Effect of Blood Orange (Citrus sinensis L. Osbeck) Peel Waste as a Feed Additive on the Growth Performance, Digestive Enzyme Activity, Antioxidant Capacity, and Immune Response in Juvenile Black Rockfish (Sebastes schlegelii)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of BOP and Chemical Analysis
2.2. Formulation of Experimental Diets
2.3. Feeding Trial Condition and Design Experiment
2.4. Growth Performance Parameters
2.5. Proximate Body Composition
2.6. Digestive Enzyme Analysis
2.7. Biochemical Analyses and Antioxidant Enzyme Activity
2.8. Immunological Analysis
2.9. Statistical Analyses
3. Results
3.1. Chemical Composition and Antioxidant Activities of BOP
3.2. Growth Performance
3.3. Whole-Body Composition
3.4. Hematological Indices
3.5. Digestive Enzyme Activities
3.6. Antioxidant Enzyme Activities
3.7. Immunological Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stead, S.M. Using systems thinking and open innovation to strengthen aquaculture policy for the United Nations Sustainable Development Goals. J. Fish Biol. 2019, 94, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Lynch, A.J.; Elliott, V.; Phang, S.C.; Claussen, J.E.; Harrison, I.; Murchie, K.J.; Steel, E.A.; Stokes, G.L. Inland fish and fisheries integral to achieving the Sustainable Development Goals. Nat. Sustain. 2020, 3, 579–587. [Google Scholar] [CrossRef]
- Ben-Othman, S.; Jõudu, I.; Bhat, R. Bioactives from agri-food wastes: Present insights and future challenges. Molecules. 2020, 25, 510. [Google Scholar] [CrossRef]
- Leyva-López, N.; Lizárraga-Velázquez, C.E.; Hernández, C.; Sánchez-Gutiérrez, E.Y. Exploitation of Agro-industrial waste as potential source of bioactive compounds for Aquaculture. Foods 2020, 9, 843. [Google Scholar] [CrossRef] [PubMed]
- Dawood, M.A.; Habotta, O.A.; Elsabagh, M.; Azra, M.N.; Van Doan, H.; Kari, Z.A.; Sewilam, H. Fruit processing by-products in the aquafeed industry: A feasible strategy for aquaculture sustainability. Rev. Aquac. 2022, 14, 1945–1965. [Google Scholar] [CrossRef]
- Chekani, R.; Akrami, R.; Ghiasvand, Z.; Chitsaz, H.; Jorjani, S. Effect of dietary dehydrated lemon peel (Citrus limon) supplementation on growth, hemato-immunolological and antioxidant status of rainbow trout (Oncorhynchus mykiss) under exposure to crowding stress. Aquaculture 2012, 539, 736597. [Google Scholar] [CrossRef]
- Harikrishnan, R.; Devi, G.; Van Doan, H.; Balasundaram, C.; Esteban, M.Á.; Abdel-Tawwab, M. Impact of grape pomace flour (GPF) on immunity and immune-antioxidant-anti-inflammatory genes expression in Labeo rohita against Flavobacterium columnaris. Fish Shellfish. Immunol. 2021, 111, 69–82. [Google Scholar] [CrossRef]
- Jia, Z.; Tan, Y.; Liu, Y.; Cai, G.; Chen, X.; Zhai, S. Grape seed proanthocyanidins alleviate the negative effects of dietary cadmium on pearl gentian grouper (Epinephelus fuscoguttatus female × Epinephelus lanceolatus male). Isr. J. Aquac. 2021, 73. [Google Scholar] [CrossRef]
- Zamani, A.; Khajavi, M.; Moafi, A.; Gisbert, E. Utilization of grape seed oil as a dietary lipid source in rainbow trout (Oncorhynchus mykiss) diets. J. Appl. Aquac. 2021, 33, 126–149. [Google Scholar] [CrossRef]
- Qiang, J.; Khamis, O.A.M.; Jiang, H.J.; Cao, Z.M.; He, J.; Tao, Y.F.; Xu, P.; Bao, J.W. Effects of dietary supplementation with apple peel powder on the growth, blood and liver parameters, and transcriptome of genetically improved farmed tilapia (GIFT, Oreochromis niloticus). PLoS ONE 2019, 14, e0224995. [Google Scholar] [CrossRef]
- Giri, S.S.; Jun, J.W.; Sukumaran, V.; Park, S.C. Dietary administration of banana (Musa acuminata) peel flour affects the growth, antioxidant status, cytokine responses, and disease susceptibility of rohu, Labeo rohita. J. Immunol. Res. 2016, 2016, 4086591. [Google Scholar] [CrossRef] [PubMed]
