids
Calibration Curve
Preparation of EEP
Analysis
2.5.4. Antioxidant Capacity
2.6. Chromatography Analysis of the Propolis
2.6.1. Gas Chromatography–Mass Spectrometry Ethanolic Extract
2.6.2. High-Performance Liquid Chromatography–Diode Array (HPLC-DAD) and HPLC-ESI-TOF-MS
2.7. Evaluation of Antimicrobial Activity
3. Results
3.1. Methodology
3.1.1. Pollen Extraction via Soxhlet
3.1.2. Extraction Methods with Solvents of Different Polarities
3.2. Palynological Analysis
3.2.1. Soxhlet Method
3.2.2. Extraction Methods with Solvents of Different Polarities
3.3. Physicochemical Analysis
3.4. Chromatographyl Analysis of the Propolis
3.4.1. High-Performance Liquid Chromatography–Diode Array (HPLC-DAD) and HPLC-ESI-TOF-MS)
3.4.2. Gas Chromatography–Mass Spectrometry (GC-MS)
3.4.3. Biological Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chazaro, M. Melliferous or Apicultural Flora of the Coffee Basin of Coatepec, Veracruz; Instituto Mexicano del Café: Tuxtla, Mexico, 1980. [Google Scholar]
- Alcivar-Saldaña, J.J.; Rodriguez-Monroy, M.A.; Canales-Martinez, M.M. Current Knowledge of the Melliferous Florae in Mexico Using Methodologies to Understand Bee–Plant–Human Interactions. Appl. Sci. 2023, 13, 8591. [Google Scholar] [CrossRef]
- Salamanca Grosso, G. Origin, Nature, Physicochemical Properties and Therapeutic Value of Propolis; Sello Editorial Universidad del Tolima: Ibagué, Colombia, 2017. [Google Scholar]
- Gil, M.; Perelli, A.; Alvarado, R.; Arias, Y.; Blumenthal, E. Bacteriostatic and bactericidal activity of propolis tincture on enteropathogenic bacteria. Salus 2012, 16, 021–025. [Google Scholar]
- Manrique, A.J.; Santana, W.C. Flavonoids, antibacterial and antioxidant activities of stingless bee propolis, Melipona quadrifasciata, Melipona compressipes, Tetragonisca angustula and Nannotrigona sp. from Brazil and Venezuela. Zootec. Trop. 2008, 26, 157–166. [Google Scholar]
- Peña, R. Standardization in propolis: Chemical and biological background. Cienc. Inv. Agr. 2008, 35, 17–26. [Google Scholar]
- Menezes, H. Propolis: A review of recent studies into its pharmacological properties. Arq. Inst. Biológico 2005, 72, 405–411. [Google Scholar] [CrossRef]
- Marcucci, M.; Ferreres, F.; García-Viguera, C.; Bankova, V.; De Castro, S.; Dantas, A. Phenolic compounds from Brazilian propolis with pharmacological activities. J. Ethnopharmacol. 2001, 74, 105–112. [Google Scholar] [CrossRef]
- Salatino, A.; Teixeira, E.W.; Negri, G.; Message, D. Origin and Chemical Variation of Brazilian Propolis. Evid. Based Complement. Altern. Med. 2005, 2, 33–38. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ramírez, E.; Navarro, L.; Díaz, E. Botanical characterization of Mexican honeys from a subtropical region (Oaxaca) based on pollen analysis. Grana 2011, 50, 50–54. [Google Scholar] [CrossRef]
- Cornman, R.S.; Otto, C.R.V.; Iwanowicz, D.; Pettis, J.S. Taxonomic Characterization of Honey Bee (Apis mellifera L.) Pollen Foraging Based on Non-Overlapping Paired-End Sequencing of Nuclear Ribosomal Loci. PLoS ONE 2015, 10, e0145365. [Google Scholar] [CrossRef]
- Quirasco, M.; Estrada, C.A.; Gálvez, A. Detection of genetically modified plant pollen in honey. In Phase I. Facultadde Química. Informe Final SNIB-CONABIO, Proyecto KE007; Universidad Nacional Autónoma de México: Mexico City, Mexico, 2013; Volume 430, pp. 1–36. [Google Scholar]
