Accelerated Sarcopenia Phenotype in the DJ-1/Park7-Knockout Zebrafish
Abstract
:1. Introduction
2. Materials and Methods
2.1. Zebrafish Maintenance and Lines
2.2. Evaluation of Skeletal Muscle Cross-Sectional Area
2.3. Ultrastructural Analysis
2.4. Sample Preparation for TMT-Based Proteome Analysis
2.5. LC-MS Analysis of TMT-Labelled Samples
2.6. Analysis of Proteomics Data
2.7. Targeted UPLC-HRMS Metabolomic Analysis
3. Results
3.1. DJ-1 Loss Induces Skeletal Muscle Atrophy and Sub-Sarcolemmal Mitochondrial Degeneration
3.2. Proteomic Profiling of the Ageing Skeletal Muscle Proteome in Wild-Type and DJ-1 Knockout
3.3. DJ-1 Knockout Accelerates Age-Dependent Decrease in Skeletal Muscle NAD+/NADH Ratio
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miao, Y.; Xie, L.; Song, J.; Cai, X.; Yang, J.; Ma, X.; Chen, S.; Xie, P. Unraveling the causes of sarcopenia: Roles of neuromuscular junction impairment and mitochondrial dysfunction. Physiol. Rep. 2024, 12, e15917. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Sullards, M.C.; Olzmann, J.A.; Rees, H.D.; Weintraub, S.T.; Bostwick, D.E.; Gearing, M.; Levey, A.I.; Chin, L.S.; Li, L. Oxidative damage of DJ-1 is linked to sporadic Parkinson and Alzheimer diseases. J. Biol. Chem. 2006, 281, 10816–10824. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.Y.; Lu, S.Y.; Sivasubramaniyam, T.; Revelo, X.S.; Cai, E.P.; Luk, C.T.; Schroer, S.A.; Patel, P.; Kim, R.H.; Bombardier, E.; et al. DJ-1 links muscle ROS production with metabolic reprogramming and systemic energy homeostasis in mice. Nat. Commun. 2015, 6, 7415. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yan, H.; Ding, J.; Wang, R.; Feng, Y.; Zhang, X.; Kong, X.; Gong, H.; Lu, X.; Ma, A.; et al. Skeletal muscle-specific DJ-1 ablation-induced atrogenes expression and mitochondrial dysfunction contributing to muscular atrophy. J. Cachexia Sarcopenia Muscle 2023, 14, 2126–2142. [Google Scholar] [CrossRef]
- Chandran, J.S.; Lin, X.; Zapata, A.; Hoke, A.; Shimoji, M.; Moore, S.O.; Galloway, M.P.; Laird, F.M.; Wong, P.C.; Price, D.L.; et al. Progressive behavioral deficits in DJ-1-deficient mice are associated with normal nigrostriatal function. Neurobiol. Dis. 2008, 29, 505–514. [Google Scholar] [CrossRef]
- Chen, L.; Cagniard, B.; Mathews, T.; Jones, S.; Koh, H.C.; Ding, Y.; Carvey, P.M.; Ling, Z.; Kang, U.J.; Zhuang, X. Age-dependent motor deficits and dopaminergic dysfunction in DJ-1 null mice. J. Biol. Chem. 2005, 280, 21418–21426. [Google Scholar] [CrossRef]
- Giangrasso, D.M.; Furlong, T.M.; Keefe, K.A. Characterization of striatum-mediated behavior and neurochemistry in the DJ-1 knock-out rat model of Parkinson’s disease. Neurobiol. Dis. 2020, 134, 104673. [Google Scholar] [CrossRef]
- Sanchez, C.A.; Brougher, J.; Krishnan, D.G.; Thorn, C.A. Longitudinal assessment of skilled forelimb motor impairments in DJ-1 knockout rats. Behav. Brain Res. 2022, 424, 113774. [Google Scholar] [CrossRef]
- Edson, A.J.; Hushagen, H.A.; Frøyset, A.K.; Elda, I.; Khan, E.A.; Di Stefano, A.; Fladmark, K.E. Dysregulation in the Brain Protein Profile of Zebrafish Lacking the Parkinson’s Disease-Related Protein DJ-1. Mol. Neurobiol. 2019, 56, 8306–8322. [Google Scholar] [CrossRef]
- Hughes, G.L.; Lones, M.A.; Bedder, M.; Currie, P.D.; Smith, S.L.; Pownall, M.E. Machine learning discriminates a movement disorder in a zebrafish model of Parkinson’s disease. Dis. Model. Mech. 2020, 13, dmm045815. [Google Scholar] [CrossRef]
- Gharbi, N.; Røise, D.; Førre, J.E.; Edson, A.J.; Hushagen, H.A.; Tronci, V.; Frøyset, A.K.; Fladmark, K.E. Reintroduction of DJ-1 in Müller Cells Inhibits Retinal Degeneration in the DJ-1 Deficient Retina. Antioxidants 2021, 10, 1862. [Google Scholar] [CrossRef] [PubMed]