- Van Doan, H.; Hoseinifar, S.H.; Harikrishnan, R.; Khamlor, T.; Punyatong, M.; Tapingkae, W.; Yousefi, M.; Palma, J.; El-Haroun, E. Impacts of pineapple peel powder on growth performance, innate immunity, disease resistance, and relative immune gene expression of Nile tilapia, Oreochromis niloticus. Fish Shellfish. Immunol. 2021, 114, 311–319. [Google Scholar] [CrossRef]
- Beltrán, J.M.G.; Espinosa, C.; Guardiola, F.A.; Esteban, M.Á. Dietary dehydrated lemon peel improves the immune but not the antioxidant status of gilthead seabream (Sparus aurata L.). Fish Shellfish. Immunol. 2017, 64, 426–436. [Google Scholar] [CrossRef]
- Rahman, A.N.A.; ElHady, M.; Shalaby, S.I. Efficacy of the dehydrated lemon peels on the immunity, enzymatic antioxidant capacity and growth of Nile tilapia (Oreochromis niloticus) and African catfish (Clarias gariepinus). Aquaculture 2019, 505, 92–97. [Google Scholar] [CrossRef]
- Butelli, E.; Licciardello, C.; Zhang, Y.; Liu, J.; Mackay, S.; Bailey, P.; Martin, C. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant. Cell. 2012, 24, 1242–1255. [Google Scholar] [CrossRef]
- Forner-Giner, M.Á.; Ballesta-de Los Santos, M.; Melgarejo, P.; Martínez-Nicolás, J.J.; Núñez-Gómez, D.; Continella, A.; Legua, P. Influence of Different Rootstocks on Fruit Quality and Primary and Secondary Metabolites Content of Blood Oranges Cultivars. Molecules 2023, 28, 4176. [Google Scholar] [CrossRef] [PubMed]
- Legua, P.; Modica, G.; Porras, I.; Conesa, A.; Continella, A. Bioactive compounds, antioxidant activity and fruit quality evaluation of eleven blood orange cultivars. J. Sci. Food Agric. 2022, 102, 2960–2971. [Google Scholar] [CrossRef] [PubMed]
- Habibi, F.; Ramezanian, A.; Guillén, F.; Serrano, M.; Valero, D. Blood oranges maintain bioactive compounds and nutritional quality by postharvest treatments with γ-aminobutyric acid, methyl jasmonate or methyl salicylate during cold storage. Food Chem. 2020, 306, 125634. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Galvano, F.; Mistretta, A.; Marventano, S.; Nolfo, F.; Calabrese, G.; Buscemi, S.; Drago, F.; Veronesi, U.; Scuderi, A. Red orange: Experimental models and epidemiological evidence of its benefits on human health. Oxid. Med. Cell. Longev. 2013, 2013, 157240. [Google Scholar] [CrossRef]
- Choi, I.S.; Lee, Y.G.; Khanal, S.K.; Park, B.J.; Bae, H.J. A low-energy, cost-effective approach to fruit and citrus peel waste processing for bioethanol production. Appl. Energy. 2015, 140, 65–74. [Google Scholar] [CrossRef]
- Wang, Y.C.; Chuang, Y.C.; Hsu, H.W. The flavonoid, carotenoid and pectin content in peels of citrus cultivated in Taiwan. Food Chem. 2008, 106, 277–284. [Google Scholar] [CrossRef]
- Liu, S.; Lou, Y.; Li, Y.; Zhao, Y.; Feng, X.; Capozzi, V.; Laaksonen, O.; Yang, B.; Li, P.; Gu, Q. Comparison of anthocyanin and volatile organic compounds in juices and fruit wines made from blood oranges (Citrus sinensis L. Osbeck) at different maturity stages. Food Biosci. 2023, 56, 103194. [Google Scholar] [CrossRef]
- Jridi, M.; Boughriba, S.; Abdelhedi, O.; Nciri, H.; Nasri, R.; Kchaou, H.; Kaya, M.; Sebal, H.; Zouari, N.; Nasri, M. Investigation of physicochemical and antioxidant properties of gelatin edible film mixed with blood orange (Citrus sinensis) peel extract. Food Packag. Shelf Life 2019, 21, 100342. [Google Scholar] [CrossRef]
- Demirbas, A. Comparison study of synthesized red (or blood) orange peels and juice extract-nanoflowers and their antimicrobial properties on fish pathogen (Yersinia ruckeri). Indian J. Microbiol. 2021, 61, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Russo, M.; Bonaccorsi, I.L.; Arigò, A.; Cacciola, F.; De Gara, L.; Dugo, P.; Mondello, L. Blood orange (Citrus sinensis) as a rich source of nutraceuticals: Investigation of bioactive compounds in different parts of the fruit by HPLC-PDA/MS. Nat. Prod. Res. 2021, 35, 4606–4610. [Google Scholar] [CrossRef] [PubMed]
