Healthier Lipid Profiles of Japanese Adults, Especially in Women with Elevated High-Density Lipoprotein Cholesterol (HDL-C), Are Associated with Low HDL-C Peroxide Content
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Demographic Information and Prescription Medications
2.3. Sample Collection
2.4. Lipid Panel and HDL-C Peroxide Content
- Fluorescence in sample minus fluorescence in blank = peroxidized HDL-C in participant sera, quantified in fluorescence units (FU).
- FU/ HDL-C in sample = normalized peroxidized HDL-C per 1 mg/dL HDL-C (FU/mg HDL-C), the primary unit of quantification.
- HDL-C peroxide content = normalized, peroxidized HDL-C per 1 mg/dL HDL-C in sera (FU per mg/dL HDL-C)/ standardized HDL-C peroxide content in a purified reference control. Steps 2 and 3 were performed with respect to the HDL-C level in the sera. The same pool of purified HDL-C was included in every assay as a common reference point for harmonizing values across assays given the large number of samples.
2.5. Additional Biomarkers
2.6. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Effects of Sex and Age on HDL-C and HDL-C Peroxide Content
3.3. Predictors of HDL-C Peroxide Content
3.4. Prevalence of Elevated HDL-C and Its Effect on HDL-Peroxide Content
3.5. Stability of Elevated HDL-C and Lower HDL-C Peroxide Content over Time
4. Discussion
4.1. Limitations
4.2. Conclusions
4.3. Clinical Implications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Menotti, A.; Lanti, M.; Kromhout, D.; Blackburn, H.; Jacobs, D.; Nissinen, A.; Dontas, A.; Kafatos, A.; Nedeljkovic, S.; Adachi, H. Homogeneity in the relationship of serum cholesterol to coronary deaths across different cultures: 40-year follow-up of the Seven Countries Study. Eur. J. Cardiovasc. Prev. Rehab. 2008, 15, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.S.; Niles, J.K.; Kaufman, H.W.; Awan, Z.; Elgaddar, O.; Choi, R.; Ahn, S.; Verma, R.; Nagarajan, M.; Don-Wauchope, A.; et al. Lipid distributions in the Global Diagnostics Network across five continents. Eur. Heart J. 2023, 44, 2305–2318. [Google Scholar] [CrossRef] [PubMed]
- Ueshima, H.; Sekikawa, A.; Miura, K.; Turin, T.C.; Takashima, N.; Kita, Y.; Watanabe, M.; Kadota, A.; Okuda, N.; Kadowaki, T.; et al. Cardiovascular disease and risk factors in Asia: A selected review. Circulation 2008, 118, 2702–2709. [Google Scholar] [CrossRef]
- Htun, N.C.; Suga, H.; Imai, S.; Shimizu, W.; Takimoto, H. Food intake patterns and cardiovascular risk factors in Japanese adults: Analyses from the 2012 National Health and Nutrition Survey, Japan. Nutr. J. 2017, 16, 61. [Google Scholar] [CrossRef]
- Tsugane, S. Why has Japan become the world’s most long-lived country: Insights from a food and nutrition perspective. Eur. J. Clin. Nutr. 2021, 75, 921–928. [Google Scholar] [CrossRef]
- Okami, Y.; Chan, Q.; Miura, K.; Kadota, A.; Elliott, P.; Masaki, K.; Okayama, A.; Okuda, N.; Yoshita, K.; Miyagawa, N.; et al. Small high-density lipoprotein and omega-3 fatty acid intake differentiates Japanese and Japanese-Americans: The INTERLIPID Study. J. Atheroscler. Thromb. 2023, 30, 884–906. [Google Scholar] [CrossRef]
