Novel Pyrroloquinoline Quinone-Modified Cerium Oxide Nanoparticles and Their Selective Cytotoxicity Under X-Ray Irradiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. CeO2@PQQ NPs and CeO2 NPs Synthesis and Analysis
2.2. X-Ray Exposure
2.3. Assessment of CeO2@PQQ NP Catalytic Activity
2.4. Cell Culture
2.5. MTT Assay
2.6. Live/Dead Assay
2.7. Clonogenic Assay
2.8. Cytokinesis Block Micronucleus Assay (CBMN)
2.9. Mitochondrial Membrane Potential (MMP)
2.10. Intracellular Glutathione (GSH)
3. Results
3.1. Characterization of CeO2@PQQ NPs
3.2. Catalytic Activity of CeO2@PQQ NPs
3.3. Cytotoxicity Study of CeO2@PQQ NPs
3.4. Effect of CeO2@PQQ NPs on Antioxidant Enzyme Levels (Reduced Glutathione Measurement)
3.5. Effect of CeO2@PQQ NPs on Mitochondrial Membrane Potential (MMP)
3.6. Effect of CeO2@PQQ NPs on Colony Formation Ability
3.7. Effect of CeO2@PQQ NPs on Genotoxicity Level
4. Discussion
4.1. Characterization and Catalytic Activity of CeO2@PQQ NPs
4.2. Cytotoxicity of CeO2@PQQ NPs
4.3. Changes in Intracellular Antioxidant Levels (Reduced Glutathione) Under the Influence of CeO2@PQQ NPs and X-Ray Irradiation
4.4. Mitochondrial Status Under the Influence of CeO2@PQQ NPs and X-Ray Irradiation
4.5. Reproductive Cell Death and DNA Damage Under the Influence of CeO2@PQQ NPs and X-Ray Irradiation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galadari, S.; Rahman, A.; Pallichankandy, S.; Thayyullathil, F. Reactive Oxygen Species and Cancer Paradox: To Promote or to Suppress? Free Radic. Biol. Med. 2017, 104, 144–164. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, P.; Tal, A.A.; Skallberg, A.; Brommesson, C.; Hu, Z.; Boyd, R.D.; Olovsson, W.; Fairley, N.; Abrikosov, I.A.; Zhang, X.; et al. Cerium Oxide Nanoparticles with Antioxidant Capabilities and Gadolinium Integration for MRI Contrast Enhancement. Sci. Rep. 2018, 8, 6999. [Google Scholar] [CrossRef] [PubMed]
- Foulkes, R.; Man, E.; Thind, J.; Yeung, S.; Joy, A.; Hoskins, C. The Regulation of Nanomaterials and Nanomedicines for Clinical Application: Current and Future Perspectives. Biomater. Sci. 2020, 8, 4653–4664. [Google Scholar] [CrossRef] [PubMed]
- Popov, A.L.; Shcherbakov, A.B.; Zholobak, N.M.; Baranchikov, A.E.; Ivanov, V.K. Cerium Dioxide Nanoparticles as Third-Generation Enzymes (Nanozymes). Nanosyst. Phys. Chem. Math. 2017, 8, 760–781. [Google Scholar] [CrossRef]
- Popov, A.L.; Popova, N.R.; Tarakina, N.V.; Ivanova, O.S.; Ermakov, A.M.; Ivanov, V.K.; Sukhorukov, G.B. Intracellular Delivery of Antioxidant CeO2 Nanoparticles via Polyelectrolyte Microcapsules. ACS Biomater. Sci. Eng. 2018, 4, 2453–2462. [Google Scholar] [CrossRef]
- Celardo, I.; Pedersen, J.Z.; Traversa, E.; Ghibelli, L. Pharmacological Potential of Cerium Oxide Nanoparticles. Nanoscale 2011, 3, 1411–1420. [Google Scholar] [CrossRef]
- Shcherbakov, A.B.; Reukov, V.V.; Yakimansky, A.V.; Krasnopeeva, E.L.; Ivanova, O.S.; Popov, A.L.; Ivanov, V.K. CeO2 Nanoparticle-Containing Polymers for Biomedical Applications: A Review. Polymers 2021, 13, 924. [Google Scholar] [CrossRef]