- Chavali, L.N.M.; Yddal, I.; Bifulco, E.; Mannsåker, S.; Røise, D.; Law, J.O.; Frøyset, A.K.; Grellscheid, S.N.; Fladmark, K.E. Progressive Motor and Non-Motor Symptoms in Park7 Knockout Zebrafish. Int. J. Mol. Sci. 2023, 24, 6456. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.; Elegante, M.; Bartels, B.; Elkhayat, S.; Tien, D.; Roy, S.; Goodspeed, J.; Suciu, C.; Tan, J.; Grimes, C.; et al. Analyzing habituation responses to novelty in zebrafish (Danio rerio). Behav. Brain Res. 2010, 208, 450–457. [Google Scholar] [CrossRef]
- Daya, A.; Donaka, R.; Karasik, D. Zebrafish models of sarcopenia. Dis. Model. Mech. 2020, 13, dmm042689. [Google Scholar] [CrossRef]
- Aranda-Martinez, P.; Sayed, R.K.A.; Fernandez-Martinez, J.; Ramirez-Casas, Y.; Yang, Y.; Escames, G.; Acuna-Castroviejo, D. Zebrafish as a Human Muscle Model for Studying Age-Dependent Sarcopenia and Frailty. Int. J. Mol. Sci. 2024, 25, 6166. [Google Scholar] [CrossRef]
- Hughes, C.S.; Sorensen, P.H.; Morin, G.B. A Standardized and Reproducible Proteomics Protocol for Bottom-up Quantitative Analysis of Protein Samples Using SP3 and Mass Spectrometry. Methods Mol. Biol. 2019, 1959, 65–87. [Google Scholar] [CrossRef]
- Pfammatter, S.; Bonneil, E.; McManus, F.P.; Thibault, P. Accurate Quantitative Proteomic Analyses Using Metabolic Labeling and High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS). J. Proteome Res. 2019, 18, 2129–2138. [Google Scholar] [CrossRef]
- Canet-Aviles, R.M.; Wilson, M.A.; Miller, D.W.; Ahmad, R.; McLendon, C.; Bandyopadhyay, S.; Baptista, M.J.; Ringe, D.; Petsko, G.A.; Cookson, M.R. The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc. Natl. Acad. Sci. USA 2004, 101, 9103–9108. [Google Scholar] [CrossRef] [PubMed]
- Miinalainen, I.J.; Schmitz, W.; Huotari, A.; Autio, K.J.; Soininen, R.; Ver Loren van Themaat, E.; Baes, M.; Herzig, K.H.; Conzelmann, E.; Hiltunen, J.K. Mitochondrial 2,4-dienoyl-CoA reductase deficiency in mice results in severe hypoglycemia with stress intolerance and unimpaired ketogenesis. PLoS Genet. 2009, 5, e1000543. [Google Scholar] [CrossRef]
- Konishi, H.; Namikawa, K.; Kiyama, H. Annexin III implicated in the microglial response to motor nerve injury. Glia 2006, 53, 723–732. [Google Scholar] [CrossRef]
- Roux-Biejat, P.; Coazzoli, M.; Marrazzo, P.; Zecchini, S.; Di Renzo, I.; Prata, C.; Napoli, A.; Moscheni, C.; Giovarelli, M.; Barbalace, M.C.; et al. Acid Sphingomyelinase Controls Early Phases of Skeletal Muscle Regeneration by Shaping the Macrophage Phenotype. Cells 2021, 10, 3028. [Google Scholar] [CrossRef]
- Bertuzzi, M.; Chang, W.; Ampatzis, K. Adult spinal motoneurons change their neurotransmitter phenotype to control locomotion. Proc. Natl. Acad. Sci. USA 2018, 115, E9926–E9933. [Google Scholar] [CrossRef]
- Ranta-Aho, J.; Olive, M.; Vandroux, M.; Roticiani, G.; Dominguez, C.; Johari, M.; Torella, A.; Bohm, J.; Turon, J.; Nigro, V.; et al. Mutation update for the ACTN2 gene. Hum. Mutat. 2022, 43, 1745–1756. [Google Scholar] [CrossRef]
- Oh, S.; Mai, X.L.; Kim, J.; de Guzman, A.C.V.; Lee, J.Y.; Park, S. Glycerol 3-phosphate dehydrogenases (1 and 2) in cancer and other diseases. Exp. Mol. Med. 2024, 56, 1066–1079. [Google Scholar] [CrossRef]
- Janssens, G.E.; Grevendonk, L.; Perez, R.Z.; Schomakers, B.V.; de Vogel-van den Bosch, J.; Geurts, J.M.W.; van Weeghel, M.; Schrauwen, P.; Houtkooper, R.H.; Hoeks, J. Healthy aging and muscle function are positively associated with NAD+ abundance in humans. Nat. Aging 2022, 2, 254–263. [Google Scholar] [CrossRef]
- Elhassan, Y.S.; Philp, A.A.; Lavery, G.G. Targeting NAD+ in Metabolic Disease: New Insights Into an Old Molecule. J. Endocr. Soc. 2017, 1, 816–835. [Google Scholar] [CrossRef]