- Dwyer, T.; Iwane, H.; Dean, K.; Odagiri, Y.; Shimomitsu, T.; Blizzard, L.; Srinivasan, S.; Nicklas, T.; Wattigney, W.; Riley, M.; et al. Differences in HDL cholesterol concentrations in Japanese, American, and Australian children. Circulation 1997, 96, 2830–2836. [Google Scholar] [CrossRef] [PubMed]
- Kouda, K.; Nakamura, H.; Nishio, N.; Fujita, Y.; Takeuchi, H.; Iki, M. Trends in body mass index, blood pressure, and serum lipids in Japanese children: Iwata population-based annual screening (1993–2008). J. Epidemiol. 2010, 20, 212–218. [Google Scholar] [CrossRef]
- Katsuhiko, Y.; Willcox, B.; Chen, R.; Grove, J.S.; Rodriguez, B.L.; Curb, J.D. The impact of westernization on the risk of atherosclerotic vascular disease among Japanese Americans in Hawaii. Int. Congr. Ser. Atheroscler. 2004, 1262, 180–183. [Google Scholar] [CrossRef]
- Yoneda, M.; Kubota, M.; Watanabe, H.; Egusa, G. Westernization of lifestyle and atherosclerosis in the Japanese: Lessons from the Hawaii—Los Angeles—Hiroshima Study. J. Atheroscler. Thromb. 2021, 28, 214–222. [Google Scholar] [CrossRef]
- Namekata, T.; Moore, D.; Knopp, R.; Marcovina, S.; Perrin, E.; Hughes, D.; Suzuki, K.; Mori, M.; Sempos, C.; Hatano, S.; et al. Cholesterol levels among Japanese Americans and other populations: Seattle Nikkei Health Study. J. Atheroscler. Thromb. 1996, 3, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Schwingel, A.; Nakata, Y.; Ito, L.S.; Chodzko-Zajko, W.J.; Shigematsu, R.; Erb, C.; Souza, S.M.; Oba-Shinjo, S.M.; Matsuo, T.; Marie, S.K.; et al. Lower HDL-cholesterol among healthy middle-aged Japanese-Brazilians in São Paulo compared to Natives and Japanese-Brazilians in Japan. Eur. J. Epidemiol. 2007, 22, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Kwan, T.W.; Wong, S.S.; Hong, Y.; Kanaya, A.M.; Khan, S.S.; Hayman, L.L.; Shah, S.H.; Welty, F.K.; Deedwania, P.C.; Khaliq, A.; et al. Epidemiology of diabetes and atherosclerotic cardiovascular disease among Asian American adults: Implications, management, and future directions: A scientific statement from the American Heart Association. Circulation 2023, 148, 74–94. [Google Scholar] [CrossRef] [PubMed]
- Higashi, Y. Endothelial function in dyslipidemia: Roles of LDL-cholesterol, HDL-cholesterol and triglycerides. Cells 2023, 12, 1293. [Google Scholar] [CrossRef]
- Voros, S.; Bansal, A.T.; Barnes, M.R.; Narula, J.; Maurovich-Horvat, P.; Vazquez, G.; Marvasty, I.B.; Brown, B.O.; Voros, I.D.L.; Harris, W.; et al. Bayesian network analysis of panomic biological big data identifies the importance of triglyceride-rich LDL in atherosclerosis development. Front. Cardiovasc. Med. 2023, 9, 960419. [Google Scholar] [CrossRef]
- Kjeldsen, E.W.; Thomassen, J.Q.; Frikke-Schmidt, R. HDL cholesterol concentrations and risk of atherosclerotic cardiovascular disease—Insights from randomized clinical trials and human genetics. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2022, 867, 159063. [Google Scholar] [CrossRef]
- Liu, C.; Dhindsa, D.; Almuwaqqat, Z.; Sun, Y.V.; Quyyum, A.A. Very high high-density lipoprotein cholesterol levels and cardiovascular mortality. Am. J. Cardiol. 2022, 167, 43–53. [Google Scholar] [CrossRef]
- Oda, E.; Kawai, R. High-density lipoprotein cholesterol is positively associated with hypertension in apparently healthy Japanese men and women. Brit. J. Biomed. Sci. 2011, 68, 29–33. [Google Scholar] [CrossRef]