- Korsvik, C.; Patil, S.; Seal, S.; Self, W.T. Superoxide Dismutase Mimetic Properties Exhibited by Vacancy Engineered Ceria Nanoparticles. Chem. Commun. 2007, 1056–1058. [Google Scholar] [CrossRef]
- Heckert, E.G.; Karakoti, A.S.; Seal, S.; Self, W.T. The Role of Cerium Redox State in the SOD Mimetic Activity of Nanoceria. Biomaterials 2008, 29, 2705–2709. [Google Scholar] [CrossRef]
- Sozarukova, M.M.; Shestakova, M.A.; Teplonogova, M.A.; Izmailov, D.Y.; Proskurnina, E.V.; Ivanov, V.K. Quantification of Free Radical Scavenging Properties and SOD-Like Activity of Cerium Dioxide Nanoparticles in Biochemical Models. Russ. J. Inorg. Chem. 2020, 65, 597–605. [Google Scholar] [CrossRef]
- Singh, R.; Singh, S. Role of Phosphate on Stability and Catalase Mimetic Activity of Cerium Oxide Nanoparticles. Colloids Surf. B Biointerfaces 2015, 132, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Pirmohamed, T.; Dowding, J.M.; Singh, S.; Wasserman, B.; Heckert, E.; Karakoti, A.S.; King, J.E.S.; Seal, S.; Self, W.T. Nanoceria Exhibit Redox State-Dependent Catalase Mimetic Activity. Chem. Commun. 2010, 46, 2736–2738. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Singh, S. Redox-Dependent Catalase Mimetic Cerium Oxide-Based Nanozyme Protect Human Hepatic Cells from 3-AT Induced Acatalasemia. Colloids Surf. B Biointerfaces 2019, 175, 625–635. [Google Scholar] [CrossRef]
- Jiao, X.; Song, H.; Zhao, H.; Bai, W.; Zhang, L.; Lv, Y. Well-Redispersed Ceria Nanoparticles: Promising Peroxidase Mimetics for H2O2 and Glucose Detection. Anal. Methods 2012, 4, 3261–3267. [Google Scholar] [CrossRef]
- Ansari, A.A.; Solanki, P.R.; Malhotra, B.D. Hydrogen Peroxide Sensor Based on Horseradish Peroxidase Immobilized Nanostructured Cerium Oxide Film. J. Biotechnol. 2009, 142, 179–184. [Google Scholar] [CrossRef]
- Asati, A.; Santra, S.; Kaittanis, C.; Nath, S.; Perez, J.M. Oxidase-Like Activity of Polymer-Coated Cerium Oxide Nanoparticles. Angew. Chem. 2009, 121, 2344–2348. [Google Scholar] [CrossRef]
- Liu, B.; Huang, Z.; Liu, J. Boosting the Oxidase Mimicking Activity of Nanoceria by Fluoride Capping: Rivaling Protein Enzymes and Ultrasensitive F− Detection. Nanoscale 2016, 8, 13562–13567. [Google Scholar] [CrossRef]
- Tian, Z.; Yao, T.; Qu, C.; Zhang, S.; Li, X.; Qu, Y. Photolyase-Like Catalytic Behavior of CeO2. Nano Lett. 2019, 19, 8270–8277. [Google Scholar] [CrossRef]
- Xu, F.; Lu, Q.; Huang, P.-J.J.; Liu, J. Nanoceria as a DNase I Mimicking Nanozyme. Chem. Commun. 2019, 55, 13215–13218. [Google Scholar] [CrossRef]
- Alpaslan, E.; Yazici, H.; Golshan, N.H.; Ziemer, K.S.; Webster, T.J. pH-Dependent Activity of Dextran-Coated Cerium Oxide Nanoparticles on Prohibiting Osteosarcoma Cell Proliferation. ACS Biomater. Sci. Eng. 2015, 1, 1096–1103. [Google Scholar] [CrossRef]
- Neal, C.J.; Kolanthai, E.; Wei, F.; Coathup, M.; Seal, S. Surface Chemistry of Biologically Active Reducible Oxide Nanozymes. Adv. Mater. 2024, 36, 2211261. [Google Scholar] [CrossRef] [PubMed]
- Klaunig, J.E. Oxidative Stress and Cancer. Curr. Pharm. Des. 2019, 24, 4771–4778. [Google Scholar] [CrossRef]
- Sahiner, U.M.; Birben, E.; Erzurum, S.; Sackesen, C.; Kalayci, Ö. Oxidative Stress in Asthma: Part of the Puzzle. Pediatr. Allergy Immunol. 2018, 29, 789–800. [Google Scholar] [CrossRef] [PubMed]