- Barth, O.M.; Freitas, S.A. Palynology as a tool to distinguish between propolis and geopropolis: Southern Brazilian samples. Open Access Libr. J. 2015, 2, 2217. [Google Scholar] [CrossRef]
- Córdova-Córdova, C.I.; Ramírez-Arriaga, E.; Martínez-Hernández, E.; Zaldívar-Cruz, J.M. Botanical characterization of bee honey (Apis mellifera L.) from four regions of the state of Tabasco, Mexico, by means of melisopalynological techniques. Univ. Y Cienc. 2013, 29, 163–178. [Google Scholar]
- Erdtman, G. An introduction to the study of pollen grains and spores. In Editorial Hafner; Scandinavian University Books: Oslo, Norway, 1969. [Google Scholar]
- Salamanca, G.; Osorio, P. Pollen analysis of red propolis from the insular zone of San Andres, Colombia. Rev. Académica Colomb. Cienc. 2019, 43, 689–698. [Google Scholar] [CrossRef]
- Barth, O.M. Pollen analysis of Brazilian propolis. Grana 1998, 37, 97–101. [Google Scholar] [CrossRef]
- Domínguez, A. Methods of Phytochemical Research Mexico; Limusa: Durban, South Africa, 1979; pp. 45–47. [Google Scholar]
- García, L.E.; Meza, E. Opportunities and Obstacles for the Development of Beekeeping in Nayarit. Master’s Thesis, Universidad Autónoma de Nayarit, Tepic, Mexico, 2012. [Google Scholar]
- Morales, J.; Landa, M.; Guadalupe, S.; Lavoignet, M. Intelligent harvesting techniques for bee products applied in beehives in the Misantla region. Rev. Ingeniantes 2019, 6, 3. [Google Scholar]
- Loveux, A.; Vorwhol, G.; Maurizio, A. Methods of melissopalinology. Int. Comm. Bee Bot. IUBS 1970, 51, 125–138. [Google Scholar]
- Sawyer, R. Honey Identification; Cardiff Academic Press: Cardiff, UK, 1988; pp. 55–73. [Google Scholar]
- Puerto, N.; Prieto, G.; Castro, S. Proximal and physical-chemistry analysis of propolis from by boyacenses apiaries. Rev. Fac. Cienc. Básicas 2016, 14, 126–140. [Google Scholar]
- Alcivar-Saldaña, J.J.; Rodriguez-Monroy, M.A.; Carrillo-Miranda, L.; Canales-Martinez, M.M. Botanical Origin and Biological Properties of Honey and Propolis from Cuautitlan, State of Mexico, Mexico. Antioxidant 2024, 13, 874. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by Folin-Ciocalteu reagent. Métodos Enzimol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Oropeza, G. Total Alkaloids and Antioxidant Activity of Metabolic Extracts of Ipomea murocoides (Peanut) Leaves; Tesis Universidad Tecnológica de la Mixteca: Oaxaca, Mexico, 2012. [Google Scholar]
- Portela-Márquez, M.A.; Ruiz Cruz, S.; Morán-Palacio, E.F.; Chaidez-Quiroz, C.; Silva-Beltrán, N.P. Phenolic composition, antihemolytic, anti-inflammatory and antibacterial activity of propolis from southern Sonora. Biotecnia 2022, 24, 77–86. [Google Scholar] [CrossRef]
- Ramamoorthy, P.; Bono, A. Antioxidante activity, total phenolic and Flavonoid conted of Morinda citriflora fruit extracts from various extraction processes. J. Eng. Sci. Technol. 2007, 1, 70–80. [Google Scholar]
- Krishnaiah, D.; Bono, A.; Sarbatly, R.; Anisuzzaman, S.M. Antioxidant activity and total phenolic content of an isolated Morinda citrifolia L. methanolic extract from Poly-ethersulphone (PES) membrane separator. J. King Saud Univ.—Eng. Sci. 2015, 27, 63–67. [Google Scholar] [CrossRef]