- Yokoyama, S. Unique features of high-density lipoproteins in the Japanese: In population and in genetic factors. Nutrients 2015, 7, 2359–2381. [Google Scholar] [CrossRef]
- Moriyama, K.; Takahashi, E.; Negami, M.; Otsuka, H.; Mitsuhashi, T.; Tsurugano, S.; Inabe, F.; Hiratsuka, N. Evaluation of high-density lipoprotein cholesterol levels in Japanese women. Tokai J. Exp. Clin. Med. 2012, 37, 77–83. [Google Scholar] [PubMed]
- Ko, D.T.; Alter, D.A.; Guo, H.; Koh, M.; Lau, G.; Austin, P.C.; Booth, G.L.; Hogg, W.; Jackevicius, C.A.; Lee, D.S.; et al. High-density lipoprotein cholesterol and cause-specific mortality in individuals without previous cardiovascular conditions: The CANHEART study. J. Am. Coll. Cardiol. 2016, 68, 2073–2083. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Han, K.; Park, S.H.; Kim, M.K.; Yoon, K.H.; Lee, S.H. High-density lipoprotein cholesterol and the risk of myocardial infarction, stroke, and cause-specific mortality: A nationwide cohort study in Korea. J. Lipid Atheroscler. 2021, 10, 74–87. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Dhindsa, D.; Almuwaqqa, Z.; Ko, Y.A.; Mehta, A.; Alkhoder, A.A.; Alras, Z.; Desai, S.R.; Patel, K.J.; Hooda, A.; et al. Association between high-density lipoprotein cholesterol levels and adverse cardiovascular outcomes in high-risk populations. JAMA Cardiol. 2022, 7, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Hamer, M.; O’Donovan, G.; Stamatakis, E. High-density lipoprotein cholesterol and mortality: Too much of a good thing? Arterioscler. Thromb. Vasc. Biol. 2018, 38, 669–672. [Google Scholar] [CrossRef]
- Soran, H.; Schofield, J.D.; Durrington, P.N. Antioxidant properties of HDL. Front. Pharmacol. 2015, 6, 222. [Google Scholar] [CrossRef]
- Srivastava, R.A.K. Dysfunctional HDL in diabetes mellitus and its role in the pathogenesis of cardiovascular disease. Mol. Cell Biochem. 2018, 440, 167–187. [Google Scholar] [CrossRef]
- Rosenson, R.S.; Brewer, H.B.; Ansell, B.J.; Barter, P.; Chapman, M.J.; Heinecke, J.W.; Kontash, A.; Tall, A.R.; Webb, N.R. Dysfunctional HDL and atherosclerotic cardiovascular disease. Nat. Rev. Cardiol. 2016, 13, 48–60. [Google Scholar] [CrossRef]
- Van Lenten, B.J.; Hama, S.Y.; Beer, F.C.; Stafforini, D.M.; Mcintyre, T.M.; Prescott, S.M.; La Du, B.N.; Fogelman, A.M.; Navab, M. Anti-inflammatory HDL becomes pro-inflammatory during the acute phase response. J. Clin. Investig. 1995, 96, 2758–2767. [Google Scholar] [CrossRef]
- Ito, F.; Sono, Y.; Ito, T. Measurement and clinical significance of lipid peroxidation as a biomarker of oxidative stress: Oxidative stress in diabetes, atherosclerosis, and chronic inflammation. Antioxidants 2019, 8, 72. [Google Scholar] [CrossRef]
- Jayaraman, S.; Gantz, D.L.; Gursky, O. Effects of protein oxidation on the structure and stability of model discoidal high-density lipoproteins. Biochem. 2008, 47, 3875–3882. [Google Scholar] [CrossRef]
- Samadi, S.; Mehramiz, M.; Kelesidis, T.; Mobarhan, M.G.; Sahebkar, A.H.; Esmaily, H.; Moohebati, M.; Farjami, Z.; Ferns, G.A.; Mohammadpour, A.; et al. High-density lipoprotein lipid peroxidation as a molecular signature of the risk for developing cardiovascular disease: Results from MASHAD cohort. J. Cell Physiol. 2019, 234, 16168–16177. [Google Scholar] [CrossRef] [PubMed]