- Yaribeygi, H.; Panahi, Y.; Javadi, B.; Sahebkar, A. The Underlying Role of Oxidative Stress in Neurodegeneration: A Mechanistic Review. CNS Neurol. Disord. Drug Targets 2018, 17, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Anthony, C.; Ghosh, M. The Structure and Function of the PQQ-Containing Quinoprotein Dehydrogenases. Prog. Biophys. Mol. Biol. 1998, 69, 1–21. [Google Scholar] [CrossRef]
- Anthony, C. Pyrroloquinoline Quinone (PQQ) and Quinoprotein Enzymes. Antioxid. Redox Signal. 2001, 3, 757–774. [Google Scholar] [CrossRef]
- He, K.; Nukada, H.; Urakami, T.; Murphy, M.P. Antioxidant and Pro-Oxidant Properties of Pyrroloquinoline Quinone (PQQ): Implications for Its Function in Biological Systems. Biochem. Pharmacol. 2003, 65, 67–74. [Google Scholar] [CrossRef]
- Stites, T.; Storms, D.; Bauerly, K.; Mah, J.; Harris, C.; Fascetti, A.; Rogers, Q.; Tchaparian, E.; Satre, M.; Rucker, R.B. Pyrroloquinoline Quinone Modulates Mitochondrial Quantity and Function in Mice. J. Nutr. 2006, 136, 390–396. [Google Scholar] [CrossRef]
- Akagawa, M.; Minematsu, K.; Shibata, T.; Kondo, T.; Ishii, T.; Uchida, K. Identification of Lactate Dehydrogenase as a Mammalian Pyrroloquinoline Quinone (PQQ)-Binding Protein. Sci. Rep. 2016, 6, 26723. [Google Scholar] [CrossRef]
- Mukai, K.; Ouchi, A.; Nagaoka, S.; Nakano, M.; Ikemoto, K. Pyrroloquinoline Quinone (PQQ) Is Reduced to Pyrroloquinoline Quinol (PQQH2) by Vitamin C, and PQQH2 Produced Is Recycled to PQQ by Air Oxidation in Buffer Solution at pH 7.4. Biosci. Biotechnol. Biochem. 2016, 80, 178–187. [Google Scholar] [CrossRef]
- Kasahara, T.; Kato, T. A New Redox-Cofactor Vitamin for Mammals. Nature 2003, 422, 832. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, H.J.; Xu, L.; Long, C.; Samuel, K.G.; Yue, H.Y.; Sun, L.L.; Wu, S.G.; Qi, G.H. Dietary Supplementation of Pyrroloquinoline Quinone Disodium Protects against Oxidative Stress and Liver Damage in Laying Hens Fed an Oxidized Sunflower Oil-Added Diet. Animal 2016, 10, 1129–1136. [Google Scholar] [CrossRef] [PubMed]
- Zhukova, N.V. The value and methods of synthesis Pyrroloquinolinquinone (PQQ). MCU J. Nat. Sci. 2023, 49, 35. [Google Scholar] [CrossRef]
- Jonscher, K.R.; Rucker, R.B. Pyrroloquinoline Quinone. In Dietary Interventions in Liver Disease; Elsevier: Amsterdam, The Netherlands, 2019; pp. 157–173. ISBN 978-0-12-814466-4. [Google Scholar]
- Zamyatina, E.A.; Goryacheva, O.A.; Popova, N.R. Physicochemical Properties and Biological Activity of Novel Cerium Oxide Nanoparticles Modified With Pyrroloquinoline Quinone. Nanosyst. Phys. Chem. Math. 2024, 15, 683–692. [Google Scholar] [CrossRef]
- Popov, A.L.; Ermakov, A.M.; Savintseva, I.V.; Selezneva, I.I.; Poltavtseva, R.A.; Zaraisky, E.I.; Poltavtsev, A.M.; Stepanov, A.A.; Ivanov, V.K.; Sukhikh, G.T. Citrate-Stabilized Nanoparticles Of CeO2 Stimulate Proliferation Of Human Mesenchymal Stem Cells In Vitro. Nanomechanics Sci. Technol. Int. J. 2016, 7, 235–246. [Google Scholar] [CrossRef]