- Korean Statistical Information Service [KOSIS]. Statistical DB; KOSIS: Daejeon, Republic of Korea, 2024. [Google Scholar]
- Moreno, M.I.N.; Isla, M.I.; Sampietro, A.R.; Vattuone, M.A. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J. Ethnopharmacol. 2000, 71, 109–114. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Lee, K.J.; Kim, K.W.; Bai, S.C. Effects of different dietary levels of L-ascorbic acid on growth and tissue vitamin C concentration in juvenile Black rockfish, Sebastes schlegeli (Hilgendorf). Aquac. Res. 1998, 29, 237–244. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Lange, S.; Guđmundsdottir, B.K.; Magnadottir, B. Humoral immune parameters of cultured Atlantic halibut (Hippoglossus hippoglossus L.). Fish Shellfish. Immunol. 2001, 11, 523–535. [Google Scholar] [CrossRef] [PubMed]
- Fukada, H.; Furutani, T.; Shimizu, R.; Masumoto, T. Effects of yuzu (Citrus junos) peel from waste as an aquaculture feed supplement on growth, environmental load, and dark muscle discoloration in yellowtail Seriola quinqueradiata. J. Aquat. Food Prod. Technol. 2014, 23, 511–521. [Google Scholar] [CrossRef]
- Yousefi, M.; Hoseini, S.M.; Kulikov, E.V.; Babichev, N.V.; Bolshakova, M.V.; Shopinskaya, M.I.; Rogov, R.V.; Zharov, A.N. Effects of dietary pomegranate peel supplementation on growth performance and biochemical responses of common carp, Cyprinus carpio, to chronic crowding stress. Aquac. Rep. 2023, 30, 101532. [Google Scholar] [CrossRef]
- Van Doan, H.; Hoseinifar, S.H.; Naraballobh, W.; Jaturasitha, S.; Tongsiri, S.; Chitmanat, C.; Ringø, E. Dietary inclusion of orange peels derived pectin and Lactobacillus plantarum for Nile tilapia (Oreochromis niloticus) cultured under indoor biofloc systems. Aquaculture 2019, 508, 98–105. [Google Scholar] [CrossRef]
- Van Doan, H.; Lumsangkul, C.; Hoseinifar, S.H.; Hung, T.Q.; Stejskal, V.; Ringø, E.; Dawood, M.A.O.; Esteban, M.Á. Administration of watermelon rind powder to Nile tilapia (Oreochromis niloticus) culture under biofloc system: Effect on growth performance, innate immune response, and disease resistance. Aquaculture 2020, 528, 735574. [Google Scholar] [CrossRef]
- Harikrishnan, R.; Thamizharasan, S.; Devi, G.; Van Doan, H.; Kumar, T.T.A.; Hoseinifar, S.H.; Balasundaram, C. Dried lemon peel enriched diet improves antioxidant activity, immune response and modulates immuno-antioxidant genes in Labeo rohita against Aeromonas sorbia. Fish Shellfish. Immunol. 2020, 106, 675–684. [Google Scholar] [CrossRef]
- Mohamed, R.A.; Yousef, Y.M.; El-Tras, W.F.; Khalafallaa, M.M. Dietary essential oil extract from sweet orange (Citrus sinensis) and bitter lemon (Citrus limon) peels improved Nile tilapia performance and health status. Aquac. Res. 2021, 52, 1463–1479. [Google Scholar] [CrossRef]
- Rafiq, S.; Kaul, R.; Sofi, S.A.; Bashir, N.; Nazir, F.; Nayik, G.A. Citrus peel as a source of functional ingredient: A review. J. Saudi Soc. Agric. Sci. 2018, 17, 351–358. [Google Scholar] [CrossRef]
- Ghasemi, K.; Ghasemi, Y.; Ebrahimzadeh, M.A. Antioxidant activity, phenol and flavonoid contents of 13 citrus species peels and tissues. Pak. J. Pharm. Sci. 2009, 22, 277–281. [Google Scholar]
- Ding, X.; Fan, S.; Lu, Y.; Zhang, Y.; Gu, M.; Zhang, L.; Huang, C. Citrus ichangensis peel extract exhibits anti-metabolic disorder effects by the inhibition of PPAR and LXR signaling in high-fat diet-induced C57BL/6 mouse. Evid. Based. Complement. Alternat Med. 2012, 2012, 678592. [Google Scholar] [CrossRef]
- Youssef, K.; Sanzani, S.M.; Ligorio, A.; Ippolito, A.; Terry, L.A. Sodium carbonate and bicarbonate treatments induce resistance to postharvest green mould on citrus fruit. Postharvest Biol. Technol. 2014, 87, 61–69. [Google Scholar] [CrossRef]