- Kelesidis, T.; Roberts, C.K.; Huynh, D.; Martínez-Maza, O.; Currier, J.S. A high throughput biochemical fluorometric method for measuring lipid peroxidation in HDL. PLoS ONE 2014, 9, e111716. [Google Scholar] [CrossRef] [PubMed]
- Sen Roy, S.; Nguyen, H.C.X.; Angelovich, T.A.; Hearps, A.C.; Huynh, D.; Jaworowski, A.; Kelesidis, T. Cell-free biochemical fluorometric enzymatic assay for high-throughput measurement of lipid peroxidation in high density lipoprotein. J. Vis. Exp. 2017, 128, e56325. [Google Scholar] [CrossRef]
- Flaherty, S.M.; Wood, E.K.; Ryff, C.D.; Love, G.D.; Kelesidis, T.; Berkowitz, L.; Echeverría, G.; Rivera, K.; Rigotti, A.; Coe, C.L. Race and sex differences in HDL peroxide content among American adults with and without type 2 diabetes. Lipids Health Dis. 2022, 21, 18. [Google Scholar] [CrossRef]
- Hiratsuka, N.; Yamada, C.; Mitsuhashi, T.; Inabe, F.; Araida, N.; Takahash, E. Significance of high HDL cholesterol levels in Japanese men with metabolic syndrome. Intern. Med. 2011, 50, 2113–2120. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, T.; Sakai, N.; Ishigami, M.; Hirano, K.; Arai, T.; Okada, S.; Okuda, E.; Ohya, A.; Nakajima, N.; Kadowaki, K.; et al. Prevalence and phenotypic spectrum of cholesteryl ester transfer protein gene mutations in Japanese hyperalphalipoproteinemia. Atherosclerosis 2003, 166, 177–185. [Google Scholar] [CrossRef]
- Koizumi, J.; Mabuchi, H.; Yoshimura, A.; Michishita, I.; Takeda, M.; Itoh, H.; Sakai, Y.; Sakai, T.; Ueda, K.; Takeda, R. Deficiency of serum cholesteryl-ester transfer activity in patients with familial hyperalphalipoproteinaemia. Atherosclerosis 1985, 58, 175–186. [Google Scholar] [CrossRef]
- Kapoulea, E.A.; Ready, R.E.; Ginn, J.C. Loneliness and risk for cardiovascular disease in the United States and Japan: The effects of nationality, collectivism, and gender. Soc. Sci. Med. 2023, 337, 116299. [Google Scholar] [CrossRef]
- Grant, L.K.; Czeisler, C.A.; Lockley, S.W.; Rahman, S.A. Time-of-day and meal size effects on clinical lipid markers. J. Clin. Endocrinol. Metab. 2021, 106, e1373–e1379. [Google Scholar] [CrossRef]
- Driver, S.L.; Martin, S.S.; Gluckman, T.J.; Clary, J.M.; Blumenthal, R.S.; Stone, N.J. Fasting or non-fasting lipid measurements: It depends on the question. J. Am. Coll. Cardiol. 2016, 10, 1227–1234. [Google Scholar] [CrossRef]
- Coe, C.L.; Tsenkova, V.; Love, G.D.; Kawakami, N.; Karasawa, M.; Kitayama, S.; Markus, H.R.; Ryff, C.D. Age-related trends in the prevalence of Type 2 Diabetes among Japanese and white and black American adults. Arch. Epidemiol. 2020, 4, 142. [Google Scholar] [CrossRef] [PubMed]
- Mutlu, A.S.; Duffy, J.; Wang, M.C. Lipid metabolism and lipid signals in aging and longevity. Dev. Cell 2021, 56, 1394–1407. [Google Scholar] [CrossRef] [PubMed]
- Félix-Redondo, F.J.; Grau, M.; Fernández-Bergés, D. Cholesterol and cardiovascular disease in the elderly. Facts and gaps. Aging Dis. 2013, 4, 154–169. [Google Scholar] [PubMed] [PubMed Central]
- Yamada, T.; Kimura-Koyanagi, M.; Sakaguchi, K.; Ogawa, W.; Tamori, Y. Obesity and risk for its comorbidities diabetes, hypertension, and dyslipidemia in Japanese individuals aged 65 years. Sci. Rep. 2023, 3, 2346. [Google Scholar] [CrossRef]