- Karmanova, E.E.; Chernikov, A.V.; Popova, N.R.; Sharapov, M.G.; Ivanov, V.E.; Bruskov, V.I. Metformin Mitigates Radiation Toxicity Exerting Antioxidant and Genoprotective Properties. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2023, 396, 2449–2460. [Google Scholar] [CrossRef]
- Unkel, S.; Belka, C.; Lauber, K. On the Analysis of Clonogenic Survival Data: Statistical Alternatives to the Linear-Quadratic Model. Radiat. Oncol. 2016, 11, 11. [Google Scholar] [CrossRef]
- Ipek, E. The Relationship of Micronucleus Frequency and Nuclear Division Index with Coronary Artery Disease SYNTAX and Gensini Scores. Anatol. J. Cardiol. 2017, 17, 483–489. [Google Scholar] [CrossRef]
- Kuwahara, Y.; Tomita, K.; Roudkenar, M.H.; Roushandeh, A.M.; Urushihara, Y.; Igarashi, K.; Kurimasa, A.; Sato, T. Decreased Mitochondrial Membrane Potential Is an Indicator of Radioresistant Cancer Cells. Life Sci. 2021, 286, 120051. [Google Scholar] [CrossRef]
- Franken, N.A.P.; Rodermond, H.M.; Stap, J.; Haveman, J.; Van Bree, C. Clonogenic Assay of Cells in Vitro. Nat. Protoc. 2006, 1, 2315–2319. [Google Scholar] [CrossRef]
- Luzhna, L.; Kathiria, P.; Kovalchuk, O. Micronuclei in Genotoxicity Assessment: From Genetics to Epigenetics and Beyond. Front. Genet. 2013, 4, 131. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, O.S.; Shekunova, T.O.; Ivanov, V.K.; Shcherbakov, A.B.; Popov, A.L.; Davydova, G.A.; Selezneva, I.I.; Kopitsa, G.P.; Tret’yakov, Y.D. One-Stage Synthesis of Ceria Colloid Solutions for Biomedical Use. Dokl. Chem. 2011, 437, 103–106. [Google Scholar] [CrossRef]
- Popov, A.L.; Abakumov, M.A.; Savintseva, I.V.; Ermakov, A.M.; Popova, N.R.; Ivanova, O.S.; Kolmanovich, D.D.; Baranchikov, A.E.; Ivanov, V.K. Biocompatible Dextran-Coated Gadolinium-Doped Cerium Oxide Nanoparticles as MRI Contrast Agents with High T1 Relaxivity and Selective Cytotoxicity to Cancer Cells. J. Mater. Chem. B 2021, 9, 6586–6599. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, W.; Wu, X.; Gao, X. Mechanism of pH-Switchable Peroxidase and Catalase-like Activities of Gold, Silver, Platinum and Palladium. Biomaterials 2015, 48, 37–44. [Google Scholar] [CrossRef]
- Shcherbakov, A.B.; Zholobak, N.M.; Ivanov, V.K. Biological, Biomedical and Pharmaceutical Applications of Cerium Oxide. In Cerium Oxide (CeO₂): Synthesis, Properties and Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 279–358. ISBN 978-0-12-815661-2. [Google Scholar]
- Estevez, A.; Ganesana, M.; Trentini, J.; Olson, J.; Li, G.; Boateng, Y.; Lipps, J.; Yablonski, S.; Donnelly, W.; Leiter, J.; et al. Antioxidant Enzyme-Mimetic Activity and Neuroprotective Effects of Cerium Oxide Nanoparticles Stabilized with Various Ratios of Citric Acid and EDTA. Biomolecules 2019, 9, 562. [Google Scholar] [CrossRef]
- Zhang, X.; Li, G.; Chen, G.; Wu, D.; Wu, Y.; James, T.D. Enzyme Mimics for Engineered Biomimetic Cascade Nanoreactors: Mechanism, Applications, and Prospects. Adv. Funct. Mater. 2021, 31, 2106139. [Google Scholar] [CrossRef]
- Margret, A.A.; Preyenga, R. Enzyme-like Activity of Nanozymes, the Enzyme Mimics. In Nano-Enzyme Incorporated Particles; Elsevier: Amsterdam, The Netherlands, 2024; pp. 87–112. ISBN 978-0-443-18810-7. [Google Scholar]