- Samavat, Z.; Shamsaie Mehrgan, M.; Jamili, S.; Soltani, M.; Hosseini Shekarabi, S.P. Determination of grapefruit (Citrus paradisi) peel extract bio-active substances and its application in Caspian white fish (Rutilus frisii kutum) diet: Growth, haemato-biochemical parameters and intestinal morphology. Aquac. Res. 2019, 50, 2496–2504. [Google Scholar] [CrossRef]
- Tejaswini, K.; Deo, A.D.; Shamna, N.; Jayant, M.; Aklakur, M.; Annadurai, R. Effect of flavanone rich lemon peel extract on feed intake and growth of Labeo rohita (Hamilton, 1822) fingerlings reared at low temperature recirculatory aquaculture system. Aquaculture 2024, 584, 740450. [Google Scholar] [CrossRef]
- Wang, J.L.; Meng, X.L.; Lu, R.H.; Wu, C.; Luo, Y.T.; Yan, X.; Li, X.J.; Kong, X.H.; Nie, G.X. Effects of Rehmannia glutinosa on growth performance, immunological parameters and disease resistance to Aeromonas hydrophila in common carp (Cyprinus carpio L.). Aquaculture 2015, 435, 293–300. [Google Scholar] [CrossRef]
- Shabana, M.S.; Karthika, M.; Ramasubramanian, V. Effect of dietary Citrus sinensis peel extract on growth performance, digestive enzyme activity, muscle biochemical composition, and metabolic enzyme status of the freshwater fish, Catla catla. J. Basic Appl. Zool. 2019, 80, 51. [Google Scholar] [CrossRef]
- Toutou, M.M.; Soliman, A.A.; Elokaby, M.A.; Ahmed, R.A.; Baghdady, E.S. Growth performance and biochemical blood parameters of Nile tilapia, Oreochromis niloticus, and thinlip mullet, Liza ramada, fed a diet supplemented with lemon (Citrus aurantifolia) peel in a polyculture system. Egypt. J. Aquat. Biol. Fish. 2018, 22, 183–192. [Google Scholar] [CrossRef]
- Acar, Ü.; Kesbiç, O.S.; İnanan, B.E.; Yılmaz, S. Effects of dietary Bergamot (Citrus bergamia) peel oil on growth, haematology and immune response of European sea bass (Dicentrarchus labrax) juveniles. Aquac. Res. 2019, 50, 3305–3312. [Google Scholar] [CrossRef]
- Langmead, L.; Rampton, D.S. Herbal treatment in gastrointestinal and liver disease—Benefits and dangers. Aliment. Pharmacol. Ther. 2001, 15, 1239–1252. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, A.; Huang, X.; Chen, N.; Li, S.; Apraku, A.; Wang, W.; David, M.A. Growth and metabolic responses of juvenile largemouth bass (Micropterus salmoides) to dietary vitamin c supplementation levels. Aquaculture 2021, 534, 736243. [Google Scholar] [CrossRef]
- Ahmadifar, E.; Sadegh, T.H.; Dawood, M.A.; Dadar, M.; Sheikhzadeh, N. The effects of dietary Pediococcus pentosaceus on growth performance, hemato-immunological parameters and digestive enzyme activities of common carp (Cyprinus carpio). Aquaculture 2020, 516, 734656. [Google Scholar] [CrossRef]
- Holst, B.; Williamson, G. Nutrients and phytochemicals: From bioavailability to bioefficacy beyond antioxidants. Curr. Opin. Biotechnol. 2008, 19, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Virgili, F.; Marino, M. Regulation of cellular signals from nutritional molecules: A specific role for phytochemicals, beyond antioxidant activity. Free. Radic. Biol. Med. 2008, 45, 1205–1216. [Google Scholar] [CrossRef] [PubMed]
- Ramezanzadeh, S.; Abedian Kenari, A.; Esmaeili, N.; Rombenso, A. Effects of different forms of barberry root (Berberis vulgaris) on growth performance, muscle fatty acids profile, whole-body composition, and digestive enzymes of rainbow trout (Oncorhynchus mykiss). J. World Aquac. Soc. 2021, 52, 284–302. [Google Scholar] [CrossRef]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Kim, S.S.; Rahimnejad, S.; Kim, K.W.; Lee, K.J. Partial replacement of fish meal with Spirulina pacifica in diets for parrot fish (Oplegnathus fasciatus). Turk. J. Fish. Aquat. Sci. 2013, 13, 197–204. [Google Scholar] [CrossRef]