- Takaeko, Y.; Matsui, S.; Kajikawa, M.; Maruhashi, T.; Yamaji, T.; Harada, T.; Han, Y.; Hashimoto, H.; Kihara, Y.; Hida, E.; et al. Relationship between high-density lipoprotein cholesterol levels and endothelial function in women: A cross-sectional study. BMJ Open 2020, 10, e038121. [Google Scholar] [CrossRef]
- Schaefer, E.J. Clinical, biochemical, and genetic features in familial disorders of high density lipoprotein deficiency. Arterioscler. 1984, 4, 303–322. [Google Scholar] [CrossRef]
- Saijo, Y.; Kiyota, N.; Kawasaki, Y.; Miyazaki, Y.; Kashimura, J.; Fukuda, M.; Kishi, R. Relationship between C-reactive protein and visceral adipose tissue in healthy Japanese subjects. Diabetes Obes. Metab. 2004, 6, 249–258. [Google Scholar] [CrossRef]
- Palmisano, B.T.; Zhu, L.; Eckel, R.H.; Stafford, J.M. Sex differences in lipid and lipoprotein metabolism. Mol. Metab. 2018, 15, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Magkos, F.; Mittendorfer, B. Sex differences in lipid and lipoprotein metabolism: It’s not just about sex hormones. J. Clin. Endocrinol. Metab. 2011, 96, 885–893. [Google Scholar] [CrossRef]
- Lee, G.; Jeon, H.K.; Yoo, H.Y. Sex-related differences in single nucleotide polymorphisms associated with dyslipidemia in a Korean population. Lipids Health Dis. 2022, 21, 124. [Google Scholar] [CrossRef]
- Conlon, D.M.; Welty, F.K.; Reyes-Soffer, G.; Amengual, J. Sex-specific differences in lipoprotein production and clearance. Arterioscler. Thromb. Vasc. Biol. 2023, 43, 1617–1625. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Armstrong, N.; Pavela, G.; Kaiser, K. Sex and race differences in obesity-related genetic susceptibility and risk of cardiometabolic disease in older US adults. JAMA Netw. Open. 2023, 6, e2347171. [Google Scholar] [CrossRef] [PubMed]
- Giammanco, A.; Noto, D.; Barbagallo, C.M.; Nardi, E.; Caldarella, R.; Ciaccio, M.; Averna, M.R.; Cefalù, A.B. Hyperalphalipoproteinemia and beyond: The role of HDL in cardiovascular diseases. Life 2021, 11, 581. [Google Scholar] [CrossRef]
- Hirano, K.; Yamashita, S.; Nakajima, N.; Arai, T.; Maruyama, T.; Yoshida, Y.; Ishigami, M.; Sakai, N.; Kameda-Takemura, K.; Matsuzawa, Y. Genetic cholesteryl ester transfer protein deficiency is extremely frequent in the Omagari area of Japan. Marked hyperalphalipoproteinemia caused by CETP gene mutation is not associated with longevity. Arterioscler. Thromb. Vasc. Biol. 1997, 17, 1053–1059. [Google Scholar] [CrossRef] [PubMed]
- Inazu, A.; Jiang, X.C.; Haraki, T.; Yagi, K.; Kamon, N.; Koizumi, J.; Mabuchi, H.; Takeda, R.; Takata, K.; Moriyama, Y.; et al. Genetic cholesteryl ester transfer protein deficiency caused by two prevalent mutations as a major determinant of increased levels of high-density lipoprotein cholesterol. J. Clin. Investig. 1994, 94, 1872–1882. [Google Scholar] [CrossRef]
- Papp, A.C.; Pinsonneault, J.K.; Wang, D.; Newman, L.C.; Gong, Y.; Johnson, J.A.; Pepine, C.J.; Kumari, M.; Hingorani, A.D.; Talmud, P.J.; et al. Cholesteryl ester transfer protein (CETP) polymorphisms affect mRNA splicing, HDL levels, and sex-dependent cardiovascular risk. PLoS ONE 2012, 7, e31930. [Google Scholar] [CrossRef]