- Zhou, S.; Cai, H.; He, X.; Tang, Z.; Lu, S. Enzyme-Mimetic Antioxidant Nanomaterials for ROS Scavenging: Design, Classification, and Biological Applications. Coord. Chem. Rev. 2024, 500, 215536. [Google Scholar] [CrossRef]
- Baldim, V.; Bedioui, F.; Mignet, N.; Margaill, I.; Berret, J.-F. The Enzyme-like Catalytic Activity of Cerium Oxide Nanoparticles and Its Dependency on Ce 3+ Surface Area Concentration. Nanoscale 2018, 10, 6971–6980. [Google Scholar] [CrossRef]
- Nakamura, H.; Takada, K. Reactive Oxygen Species in Cancer: Current Findings and Future Directions. Cancer Sci. 2021, 112, 3945–3952. [Google Scholar] [CrossRef]
- Reczek, C.R.; Chandel, N.S. The Two Faces of Reactive Oxygen Species in Cancer. Annu. Rev. Cancer Biol. 2017, 1, 79–98. [Google Scholar] [CrossRef]
- Misra, H.S.; Rajpurohit, Y.S.; Khairnar, N.P. Pyrroloquinoline-Quinone and Its Versatile Roles in Biological Processes. J. Biosci. 2012, 37, 313–325. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Rosenberg, P.A. The Essential Nutrient Pyrroloquinoline Quinone May Act as a Neuroprotectant by Suppressing Peroxynitrite Formation. Eur. J. Neurosci. 2002, 16, 1015–1024. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Jiang, H.; Selke, M.; Wang, X. Selective Cytotoxicity Effect of Cerium Oxide Nanoparticles Under UV Irradiation. J. Biomed. Nanotechnol. 2014, 10, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Alsehli, B.R.; Hassan, M.H.A.; Mohamed, D.S.; Saddik, M.S.; Al-Hakkani, M.F. Enhanced Cytotoxic Efficacy against MCF-7 and HCT116 Cell Lines and High-Performance Cefoperazone Removal Using Biogenically Synthesized CeO2 Nanoparticles. J. Mol. Struct. 2024, 1318, 139261. [Google Scholar] [CrossRef]
- Min, Z.; Wang, L.; Jin, J.; Wang, X.; Zhu, B.; Chen, H.; Cheng, Y. Pyrroloquinoline Quinone Induces Cancer Cell Apoptosis via Mitochondrial-Dependent Pathway and Down-Regulating Cellular Bcl-2 Protein Expression. J. Cancer 2014, 5, 609–624. [Google Scholar] [CrossRef]
- Mittal, S.; Pandey, A.K. Cerium Oxide Nanoparticles Induced Toxicity in Human Lung Cells: Role of ROS Mediated DNA Damage and Apoptosis. BioMed Res. Int. 2014, 2014, 891934. [Google Scholar] [CrossRef]
- Jensen, F.E.; Gardner, G.J.; Williams, A.P.; Gallop, P.M.; Aizenman, E.; Rosenberg, P.A. The Putative Essential Nutrient Pyrroloquinoline Quinone Is Neuroprotective in a Rodent Model of Hypoxic/Ischemic Brain Injury. Neuroscience 1994, 62, 399–406. [Google Scholar] [CrossRef]
- Saihara, K.; Kamikubo, R.; Ikemoto, K.; Uchida, K.; Akagawa, M. Pyrroloquinoline Quinone, a Redox-Active o -Quinone, Stimulates Mitochondrial Biogenesis by Activating the SIRT1/PGC-1α Signaling Pathway. Biochemistry 2017, 56, 6615–6625. [Google Scholar] [CrossRef]
- Wu, R.; Pan, J.; Shen, M.; Xing, C. Apoptotic Effect of Pyrroloquinoline Quinone on Chondrosarcoma Cells through Activation of the Mitochondrial Caspase-dependent and Caspase-independent Pathways. Oncol. Rep. 2018, 40, 1614–1620. [Google Scholar] [CrossRef]