- Salem, M.E.S.; Abdel-Ghany, H.M.; Sallam, A.E.; El-Feky, M.M.; Almisherfi, H.M. Effects of dietary orange peel on growth performance, antioxidant activity, intestinal microbiota and liver histology of Gilthead sea bream (Sparus aurata) larvae. Aquac. Nutr. 2019, 25, 1087–1097. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M.; Ahmad, M.H.; Seden, M.E.A.; Sakr, S.F.M. Use of green tea, Camellia sinensis L., in practical diet for growth and protection of Nile tilapia, Oreochromis niloticus (L.), against Aeromonas hydrophila infection. J. World Aquac. Soc. 2010, 41, 203–213. [Google Scholar] [CrossRef]
- Fazio, F.; Lanteri, G.; Saoca, C.; Iaria, C.; Piccione, G.; Orefice, T.; Calabrese, E.; Vazzana, I. Individual variability of blood parameters in striped bass Morone saxatilis: Possible differences related to weight and length. Aquac. Int. 2020, 28, 1665–1673. [Google Scholar] [CrossRef]
- Magouz, F.I.; Abdel-Rahim, M.M.; Lotfy, A.M.; Mosbah, A.; Alkafafy, M.; Sewilam, H.; Dawood, M.A.O. Dietary nucleotides enhanced growth performance, carcass composition, blood biochemical, and histology features of European sea bass, Dicentrarchus labrax L. Aquac. Rep. 2021, 20, 100738. [Google Scholar] [CrossRef]
- Kesbiç, O.S.; Acar, Ü.; Yilmaz, S.; Aydin, Ö.D. Effects of bergamot (Citrus bergamia) peel oil-supplemented diets on growth performance, haematology and serum biochemical parameters of Nile tilapia (Oreochromis niloticus). Fish Physiol. Biochem. 2020, 46, 103–110. [Google Scholar] [CrossRef]
- Kurowska, E.M.; Manthey, J.A. Hypolipidemic effects and absorption of citrus polymethoxylated flavones in hamsters with diet-induced hypercholesterolemia. J. Agric. Food Chem. 2004, 52, 2879–2886. [Google Scholar] [CrossRef]
- Zuo, Z.H.; Shang, B.J.; Shao, Y.C.; Li, W.Y.; Sun, J.S. Screening of intestinal probiotics and the effects of feeding probiotics on the growth, immune, digestive enzyme activity and intestinal flora of Litopenaeus vannamei. Fish Shellfish. Immunol. 2019, 86, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Zhou, X.; Wang, Y.; Li, J.; Wu, Q.; Bao, S.; Jiang, L.; Liu, B. Use of fermented tea residues as a feed additive and effects on growth performance, body composition, intestinal enzyme activities, and inflammatory biomarkers in juvenile largemouth bass (Micropterus salmoides). Aquac. Rep. 2023, 31, 101671. [Google Scholar] [CrossRef]
- Platel, K.; Rao, A.; Saraswathi, G.; Srinivasan, K. Digestive stimulant action of three Indian spice mixes in experimental rats. Food/Nahrung 2002, 46, 394–398. [Google Scholar] [CrossRef]
- Silva-Brito, F.; Alexandrino, D.A.; Jia, Z.; Mo, Y.; Kijjoa, A.; Abreu, H.; Carvalho, M.F.; Ozório, R.; Magnoni, L. Fish performance, intestinal bacterial community, digestive function and skin and fillet attributes during cold storage of gilthead seabream (Sparus aurata) fed diets supplemented with Gracilaria by-products. Aquaculture 2021, 541, 736808. [Google Scholar] [CrossRef]
- Oh, H.Y.; Lee, T.H.; Lee, C.H.; Lee, D.Y.; Sohn, M.Y.; Kwon, R.W.; Kim, J.G.; Kim, H.S. Effects of by-products from producing yacon (Smallanthus sonchifolius) juice as feed additive on growth performance, digestive enzyme activity, antioxidant status, related gene expression, and disease resistance against Streptococcus iniae in juvenile black rockfish (Sebastes schlegelii). Aquaculture 2023, 569, 739383. [Google Scholar] [CrossRef]
- Liu, Y.; Chi, L.; Feng, L.; Jiang, J.; Jiang, W.D.; Hu, K.; Li, S.H.; Zhou, X.Q. Effects of graded levels of dietary vitamin C on the growth, digestive capacity and intestinal microflora of juvenile Jian carp (Cyprinus carpio var. Jian). Aquac. Res. 2011, 42, 534–548. [Google Scholar] [CrossRef]
- Kumar Singh, A.; Cabral, C.; Kumar, R.; Ganguly, R.; Kumar Rana, H.; Gupta, A.; Pandey, A.K. Beneficial effects of dietary polyphenols on gut microbiota and strategies to improve delivery efficiency. Nutrients 2019, 11, 2216. [Google Scholar] [CrossRef]