- Karimi, E.; Dehghan, P.; Azizi-Soleiman, F.; Mohamadizadeh, M. Date seed (Phoenix dactylifera) supplementation modulates oxidative DNA damage, lipid peroxidation, and cardiometabolic risk factors in type 2 diabetes: A triple-blinded randomized placebo-controlled trial. J. Funct. Food 2024, 117, 106226. [Google Scholar] [CrossRef]
- Kotemori, A.; Sawada, N.; Iwasaki, M.; Yamaji, T.; Shivappa, N.; Hebert, J.R.; Ishihara, J.; Inoue, M.; Tsugane, S.; JPHC FFQ Validation Study Group. Validating the dietary inflammatory index using inflammatory biomarkers in a Japanese population: A cross-sectional study of the JPHC-FFQ validation study. Nutrition 2020, 69, 110569. [Google Scholar] [CrossRef]
- Ni, C.; Ji, Y.; Hu, K.; Xing, K.; Xu, Y.; Gao, Y. Effect of exercise and antioxidant supplementation on cellular lipid peroxidation in elderly individuals: Systematic review and network meta-analysis. Front. Physiol. 2023, 14, 1113270. [Google Scholar] [CrossRef]
- Coe, C.L.; Miyamoto, Y.; Love, G.D.; Karasawa, M.; Kawakami, N.; Kitayama, S.; Ryff, C.D. Cultural and lifestyle practices associated with low inflammatory physiology in Japanese adults. Brain Behav. Immun. 2020, 90, 385–392. [Google Scholar] [CrossRef]
- Ando, E.; Kachi, Y.; Kawakami, N.; Fukuda, Y.; Kawada, T. Associations of non-standard employment with cardiovascular risk factors: Findings from nationwide cross-sectional studies in Japan. Ind. Health 2018, 56, 336–345. [Google Scholar] [CrossRef]
- Garin, M.-C.B.; Moren, X.; James, R.W. Paraoxonase-1 and serum concentrations of HDL-cholesterol and apoA-I. J. Lipid Res. 2006, 47, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Suehiro, T.; Nakauchi, Y.; Yamamoto, M.; Arii, K.; Itoh, H.; Hamashige, N.; Hashimoto, K. Paraoxonase gene polymorphism in Japanese subjects with coronary heart disease. Int. J. Cardiol. 1996, 57, 69–73. [Google Scholar] [CrossRef]
- Yamada, Y.; Ando, F.; Niino, N.; Miki, T.; Shimokata, H. Association of polymorphisms of paraoxonase 1 and 2 genes, alone or in combination, with bone mineral density in community-dwelling Japanese. J. Hum. Genet. 2003, 48, 469–475. [Google Scholar] [CrossRef]
- Ichikawa, K.; Konta, T.; Emi, M.; Toriyama, S.; Takasaki, S.; Ikeda, A.; Shibata, Y.; Takabatake, N.; Takeishi, Y.; Kato, T.; et al. Genetic polymorphisms of paraoxonase-1 are associated with chronic kidney disease in Japanese women. Kidney Int. 2009, 76, 183–189. [Google Scholar] [CrossRef]
- Ikeda, Y.; Suehiro, T.; Itahara, T.; Inui, Y.; Chikazawa, H.; Inoue, M.; Arii, K.; Hashimoto, K. Human serum paraoxonase concentration predicts cardiovascular mortality in hemodialysis patients. Clin. Nephrol. 2007, 67, 358–365. [Google Scholar] [CrossRef]
- Ikeda, Y.; Inoue, M.; Suehiro, T.; Arii, K.; Kumon, Y.; Hashimoto, K. Low human paraoxonase predicts cardiovascular events in Japanese patients with type 2 diabetes. Acta Diabetol. 2009, 46, 239–242. [Google Scholar] [CrossRef]
- Sumi, A.; Nakamura, U.; Iwase, M.; Fujii, H.; Ohkuma, T.; Ide, H.; Jodai-Kitamura, T.; Komorita, Y.; Yoshinari, M.; Hirakawa, Y.; et al. The gene–treatment interaction of paraoxonase-1 gene polymorphism and statin therapy on insulin secretion in Japanese patients with type 2 diabetes: Fukuoka diabetes registry. BMC Med Genet. 2017, 18, 146. [Google Scholar] [CrossRef]