- Zhao, Y.; Seefeldt, T.; Chen, W.; Carlson, L.; Stoebner, A.; Hanson, S.; Foll, R.; Matthees, D.P.; Palakurthi, S.; Guan, X. Increase in Thiol Oxidative Stress via Glutathione Reductase Inhibition as a Novel Approach to Enhance Cancer Sensitivity to X-Ray Irradiation. Free. Radic. Biol. Med. 2009, 47, 176–183. [Google Scholar] [CrossRef]
- Galano, A.; Alvarez-Idaboy, J.R. Glutathione: Mechanism and Kinetics of Its Non-Enzymatic Defense Action against Free Radicals. RSC Adv. 2011, 1, 1763–1771. [Google Scholar] [CrossRef]
- Traverso, N.; Ricciarelli, R.; Nitti, M.; Marengo, B.; Furfaro, A.L.; Pronzato, M.A.; Marinari, U.M.; Domenicotti, C. Role of Glutathione in Cancer Progression and Chemoresistance. Oxidative Med. Cell. Longev. 2013, 2013, 972913. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, A.; Rao, P.J.; Selvam, G.; Murthy, P.B.; Reddy, P.N. Acute Inhalation Toxicity of Cerium Oxide Nanoparticles in Rats. Toxicol. Lett. 2011, 205, 105–115. [Google Scholar] [CrossRef]
- Wen, L.; Lu, X.; Wang, R.; Jin, X.; Hu, L.; You, C. Pyrroloquinoline Quinone Induces Chondrosarcoma Cell Apoptosis by Increasing Intracellular Reactive Oxygen Species. Mol. Med. Rep. 2018, 17, 7184–7190. [Google Scholar] [CrossRef]
- Alkahtani, S.; Alarifi, S.; Alkahtane, A.A.; Albasher, G.; AL-Zharani, M.; Alhoshani, N.M.; AL-Johani, N.S.; Aljarba, N.H.; Saquib Hasnain, M. Pyrroloquinoline Quinone Alleviates Oxidative Damage Induced by High Glucose in HepG2 Cells. Saudi J. Biol. Sci. 2021, 28, 6127–6132. [Google Scholar] [CrossRef]
- Meister, A. Glutathione Deficiency Produced by Inhibition of Its Synthesis, and Its Reversal; Applications in Research and Therapy. Pharmacol. Ther. 1991, 51, 155–194. [Google Scholar] [CrossRef]
- Zhang, W.; Gao, J.; Lu, L.; Bold, T.; Li, X.; Wang, S.; Chang, Z.; Chen, J.; Kong, X.; Zheng, Y.; et al. Intracellular GSH/GST Antioxidants System Change as an Earlier Biomarker for Toxicity Evaluation of Iron Oxide Nanoparticles. NanoImpact 2021, 23, 100338. [Google Scholar] [CrossRef]
- Park, E.-J.; Choi, J.; Park, Y.-K.; Park, K. Oxidative Stress Induced by Cerium Oxide Nanoparticles in Cultured BEAS-2B Cells. Toxicology 2008, 245, 90–100. [Google Scholar] [CrossRef]
- Marí, M.; Morales, A.; Colell, A.; García-Ruiz, C.; Fernández-Checa, J.C. Mitochondrial Glutathione, a Key Survival Antioxidant. Antioxid. Redox Signal. 2009, 11, 2685–2700. [Google Scholar] [CrossRef]
- Saggu, S.; Hung, H.; Quiogue, G.; Lemasters, J.J.; Nieminen, A. Lysosomal Signaling Enhances Mitochondria-Mediated Photodynamic Therapy in A431 Cancer Cells: Role of Iron. Photochem. Photobiol. 2012, 88, 461–468. [Google Scholar] [CrossRef]
- Perevoshchikova, I.V.; Zorov, D.B.; Antonenko, Y.N. Peak Intensity Analysis as a Method for Estimation of Fluorescent Probe Binding to Artificial and Natural Nanoparticles: Tetramethylrhodamine Uptake by Isolated Mitochondria. Biochim. Et Biophys. Acta BBA-Biomembr. 2008, 1778, 2182–2190. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.C.; Rippstein, P.; Tayabali, A.F.; Willmore, W.G. Mitochondrial Toxicity of Cadmium Telluride Quantum Dot Nanoparticles in Mammalian Hepatocytes. Toxicol. Sci. 2015, 146, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Kam, W.W.-Y.; Banati, R.B. Effects of Ionizing Radiation on Mitochondria. Free. Radic. Biol. Med. 2013, 65, 607–619. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Ran, H.; Yin, Y.; Liu, J.; Lu, B.; Ran, X.; Luo, S.; Wang, W.; Yang, Z.; Li, R. Mitochondrial Targeted Cerium Oxide Nanoclusters for Radiation Protection and Promoting Hematopoiesis. Int. J. Nanomed. 2024, 19, 6463–6483. [Google Scholar] [CrossRef]