- Zhao, Z.; Yang, Q.; Tan, B.; Lin, H.; Yi, Y. Effects of dietary tea polyphenols on intestinal microflora and metabonomics in juvenile hybrid sturgeon (Acipenser baerii ♀ × Aschrenckii ♂). Aquac. Rep. 2024, 35, 102020. [Google Scholar] [CrossRef]
- Wangkahart, E.; Wachiraamonloed, S.; Lee, P.; Suramani, P.A.; Qi, Z.; Wang, B. Impacts of Aegle marmelos fruit extract as a medicinal herb on growth performance, antioxidant and immune responses, digestive enzymes, and disease resistance against Streptococcus agalactiae in Nile tilapia (Oreochromis niloticus). Fish Shellfish. Immunol. 2022, 120, 402–410. [Google Scholar] [CrossRef]
- Sadeghi, F.; Ahmadifar, E.; Shahriari Moghadam, M.; Ghiyasi, M.; Dawood, M.A.; Yilmaz, S. Lemon, Citrus aurantifolia, peel and Bacillus licheniformis protected common carp, Cyprinus carpio, from Aeromonas hydrophila infection by improving the humoral and skin mucosal immunity, and antioxidative responses. J. World Aquac. Soc. 2021, 52, 124–137. [Google Scholar] [CrossRef]
- Cicerale, S.; Lucas, L.; Keast, R. Biological activities of phenolic compounds present in virgin olive oil. Int. J. Mol. Sci. 2010, 11, 458–479. [Google Scholar] [CrossRef] [PubMed]
- Hamden, K.; Allouche, N.; Damak, M.; Elfeki, A. Hypoglycemic and antioxidant effects of phenolic extracts and purified hydroxytyrosol from olive mill waste in vitro and in rats. Chem. Biol Interact. 2009, 180, 421–432. [Google Scholar] [CrossRef] [PubMed]
- Kurutas, E.B.; Ozturk, P. The evaluation of local oxidative/nitrosative stress in patients with pityriasis versicolor: A preliminary study. Mycoses 2016, 59, 720–725. [Google Scholar] [CrossRef]
- Shankaran, M.; Yamamoto, B.K.; Gudelsky, G.A. Ascorbic acid prevents 3, 4-methylenedioxymethamphetamine (MDMA)-induced hydroxyl radical formation and the behavioral and neurochemical consequences of the depletion of brain 5-HT. Synapse 2001, 40, 55–64. [Google Scholar] [CrossRef]
- Anagnostopoulou, M.A.; Kefalas, P.; Papageorgiou, V.P.; Assimopoulou, A.N.; Boskou, D. Radical scavenging activity of various extracts and fractions of sweet orange peel (Citrus sinensis). Food Chem. 2006, 94, 19–25. [Google Scholar] [CrossRef]
- Saurabh, S.; Sahoo, P.K. Lysozyme: An important defence molecule of fish innate immune system. Aquac. Res. 2008, 39, 223–239. [Google Scholar] [CrossRef]
- Mashoof, S.; Criscitiello, M.F. Fish immunoglobulins. Biology 2016, 5, 45. [Google Scholar] [CrossRef]
- Al-Jabri, N.N.; Hossain, M.A. Comparative chemical composition and antimicrobial activity study of essential oils from two imported lemon fruits samples against pathogenic bacteria. Beni Suef. Univ. J. Basic Appl. Sci. 2014, 3, 247–253. [Google Scholar] [CrossRef]
- Xi, W.; Lu, J.; Qun, J.; Jiao, B. 2017. Characterization of phenolic profile and antioxidant capacity of different fruit part from lemon (Citrus limon Burm.) cultivars. J. Food Sci. Technol. 2017, 54, 1108–1118. [Google Scholar] [CrossRef]
- Xu, M.; Ran, L.; Chen, N.; Fan, X.; Ren, D.; Yi, L. Polarity-dependent extraction of flavonoids from citrus peel waste using a tailor-made deep eutectic solvent. Food Chem. 2019, 297, 124970. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Jiang, H.; Fang, J. Regulation of immune function by polyphenols. J. Immunol. Res. 2018, 2018, 1264074. [Google Scholar] [CrossRef] [PubMed]
Ingredients | Experimental Diets | ||||||
---|---|---|---|---|---|---|---|
BOP0 | BOP1 | BOP2 | BOP3 | BOP5 | BOP7 | BOP10 | |
Sardine meal | 580 | 580 | 580 | 580 | 580 | 580 | 580 |
Dehulled soybean meal | 95 | 95 | 95 | 95 | 95 | 95 | 95 |
Wheat flour | 220 | 219 | 218 | 217 | 215 | 213 | 210 |
BOP | 0 | 1 | 2 | 3 | 5 | 7 | 10 |
Fish oil | 40 | 40 | 40 | 40 | 40 | 40 | 40 |
Soybean oil | 40 | 40 | 40 | 40 | 40 | 40 | 40 |