- Rodríguez, B.; Canales, M.; Penieres, J.; Cruz, T. Chemical composition, antioxidant properties and antimicrobial activity of Mexican propolis. Acta Univ. 2020, 30, e2435. [Google Scholar] [CrossRef]
- Okusa, P.N.; Penge, O.; Devleeschouwer, M.; Duez, P. Direct and indirect antimicrobial effects and antioxidant activity of Cordia gilletii De Wild (Boraginaceae). J. Ethnopharmacol. 2007, 112, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Vanden, D.; Vlietnck, A. Screening methods for antibacterial agents from higher plants. Methods Plant Biochem. 1991, 6, 47–71. [Google Scholar]
- Bucio-Villalobos, C.M.; Martínez-Jaime, O.A. Antibacterial activity of an aqueous extract of propolis from the municipality of Irapuato, Guanajuato, Mexico. Mesoamerican Agron. 2017, 28, 223–227. [Google Scholar] [CrossRef]
- Barth, O.M.; Limeria, V. Pollen analysis of some propolis samples from southern Brazil. Cienc. Rural Santa María 1999, 29, 663–667. [Google Scholar] [CrossRef]
- Vargas-Sánchez, R.D.; Peñalba-Garmendia, M.C.; Sánchez-Escalante, J.J.; Torrescano-Urrutia, G.R.; Sánchez-Escalante, A. Pollen profile of propolis produced in the eastern edge of the Sonoran Desert in central Sonora, Mexico. Acta Botanica Mexicana 2016, 114, 69–86. [Google Scholar] [CrossRef]
- Muñoz-Muñoz, O.; Copaja, S.; Speisky-Cosoy, H.; Peña, R.C.; Montenegro, G. Content of flavonoids and phenolic compounds in chilean honeys. Orac Index Química Nova 2007, 30, 848–851. [Google Scholar] [CrossRef]
- Medina, S.; Portillo, M. Bioeconomía Aplicad a la Apicultura; Universidad Autonoma de Chapingo: Texcoco, Mexico, 2017. [Google Scholar]
- Barth, O.M.; da Pinto Luz, C.F. Palynological analysis of Brazilian red propolis samples. J. Apic. Res. 2009, 48, 181–188. [Google Scholar] [CrossRef]
- Oliveira, A.C.; Shinobu, C.S.; Longhini, R.; Franco, S.L.; Svidzinski, T.I. Antifungal activity of propolis extract against yeasts isolated from onychomycosis lesions. Mem. Inst. Oswaldo Cruz 2006, 101, 493–497, Erratum in Mem. Inst. Oswaldo Cruz 2006, 101, 696. [Google Scholar] [CrossRef] [PubMed]
- Londoño-Orozco, A.; Ávila-Acevedo, J.G.; Canales-Martínez, M.M.; Hernández-Delgado, C.T.; Serrano, P.R.; Flores-Ortíz, C.M.; Durán-Diaz, A.; Penieres-Carrillo, J.G.; García Tovar, C.G.; Cruz-Sánchez, T.A. Antibacterial comparative study extracts of Mexican propolis and of three plants which use Apis mellifera for its production. J. Anim. Vet. Adv. 2010, 9, 1250–1254. [Google Scholar] [CrossRef]
- Muñoz, A.M.; Alvarado-Ortíz, C.; Blanco, T.; Castañeda, B.; Ruiz, J.; Alvarado, A. Determination of phenolic compounds, total flavonoids and antioxidant capacity in Peruvian honey from different floral sources. Rev. Soc. Química Perú 2014, 80, 4. [Google Scholar]
- Flores-Rodríguez, I.S.; Moreno-Monteagudo, M.; Londoño-Orozco, A.; Cruz Sánchez, T.A. Use of Mexican Propolis for the Topical Treatment of Dermatomycosis in Horses. Open J. Vet. Med. 2016, 6, 1–8. [Google Scholar] [CrossRef]
- Norma Oficial Mexicana NOM-003-SAG/GAN-2017; Propóleos, Producción y Especificaciones Para su Procesamiento. Diario Oficial de la Federación: Ciudad de México, Mexico, 2017.