- Ueno, T.; Shimazaki, E.; Matsumoto, T.; Watanabe, H.; Tsunemi, A.; Takahashi, Y.; Mori, M.; Hamano, R.; Fujioka, T.; Soma, M.; et al. Paraoxonase-1 polymorphism Leu-Met55 is associated with cerebral infarction in Japanese population. Med. Sci. Monit. 2003, 9, CR208-12. [Google Scholar] [PubMed]
- Eckerson, H.W.; Romson, J.; Wyte, C.; La Du, B.N. The human serum paraoxonase polymorphism: Identification of phenotypes by their response to salts. Am. J. Hum. Genet. 1983, 35, 214–227. [Google Scholar] [PubMed] [PubMed Central]
- Shimizu, Y.; Nakazato, M.; Sekita, T.; Kadota, K.; Yamasaki, H.; Takamura, N.; Aoyagi, K.; Maeda, T. Association of arterial stiffness and diabetes with triglycerides-to-HDL cholesterol ratio for Japanese men: The Nagasaki Islands Study. Atherosclerosis 2013, 228, 491–495. [Google Scholar] [CrossRef]
- Sone, H.; Tanaka, S.; Tanaka, S.; Iimuro, S.; Oida, K.; Yamasaki, Y.; Oikawa, S.; Ishibashi, S.; Katayama, S.; Ohashi, Y.; et al. Japan Diabetes Complications Study Group. Serum level of triglycerides is a potent risk factor comparable to LDL cholesterol for coronary heart disease in Japanese patients with type 2 diabetes: Subanalysis of the Japan Diabetes Complications Study (JDCS). J. Clin. Endocrinol. Metab. 2011, 96, 3448–3456. [Google Scholar] [CrossRef]
- NIPPON DATA80 Research Group. Risk assessment chart for death from cardiovascular disease based on a 19-year follow-up study of a Japanese representative population. Circ. J. 2006, 70, 1249–1255. [Google Scholar] [CrossRef] [PubMed]
- Iso, H. Changes in coronary heart disease risk among Japanese. Circulation 2008, 118, 2725–2729. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, S. Continuous and marked increase of Japanese HDL associates paradoxically with their nutritional shift. J. Atheroscler. Thromb. 2023, 30, 1288, Erratum in J. Atheroscler Thromb. 2023, 30, 919–933. [Google Scholar] [CrossRef]
- Sahashi, Y.; Goto, A.; Takachi, R.; Ishihara, J.; Kito, K.; Kanehara, R.; Yamaji, T.; Iwasaki, M.; Inoue, M.; Shoichiro, T.; et al. Inverse association between fruit and vegetable intake and all-cause mortality: Japan Public Health Center-based prospective study. J. Nutr. 2022, 152, 2245–2254. [Google Scholar] [CrossRef]
Baseline | Follow-Up | |||||
---|---|---|---|---|---|---|
Female | Male | Total | Female | Male | Total | |
Participant Number | 247 | 216 | 463 | 138 | 103 | 241 |
No/Yes Meds * | 30/217 | 18/198 | 48/415 | 16/172 | 8/95 | 41/217 |
p Values | ||||
---|---|---|---|---|
Female (n = 247) | Male (216) | Sex | Age ** | |
Age (yr) | 55.1 (0.9) * | 58.0 (0.9) | 0.025 | - |
BMI (kg/M2) | 21.7 (0.2) | 23.8 (0.2) | 0.002 | 0.0001 |
WC (cm) | 70.9 (0.5) | 82.0 (0.6) | 0.001 | 0.0001 |
HA1c | 5.7 (0.03) | 5.9 (0.01) | NS | NS |
CRP (nmol) *** | 5.3 (0.7) | 14.1 (2.2) | 0.04 | NS |
IL-6 (pg/mL) | 1.5 (0.1) | 1.9 (0.2) | 0.05 | NS |
Total Chol (mg/dL) | 209.4 (2.3) | 202.8 (8.7) | NS | 0.0003 |
HDL-C (mg/dL) | 79.0 (1.2) | 61.7 (1.2) | 0.0001 | 0.0001 |
LDL-C (mg/dL) | 119.7 (2.3) | 118.9 (2.5) | NS | NS |
Non-HDL-C (mg/dL) | 130.4 (2.3) | 143.9 (2.9) | NS | 0.004 |
Triglyceride (mg/dL) **** | 109.5 (3.5) | 164.0 (7.9) | 0.0008 | 0.05 |