Vitamin premix 1 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Mineral premix 2 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Choline | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Proximate composition (g kg−1, dry matter basis) | |||||||
Dry matter | 91.2 | 90.8 | 90.9 | 90.9 | 90.8 | 90.3 | 90.3 |
Crude protein | 522 | 517 | 516 | 515 | 516 | 516 | 517 |
Crude lipid | 140 | 138 | 136 | 140 | 142 | 140 | 139 |
Ash | 98 | 99 | 97 | 97 | 100 | 102 | 98 |
Vitamin C (mg kg−1) | 120.2 | 125.7 | 130.2 | 133.6 | 140.7 | 148.6 | 161.0 |
BOP Composition | ||||||||
---|---|---|---|---|---|---|---|---|
Chemical compounds | Vitamin C (mg kg−1) | 4.38 ± 0.48 | ||||||
Total phenolics (gallic acid mg 100 g−1) | 28.4 ± 3.34 | |||||||
Total flavonoids (quercetin mg g−1) | 14.3 ± 3.80 | |||||||
Radical-scavenging activities | Concentration (µg mL−1) | 4000 | 2000 | 1000 | 500 | 250 | 125 | IC50 |
DPPH (%) | 57.0 ± 0.52 | 38.9 ± 0.50 | 30.0 ± 0.69 | 27.9 ± 0.81 | 23.1 ± 0.43 | 20.8 ± 0.53 | 5.5 | |
ABTS (%) | 67.5 ± 0.63 | 57.4 ± 0.72 | 32.9 ± 0.31 | 21.4 ± 0.68 | 13.1 ± 0.96 | 7.0 ± 0.69 | 5.5 |
Parameters | Experimental Diets | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
BOP0 | BOP1 | BOP2 | BOP3 | BOP5 | BOP7 | BOP10 | ||
Initial weight (g/fish) | 1.4 ± 0.00 | 1.4 ± 0.00 | 1.4 ± 0.00 | 1.4 ± 0.00 | 1.4 ± 0.00 | 1.4 ± 0.00 | 1.4 ± 0.00 | - |
Final weight (g/fish) | 12.9 ± 0.05 a | 12.9 ± 0.12 a | 13.0 ± 0.11 ab | 13.1 ± 0.09 ab | 13.1 ± 0.16 ab | 13.1± 0.08 ab | 13.4 ± 0.11 b | 0.035 |
SR (%) | 100.0 ± 0.00 a | 100.0 ± 0.00 a | 100.0 ± 0.00 a | 98.9 ± 1.11 a | 100.0 ± 0.00 a | 99.4 ± 0.56 a | 99.4 ± 0.56 a | 0.642 |
WG (g/fish) | 11.5 ± 0.05 a | 11.5 ± 0.12 ab | 11.6 ± 0.11 ab | 11.7 ± 0.09 ab | 11.7 ± 0.16 ab | 11.7 ± 0.08 ab | 12.0 ± 0.11 b | 0.049 |
SGR (%) | 3.96 ± 0.007 a | 3.98 ± 0.015 a | 3.99 ± 0.015 ab | 4.01 ± 0.013 ab | 4.01 ± 0.020 ab | 4.01 ± 0.011 ab | 4.05 ± 0.016 b | 0.011 |
FI | 12.0 ± 0.07 a | 12.0 ± 0.08 a | 12.1 ± 0.08 a | 12.4 ± 0.25 a | 12.2 ± 0.11 a | 12.3 ± 0.12 a | 12.4 ± 0.07 a | 0.244 |
FE | 0.95 ± 0.003 a | 0.96 ± 0.004 a | 0.96 ± 0.007 a | 0.96 ± 0.008 a | 0.96 ± 0.002 a | 0.96 ± 0.008 a | 0.97 ± 0.008 a | 0.777 |
PER | 1.82 ± 0.003 a | 1.87 ± 0.001 ab | 1.86 ± 0.015 ab | 1.83 ± 0.025 a | 1.87 ± 0.011 ab | 1.85 ± 0.007 ab | 1.85 ± 0.022 b | 0.034 |
PR | 31.1 ± 0.21 a | 31.4 ± 0.12 a | 31.6 ± 0.47 ab | 32.3 ± 0.41 ab | 32.4 ± 0.05 ab | 32.5 ± 0.63 ab | 33.2 ± 0.09 b | 0.013 |
CF | 1.88 ± 0.019 a | 1.88 ± 0.065 a | 1.86 ± 0.022 a | 1.88 ± 0.009 a | 1.84 ± 0.013 a | 1.83 ± 0.033 a | 1.87 ± 0.009 a | 0.859 |
VSI (%) | 10.8 ± 0.06 a | 10.9 ± 0.04 a | 11.0 ± 0.03 a | 11.0 ± 0.04 a | 11.0 ± 0.05 a | 11.0 ± 0.05 a | 11.0 ± 0.06 a | 0.768 |
HSI (%) | 3.9 ± 0.11 a | 3.9 ± 0.02 a | 3.8 ± 0.03 a | 3.9 ± 0.13 a | 3.9 ± 0.01 a | 3.9 ± 0.04 a | 3.9 ± 0.05 a | 0.998 |
Composition | Experimental Diets | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
BOP0 | BOP1 | BOP2 | BOP3 | BOP5 | BOP7 | BOP10 | ||
Moisture | 68.5 ± 0.14 a | 68.6 ± 0.18 a | 68.4 ± 0.07 a | 68.5 ± 0.02 a | 68.4 ± 0.11 a | 68.6 ± 0.17 a | 68.1 ± 0.11 a | 0.155 |
Crude protein | 17.1 ± 0.12 ab | 17.0 ± 0.01 a | 17.1 ± 0.13 ab | 17.4 ± 0.04 ab | 17.4 ± 0.10 bc | 17.5 ± 0.30 c | 17.6 ± 0.10 c | 0.022 |
Crude lipid | 10.62 ± 0.083 c | 10.55 ± 0.023 bc | 10.56 ± 0.066 bc | 10.51 ± 0.066 bc | 10.43 ± 0.067 abc | 10.23 ± 0.035 ab | 10.20 ± 0.082 a | 0.002 |
Ash | 3.1 ± 0.07 a | 3.3 ± 0.11 a | 3.2 ± 0.13 a | 3.2 ± 0.12 a | 3.0 ± 0.07 a | 3.0 ± 0.06 a | 3.1 ± 0.03 a | 0.226 |
Parameters | Experimental Diets | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
BOP0 | BOP1 | BOP2 | BOP3 | BOP5 | BOP7 | BOP10 | ||
AST (U/L) | 152.0 ± 8.39 a | 124.3 ± 9.40 a | 126.3 ± 4.63 a | 126.0 ± 10.50 a | 127.3 ± 6.64 abc | 128.0 ± 5.29 a | 121.7 ± 1.86 a | 0.136 |