- Efraín, L.S.R.; Karla, M.R.; Ramírez, M.; Georgina, D.L.R.L.R.; Antonio, N.R.J. Determinación del Origen Botánico de los Propóleos Sonorenses (CABORCA) Mediante HPLC. Investigación 2009, 4, 24–30. [Google Scholar]
- Rodríguez-Canales, M.; Medina-Romero, Y.M.; Rodríguez-Monroy, M.A.; Nava-Solis, U.; Bolaños-Cruz, S.I.; Mendoza-Romero, M.J.; Canales-Martínez, M.M. Actividad del propóleo de México sobre los factores de proliferación y virulencia de Candida albicans. BMC Microbiol. 2023, 23, 325. [Google Scholar] [CrossRef]
- Peña, C.; Quirasco, M.; Estrada, C.; Gálvez, A. Detección de Polen de Plantas Genéticamente Modificadas En Miel. Fase I; CONABIO: Mexico City, Mexico, 2013. [Google Scholar]
Family | Genus | Species |
---|---|---|
Amaranthaceae | Amaranthus | Amaranthus hybridus L. (IZTA 3801) |
Anacardiaceae | Schinus | Schinus molle L. (IZTA 3802) |
Asteraceae | Bidens | Bidens odorata Cav. (IZTA 3806) |
Taraxacum | Taraxacum campylodes G.E. Haglund (IZTA 3811) | |
Titonia | Titonia tuubeaformis (Jacq.) Cass. (IZTA 3812) | |
Brassicaceae | Brassica | Brassica rapa L. (IZTA 3814) |
Convulvulaceae | Ipomoea | |
Euphorbiaceae | Ricinus | Ricinus communis L. (FESC-6294) |
Fabaceae | Medicago | Medicago sativa L. (IZTA 3817) |
Moraceae | Ficus | |
Myrtaceae | Callistemon | Melaleuca citrina (Curtis) Dum. Cours (IZTA 3820) |
Eucalyptus | Eucalyptus globulus Labill. (FESC-11044) | |
Olaceae | Fraxinus | Fraxinus uhdei (Wenz.) Lingelsh (IZTA 42812) |
Ligustrum | Ligustrum japonicum Thumb (IZTA 42812) | |
Pinaceae | Pinus | |
Poaceae | Zea | Zae mays L. |
Rosaceae | Pronus |
Pollen Type | % | |
---|---|---|
Brassica rapa L. | 40.00 | |
Melaleuca citrina (Curtis) Dum. Cours | 10.56 | |
Bidens odorata Cav. | 8.44 | |
Eucalyptus | 6.22 | |
Medicago sativa L. | 5.44 | |
Schinus molle L. | 4.44 | |
Titonia tuubeaformis (Jacq.) Cass. | 4.22 | |
Ricinus communis L. | 4.11 | |
Complementary | Pronus | 3.33 |
Fraxinus uhdei (Wenz.) Lingelsh | 2.56 | |
Amaranthus hybridus L. | 2.00 | |
Ligustrum japonicum Thumb | 2.00 | |
Ipomoea | 1.89 | |
Ficus | 1.67 | |
Taraxacum campylodes G.E. Haglund | 1.44 | |
Zae mays L. | 1.22 | |
Pinus | 0.44 |
Family | Genus | Species |
---|---|---|
Altingiaceae | Liquidambar | |
Amaranthaceae | Amaranthus | Amaranthus hybridus L. (IZTA 3801) |
Anacardiaceae | Schinus | Schinus molle L. (IZTA 3802) |
Asparagaceae | Yucca | |
Asteraceae | Bidens | Bidens aurea (Aiton) Sherff (IZTA 3805) |
Bidens odorata Cav. (IZTA 3806) | ||
Bidens pilosa L. (IZTA 3807) | ||
Helminthotheca | Helminthotheca echioides (L) Holub (IZTA 3809) | |
Helianthus | ||
Taraxacum | Taraxacum campylodes G.E. Haglund (IZTA 3811) | |
Betulacaeae | Alnus | |
Brassicaceae | Brassica | Brassica rapa L. (IZTA 3814) |
Raphanus | Raphanus raphanistrum L. (IZTA 3815) | |
Sisymbrium | Sisymbrium irio L. (IZTA 3816) | |
Burseraceae | Bursera | |
Casuarinaceae | Casuarina | Casuarina equisetifolia L. |
Convulvulaceae | Ipomoea | |
Cucurbitaceae | Sicyus | |
Cupressaceae | Cupressus | |
Euphorbiaceae | Ricinus | Ricinus communis L.(FESC-6294) |
Fabaceae | Acacia | |
Medicago | Medicago sativa L. (IZTA 3817) | |
Trifolium | Trifolium amabile Kunth (IZTA 3818) | |
Moraceae | Ficus | |
Myrtaceae | Callistemun | Melaleuca citrina (Curtis) Dum. Cours (IZTA 3820) |
Eucalyptus | Eucalyptus globulus Labill (FESC-11044) | |
Olaceae | Fraxinus | Fraxinus uhdei (Wenz.) Lingelsh (IZTA 42812) |
Ligustrum | Ligustrum japonicum Thumb (IZTA 42812) | |