HDL-C peroxide (FU) ***** | 7.4 (0.2) | 8.7 (0.3) | NS | 0.0001 |
Systolic (mmHg) | 120.5 (1.2) | 130.3 (1.32) | 0.0001 | 0.0001 |
Diastolic (mmHg) | 74.8 (0.7) | 80.3 (0.7) | 0.0001 | 0.0001 |
HDL-Cperox | Sex (Male Ref) | Age | HA1c | CRP | Waist Circum. | Non- HDL-C | Model p-Value | Adjusted R2 | |
---|---|---|---|---|---|---|---|---|---|
Model 1 | Coeff | −0.141 | 8.9 × 10−5 | 0.031 | |||||
P | 8.9 × 10−5 | ||||||||
Model 2 | Coeff | −0.133 | 0.003 | 5.7 × 10−5 | 0.037 | ||||
P | 2.1 × 10−4 | 0.041 | |||||||
Model 3 | Coeff | −0.127 | 0.002 | 0.365 | 4.0 × 10−5 | 0.043 | |||
P | 4 × 10−4 | 0.201 | 0.062 | ||||||
Model 4 | Coeff | −0.108 | 0.001 | 0.358 | 0.027 | 3.0 × 10−5 | 0.047 | ||
P | 3.6 × 10−4 | 0.330 | 0.067 | 0.085 | |||||
Model 5 | Coeff | 0.004 | 0.007 | 0.202 | 0.009 | 0.011 | 1.2 × 10−8 | 0.085 | |
P | 0.927 | 0.618 | 0.301 | 0.558 | 1.2 × 10−5 | ||||
Model 6 | Coeff | −0.003 | 0.000 | 0.106 | 0.012 | 0.009 | 0.002 | 8.7 × 10−11 | 0.109 |
P | 0.941 | 0.852 | 0.584 | 0.447 | 5.3 × 10−4 | 2.9 × 10−4 |
<89 mg/dL | >90 mg/dL | ||
---|---|---|---|
(n = 386) | (n = 77) | p | |
Total Chol (mg/dL) | 203.4 (1.9) * | 224.7 (3.9) | 0.003 |
HDL-C (mg/dL) | 64.4 (0.8) | 103.6 (1.4) | 0.0001 |
LDL-C (mg/dL) | 119.3 (1.7) | 115.1 (3.6) | NS |
Non-HDL (mg/dL) | 138.9 (2.0) | 121.1 (4.2) | 0.004 |
Trig (mg/dL) | 141.3 (5.0) | 102.2 (5.6) | 0.05 |
HDL-C peroxide (FU) ** | 8.4 (0.2) | 5.8 (0.2) | 0.0001 |
BMI (kg/M2) | 23.1 (0.2) | 20.5 (0.2) | 0.0001 |
WC (cm) | 78.0 (2.5) | 69.2 (0.8) | 0.0001 |
HA1c (%) | 5.9 (0.04) | 5.7 (0.04) | 0.0019 |
CRP (nmol) | 9.9 (1.3) | 7.1 (2.2) | NS |
IL-6 (pg/mL) | 1.8 (0.1) | 1.4 (0.1) | NS |
Systolic BP (mmHg) | 125.9 (1.0) | 120.5 (2.3) | NS |
Diastolic BP (mmHg) | 78.1 (0.6) | 73.8 (1.3) | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berkowitz-Fiebich, L.; Flaherty, S.M.; Kitayama, S.; Karasawa, M.; Kawakami, N.; Rigotti, A.; Coe, C.L. Healthier Lipid Profiles of Japanese Adults, Especially in Women with Elevated High-Density Lipoprotein Cholesterol (HDL-C), Are Associated with Low HDL-C Peroxide Content. Antioxidants 2024, 13, 1434. https://doi.org/10.3390/antiox13121434
Berkowitz-Fiebich L, Flaherty SM, Kitayama S, Karasawa M, Kawakami N, Rigotti A, Coe CL. Healthier Lipid Profiles of Japanese Adults, Especially in Women with Elevated High-Density Lipoprotein Cholesterol (HDL-C), Are Associated with Low HDL-C Peroxide Content. Antioxidants. 2024; 13(12):1434. https://doi.org/10.3390/antiox13121434
Chicago/Turabian StyleBerkowitz-Fiebich, Loni, Shelby M. Flaherty, Shinobu Kitayama, Mayumi Karasawa, Norito Kawakami, Attilio Rigotti, and Christopher L. Coe. 2024. "Healthier Lipid Profiles of Japanese Adults, Especially in Women with Elevated High-Density Lipoprotein Cholesterol (HDL-C), Are Associated with Low HDL-C Peroxide Content" Antioxidants 13, no. 12: 1434. https://doi.org/10.3390/antiox13121434
APA StyleBerkowitz-Fiebich, L., Flaherty, S. M., Kitayama, S., Karasawa, M., Kawakami, N., Rigotti, A., & Coe, C. L. (2024). Healthier Lipid Profiles of Japanese Adults, Especially in Women with Elevated High-Density Lipoprotein Cholesterol (HDL-C), Are Associated with Low HDL-C Peroxide Content. Antioxidants, 13(12), 1434. https://doi.org/10.3390/antiox13121434