ALT (U/L) | 35.7 ± 4.81 a | 33.7 ± 5.78 a | 30.3 ± 2.67 a | 39.3 ± 3.84 a | 33.0 ± 5.20 a | 28.0 ± 2.08 a | 31.3 ± 3.76 a | 0.601 |
TCHO (mg/dL) | 232.7 ± 9.24 c | 226.3 ± 5.17 c | 221.3 ± 12.31 bc | 209.3 ± 5.78 abc | 210.7 ± 6.36 abc | 180.0 ± 8.19 a | 181.7 ± 8.82 ab | 0.002 |
GLU (mg/dL) | 53.3 ± 2.85 a | 55.0 ± 4.00 a | 51.0 ± 3.61 a | 50.7 ± 3.28 a | 55.7 ± 2.73 a | 51.3 ± 1.67 a | 50.7 ± 5.24 a | 0.885 |
TP (g/dL) | 6.0 ± 0.21 a | 6.7 ± 0.85 a | 5.2 ± 0.21 a | 5.9 ± 0.23 a | 5.4 ± 0.30 a | 4.93 ± 0.19 a | 5.03 ± 0.41 a | 0.078 |
Parameters | Experimental Diets | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
BOP0 | BOP1 | BOP2 | BOP3 | BOP5 | BOP7 | BOP10 | ||
Amylase | 60.6 ± 8.85 a | 66.9 ± 2.78 a | 72.7 ± 8.74 a | 76.0 ± 4.44 a | 78.7 ± 8.49 a | 84.9 ± 7.08 a | 91.9 ± 0.99 a | 0.068 |
Trypsin | 21.1 ± 1.98 a | 26.8 ± 3.52 ab | 28.0 ± 3.50 ab | 28.2 ± 3.79 ab | 30.0 ± 4.09 ab | 30.8 ± 3.53 ab | 38.2 ± 2.33 b | 0.048 |
Lipase | 32.0 ± 3.33 a | 45.5 ± 5.96 ab | 46.1 ± 2.29 ab | 49.7 ± 9.22 ab | 51.9 ± 7.38 ab | 77.2 ± 7.58 bc | 97.8 ± 7.97 c | 0.002 |
Parameters | Experimental Diets | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
BOP0 | BOP1 | BOP2 | BOP3 | BOP5 | BOP7 | BOP10 | ||
SOD (U/mL) | 29.0 ± 2.18 a | 31.5 ± 2.34 ab | 30.7 ± 1.22 ab | 32.3 ± 0.81 ab | 33.9 ± 1.38 ab | 34.0 ± 0.97 ab | 37.2 ± 0.94 b | 0.039 |
CAT (nmol/min/mL) | 648.0 ± 25.08 a | 653.1 ± 24.94 ab | 688.2 ± 14.05 ab | 731.1 ± 27.54 ab | 720.2 ± 12.84 ab | 725.6 ± 22.28 ab | 750.1 ± 13.76 b | 0.022 |
GSH (µM) | 1.91 ± 0.015 a | 2.00 ± 0.056 ab | 2.01 ± 0.074 ab | 2.03 ± 0.050 ab | 2.12 ± 0.041 ab | 2.15 ± 0.129 ab | 2.32 ± 0.095 b | 0.037 |
Parameters | Experimental Diets | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
BOP0 | BOP1 | BOP2 | BOP3 | BOP5 | BOP7 | BOP10 | ||
Lysozyme activity (U/mL) | 1.14 ± 0.220 a | 1.76 ± 0.180 ab | 1.84 ± 0.135 b | 1.98 ± 0.059 b | 1.85 ± 0.082 b | 1.87 ± 0.092 b | 1.95 ± 0.014 b | 0.007 |
IgM (mg/mL) | 178.0 ± 8.56 a | 189.4 ± 3.09 ab | 188.7 ± 2.93 ab | 191.1 ± 3.08 ab | 200.6 ± 5.52 ab | 194.9 ± 5.24 ab | 211.8 ± 5.60 b | 0.014 |
IgG (mg/mL) | 19.7 ± 0.26 a | 19.9 ± 0.28 ab | 20.3 ± 0.43 ab | 21.2 ± 0.54 ab | 21.1 ± 0.51 ab | 21.4 ± 0.78 ab | 22.7 ± 0.62 b | 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, T.H.; Kim, K.-T.; Oh, H.Y.; Park, S.Y.; Lee, G.J.; Kim, H.-S.; Kim, H.S. Effect of Blood Orange (Citrus sinensis L. Osbeck) Peel Waste as a Feed Additive on the Growth Performance, Digestive Enzyme Activity, Antioxidant Capacity, and Immune Response in Juvenile Black Rockfish (Sebastes schlegelii). Antioxidants 2024, 13, 1452. https://doi.org/10.3390/antiox13121452
Lee TH, Kim K-T, Oh HY, Park SY, Lee GJ, Kim H-S, Kim HS. Effect of Blood Orange (Citrus sinensis L. Osbeck) Peel Waste as a Feed Additive on the Growth Performance, Digestive Enzyme Activity, Antioxidant Capacity, and Immune Response in Juvenile Black Rockfish (Sebastes schlegelii). Antioxidants. 2024; 13(12):1452. https://doi.org/10.3390/antiox13121452
Chicago/Turabian StyleLee, Tae Hoon, Ki-Tae Kim, Hwa Yong Oh, Seo Young Park, Gyu Jin Lee, Hyun-Soo Kim, and Hee Sung Kim. 2024. "Effect of Blood Orange (Citrus sinensis L. Osbeck) Peel Waste as a Feed Additive on the Growth Performance, Digestive Enzyme Activity, Antioxidant Capacity, and Immune Response in Juvenile Black Rockfish (Sebastes schlegelii)" Antioxidants 13, no. 12: 1452. https://doi.org/10.3390/antiox13121452
APA StyleLee, T. H., Kim, K. -T., Oh, H. Y., Park, S. Y., Lee, G. J., Kim, H. -S., & Kim, H. S. (2024). Effect of Blood Orange (Citrus sinensis L. Osbeck) Peel Waste as a Feed Additive on the Growth Performance, Digestive Enzyme Activity, Antioxidant Capacity, and Immune Response in Juvenile Black Rockfish (Sebastes schlegelii). Antioxidants, 13(12), 1452. https://doi.org/10.3390/antiox13121452