Pinaceae | Pinus | |
Poaceae | Zea | Zea mays L. |
Rosaceae | Pronus | |
Salicaceae | Populus | |
Solanaceae | Nicotiana | Nicotiana glauca Graham (IZTA 3831) |
Solanum | Solanum rostratum Dunal (IZTA 3833) |
Pollen Type | % | |
---|---|---|
Brassica rapa L. | 63.08 | |
Melaleuca citrina (Curtis) Dum. Cours | 5.00 | |
Eucalyptus globulus Labill | 4.83 | |
Fraxinus uhdei (Wenz.) Lingelsh | 4.00 | |
Trifolium amabile Kunth | 3.75 | |
Cupresus | 3.17 | |
Ricinus communis L. | 2.83 | |
Acacia | 2.00 | |
Alnus | 1.75 | |
C. equisetifolia L. | 1.75 | |
Schinus molle L. | 1.08 | |
Complementary | Ficus | 0.83 |
Pinus | 0.83 | |
Helianthus | 0.75 | |
Ipomoea | 0.75 | |
Nicotiana | 0.67 | |
Taraxacum | 0.67 | |
Liquidambar | 0.33 | |
Bidens | 0.33 | |
Amarantaceae | 0.33 | |
Pronus | 0.25 | |
Yucca | 0.25 | |
Sicyos | 0.25 | |
Populus | 0.17 | |
Zea maiz | 0.17 | |
Ligustrum | 0.08 | |
Bursera | 0.08 | |
Total complementary | 6.75 |
Compound | Retention Time | λmax (nm) | Parention (m/z) [M-H]− | Relative Error (ppm) | |
---|---|---|---|---|---|
HPLC-DAD | HPLC-MS | ||||
Naringin | 2.494 | 220, 284 | |||
Cantechol | 2.494 | 216, 270 | |||
Naringenin | 4.096 | 20.49 | 224, 282 | 271.03 | 3.1 |
Kaempferol | 7.406 | 220, 366 | |||
Chrysin | 12.284 | 28.08 | 268, 314, 348 | 253.03 | −1.58 |
Luteolin | 23.25 | 285.02 | −10.74 | ||
Pinocembrin | 26.55 | 255.04 | 3.95 |
Compound | RT (min) | % |
---|---|---|
Benzyl methyl ketone | 7.92 | 1.12 |
m-Eugenol | 11.93 | 3.97 |
Alpha bisabolol | 16.91 | 1.06 |
Palmitic acid, methyl ester | 19.97 | 7.75 |
Palmitic acid, ethyl ester | 20.80 | 0.91 |
Linoleic acid, methyl ester | 22.02 | 1.17 |
Oleic acid, methyl ester | 22.09 | 9.33 |
Methyl stearate | 22.36 | 1.94 |
Oleic acid, ethyl ester | 22.84 | 0.94 |
Palmitamide | 23.02 | 1.14 |
Methyl 18-methylnonadecanoate | 24.56 | 2.29 |
Stearamide | 25.24 | 0.97 |
Pinocembrin | 26.51 | 30.29 |
Chrysin | 28.39 | 15.77 |
6-O-Methylemodin, physcion | 28.70 | 1.94 |
Galangin | 28.83 | 5.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alcivar-Saldaña, J.J.; Rodriguez-Monroy, M.A.; Aguirre-Gómez, A.; Carrillo-Miranda, L.; Velasco-Bejarano, B.; Canales-Martinez, M.M. Determination of the Botanical Origin and Physicochemical Properties of a Propolis Sample Through an Integrated Methodology. Antioxidants 2024, 13, 1412. https://doi.org/10.3390/antiox13111412
Alcivar-Saldaña JJ, Rodriguez-Monroy MA, Aguirre-Gómez A, Carrillo-Miranda L, Velasco-Bejarano B, Canales-Martinez MM. Determination of the Botanical Origin and Physicochemical Properties of a Propolis Sample Through an Integrated Methodology. Antioxidants. 2024; 13(11):1412. https://doi.org/10.3390/antiox13111412
Chicago/Turabian StyleAlcivar-Saldaña, Jose Juan, Marco Aurelio Rodriguez-Monroy, Arturo Aguirre-Gómez, Liborio Carrillo-Miranda, Benjamin Velasco-Bejarano, and Maria Margarita Canales-Martinez. 2024. "Determination of the Botanical Origin and Physicochemical Properties of a Propolis Sample Through an Integrated Methodology" Antioxidants 13, no. 11: 1412. https://doi.org/10.3390/antiox13111412
APA StyleAlcivar-Saldaña, J. J., Rodriguez-Monroy, M. A., Aguirre-Gómez, A., Carrillo-Miranda, L., Velasco-Bejarano, B., & Canales-Martinez, M. M. (2024). Determination of the Botanical Origin and Physicochemical Properties of a Propolis Sample Through an Integrated Methodology. Antioxidants, 13(11), 1412. https://doi.org/10.3390/antiox13111412