- Leach, J.K.; Van Tuyle, G.; Lin, P.-S.; Schmidt-Ullrich, R.; Mikkelsen, R.B. Ionizing Radiation-Induced, Mitochondria-Dependent Generation of Reactive Oxygen/Nitrogen1. Cancer Res. 2001, 61, 3894–3901. [Google Scholar]
- Chen, S.; Hou, Y.; Cheng, G.; Zhang, C.; Wang, S.; Zhang, J. Cerium Oxide Nanoparticles Protect Endothelial Cells from Apoptosis Induced by Oxidative Stress. Biol. Trace Elem. Res. 2013, 154, 156–166. [Google Scholar] [CrossRef]
- Chukavin, N.N.; Filippova, K.O.; Ermakov, A.M.; Karmanova, E.E.; Popova, N.R.; Anikina, V.A.; Ivanova, O.S.; Ivanov, V.K.; Popov, A.L. Redox-Active Cerium Fluoride Nanoparticles Selectively Modulate Cellular Response against X-Ray Irradiation In Vitro. Biomedicines 2023, 12, 11. [Google Scholar] [CrossRef]
- Yamamori, T.; Yasui, H.; Yamazumi, M.; Wada, Y.; Nakamura, Y.; Nakamura, H.; Inanami, O. Ionizing Radiation Induces Mitochondrial Reactive Oxygen Species Production Accompanied by Upregulation of Mitochondrial Electron Transport Chain Function and Mitochondrial Content under Control of the Cell Cycle Checkpoint. Free. Radic. Biol. Med. 2012, 53, 260–270. [Google Scholar] [CrossRef]
- Tao, R.; Karliner, J.S.; Simonis, U.; Zheng, J.; Zhang, J.; Honbo, N.; Alano, C.C. Pyrroloquinoline Quinone Preserves Mitochondrial Function and Prevents Oxidative Injury in Adult Rat Cardiac Myocytes. Biochem. Biophys. Res. Commun. 2007, 363, 257–262. [Google Scholar] [CrossRef]
- Kim, B.-J.; Ryu, S.-W.; Song, B.-J. JNK- and P38 Kinase-Mediated Phosphorylation of Bax Leads to Its Activation and Mitochondrial Translocation and to Apoptosis of Human Hepatoma HepG2 Cells. J. Biol. Chem. 2006, 281, 21256–21265. [Google Scholar] [CrossRef]
- Gotfryd, K.; Skladchikova, G.; Lepekhin, E.A.; Berezin, V.; Bock, E.; Walmod, P.S. Cell Type-Specific Anti-Cancer Properties of Valproic Acid: Independent Effects on HDAC Activity and Erk1/2 Phosphorylation. BMC Cancer 2010, 10, 383. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Choi, J.W.; Lim, S.; Kwon, O.; Seo, J.K.; Ryu, S.H.; Suh, P.-G. Phospholipase C-H1 Is Activated by Intracellular Ca2+ Mobilization and Enhances GPCRs/PLC/Ca2+ Signaling. Cell. Signal. 2011, 23, 1022–1029. [Google Scholar] [CrossRef] [PubMed]
- Rafehi, H.; Orlowski, C.; Georgiadis, G.T.; Ververis, K.; El-Osta, A.; Karagiannis, T.C. Clonogenic Assay: Adherent Cells. J. Vis. Exp. 2011, 49, 2573. [Google Scholar] [CrossRef]
- Choi, W.; Lee, E.S. Therapeutic Targeting of DNA Damage Response in Cancer. Int. J. Mol. Sci. 2022, 23, 1701. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.-H.; Karri, S.; Ma, Y.-B.; Feng, D.-F.; Li, Z.-Q. In Vitro and in Vivo Radiosensitization Induced by Hydroxyapatite Nanoparticles. Neuro-Oncology 2013, 15, 880–890. [Google Scholar] [CrossRef]
- Nilsson, R.; Liu, N.-A. Nuclear DNA Damages Generated by Reactive Oxygen Molecules (ROS) under Oxidative Stress and Their Relevance to Human Cancers, Including Ionizing Radiation-Induced Neoplasia Part I: Physical, Chemical and Molecular Biology Aspects. Radiat. Med. Prot. 2020, 1, 140–152. [Google Scholar] [CrossRef]
- Chukavin, N.N.; Kolmanovich, D.D.; Filippova, A.D.; Teplonogova, M.A.; Ivanov, V.K.; Popov, A.L. Synthesis of Redox-Active Ce0.75Bi0.15Tb0.1F3 Nanoparticles and Their Biocompatibility Study in Vitro. Nanosyst. Phys. Chem. Math. 2024, 15, 260–267. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, L.; Liang, Q.; Xi, J.; Zhao, H.; Jin, Y.; Gao, X.; Yan, X.; Gao, L.; Fan, K. Unveiling the Active Sites on Ferrihydrite with Apparent Catalase-like Activity for Potentiating Radiotherapy. Nano Today 2021, 41, 101317. [Google Scholar] [CrossRef]
- Willers, H.; Dahm-Daphi, J.; Powell, S.N. Repair of Radiation Damage to DNA. Br. J. Cancer 2004, 90, 1297–1301. [Google Scholar] [CrossRef]
- Bhatia, A.; Kumar, Y. Cancer Cell Micronucleus: An Update on Clinical and Diagnostic Applications. APMIS 2013, 121, 569–581. [Google Scholar] [CrossRef]
- Caputo, F.; Giovanetti, A.; Corsi, F.; Maresca, V.; Briganti, S.; Licoccia, S.; Traversa, E.; Ghibelli, L. Cerium Oxide Nanoparticles Re-Establish Cell Integrity Checkpoints and Apoptosis Competence in Irradiated HaCat Cells via Novel Redox-Independent Activity. Front. Pharmacol. 2018, 9, 1183. [Google Scholar] [CrossRef] [PubMed]
- Wason, M.S.; Lu, H.; Yu, L.; Lahiri, S.K.; Mukherjee, D.; Shen, C.; Das, S.; Seal, S.; Zhao, J. Cerium Oxide Nanoparticles Sensitize Pancreatic Cancer to Radiation Therapy through Oxidative Activation of the JNK Apoptotic Pathway. Cancers 2018, 10, 303. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.-H.; Zhao, Y.; Ge, X.; Yuan, S.-J.; Wang, J.-H.; Zhi, J.-J.; Yang, Y.-X.; Du, B.-H.; Guo, W.-J.; Wang, S.-S.; et al. Production and Radioprotective Effects of Pyrroloquinoline Quinone. Int. J. Mol. Sci. 2011, 12, 8913–8923. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamyatina, E.A.; Goryacheva, O.A.; Popov, A.L.; Popova, N.R. Novel Pyrroloquinoline Quinone-Modified Cerium Oxide Nanoparticles and Their Selective Cytotoxicity Under X-Ray Irradiation. Antioxidants 2024, 13, 1445. https://doi.org/10.3390/antiox13121445
Zamyatina EA, Goryacheva OA, Popov AL, Popova NR. Novel Pyrroloquinoline Quinone-Modified Cerium Oxide Nanoparticles and Their Selective Cytotoxicity Under X-Ray Irradiation. Antioxidants. 2024; 13(12):1445. https://doi.org/10.3390/antiox13121445
Chicago/Turabian StyleZamyatina, Elizaveta A., Olga A. Goryacheva, Anton L. Popov, and Nelli R. Popova. 2024. "Novel Pyrroloquinoline Quinone-Modified Cerium Oxide Nanoparticles and Their Selective Cytotoxicity Under X-Ray Irradiation" Antioxidants 13, no. 12: 1445. https://doi.org/10.3390/antiox13121445
APA StyleZamyatina, E. A., Goryacheva, O. A., Popov, A. L., & Popova, N. R. (2024). Novel Pyrroloquinoline Quinone-Modified Cerium Oxide Nanoparticles and Their Selective Cytotoxicity Under X-Ray Irradiation. Antioxidants, 13(12), 1445. https://doi.org/10.3390/antiox13121445