- Bradshaw, P.C. Cytoplasmic and Mitochondrial NADPH-Coupled Redox Systems in the Regulation of Aging. Nutrients 2019, 11, 504. [Google Scholar] [CrossRef] [PubMed]
- Kahle, P.J.; Waak, J.; Gasser, T. DJ-1 and prevention of oxidative stress in Parkinson’s disease and other age-related disorders. Free Radic. Biol. Med. 2009, 47, 1354–1361. [Google Scholar] [CrossRef]
- Chen, M.; Wang, Y.; Deng, S.; Lian, Z.; Yu, K. Skeletal muscle oxidative stress and inflammation in aging: Focus on antioxidant and anti-inflammatory therapy. Front. Cell Dev. Biol. 2022, 10, 964130. [Google Scholar] [CrossRef]
- Marzetti, E.; Calvani, R.; Cesari, M.; Buford, T.W.; Lorenzi, M.; Behnke, B.J.; Leeuwenburgh, C. Mitochondrial dysfunction and sarcopenia of aging: From signaling pathways to clinical trials. Int. J. Biochem. Cell Biol. 2013, 45, 2288–2301. [Google Scholar] [CrossRef]
- Clements, C.M.; McNally, R.S.; Conti, B.J.; Mak, T.W.; Ting, J.P. DJ-1, a cancer- and Parkinson’s disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc. Natl. Acad. Sci. USA 2006, 103, 15091–15096. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.H.; Peters, M.; Jang, Y.; Shi, W.; Pintilie, M.; Fletcher, G.C.; DeLuca, C.; Liepa, J.; Zhou, L.; Snow, B.; et al. DJ-1, a novel regulator of the tumor suppressor PTEN. Cancer Cell 2005, 7, 263–273. [Google Scholar] [CrossRef]
- Aleyasin, H.; Rousseaux, M.W.; Marcogliese, P.C.; Hewitt, S.J.; Irrcher, I.; Joselin, A.P.; Parsanejad, M.; Kim, R.H.; Rizzu, P.; Callaghan, S.M.; et al. DJ-1 protects the nigrostriatal axis from the neurotoxin MPTP by modulation of the AKT pathway. Proc. Natl. Acad. Sci. USA 2010, 107, 3186–3191. [Google Scholar] [CrossRef]
- Park, J.E.; Lee, D.H.; Lee, J.A.; Park, S.G.; Kim, N.S.; Park, B.C.; Cho, S. Annexin A3 is a potential angiogenic mediator. Biochem. Biophys. Res. Commun. 2005, 337, 1283–1287. [Google Scholar] [CrossRef]
- Meng, H.; Zhang, Y.; An, S.T.; Chen, Y. Annexin A3 gene silencing promotes myocardial cell repair through activation of the PI3K/Akt signaling pathway in rats with acute myocardial infarction. J. Cell. Physiol. 2019, 234, 10535–10546. [Google Scholar] [CrossRef]
- Mitrofanova, A.; Mallela, S.K.; Ducasa, G.M.; Yoo, T.H.; Rosenfeld-Gur, E.; Zelnik, I.D.; Molina, J.; Varona Santos, J.; Ge, M.; Sloan, A.; et al. SMPDL3b modulates insulin receptor signaling in diabetic kidney disease. Nat. Commun. 2019, 10, 2692. [Google Scholar] [CrossRef]
- Yang, K.C.; Chuang, K.W.; Yen, W.S.; Lin, S.Y.; Chen, H.H.; Chang, S.W.; Lin, Y.S.; Wu, W.L.; Tsao, Y.P.; Chen, W.P.; et al. Deficiency of nuclear receptor interaction protein leads to cardiomyopathy by disrupting sarcomere structure and mitochondrial respiration. J. Mol. Cell. Cardiol. 2019, 137, 9–24. [Google Scholar] [CrossRef]
- Nassar, Z.D.; Mah, C.Y.; Dehairs, J.; Burvenich, I.J.; Irani, S.; Centenera, M.M.; Helm, M.; Shrestha, R.K.; Moldovan, M.; Don, A.S.; et al. Human DECR1 is an androgen-repressed survival factor that regulates PUFA oxidation to protect prostate tumor cells from ferroptosis. Elife 2020, 9, e54166. [Google Scholar] [CrossRef]
- Duan, Z.; Huang, Z.; Lei, W.; Zhang, K.; Xie, W.; Jin, H.; Wu, M.; Wang, N.; Li, X.; Xu, A.; et al. Bone Morphogenetic Protein 9 Protects Against Myocardial Infarction by Improving Lymphatic Drainage Function and Triggering DECR1-Mediated Mitochondrial Bioenergetics. Circulation 2024, 150, 1684–1701. [Google Scholar] [CrossRef]
- Rutkove, S.B.; Callegari, S.; Concepcion, H.; Mourey, T.; Widrick, J.; Nagy, J.A.; Nath, A.K. Electrical impedance myography detects age-related skeletal muscle atrophy in adult zebrafish. Sci. Rep. 2023, 13, 7191. [Google Scholar] [CrossRef]
- Frederick, D.W.; Loro, E.; Liu, L.; Davila, A., Jr.; Chellappa, K.; Silverman, I.M.; Quinn, W.J., 3rd; Gosai, S.J.; Tichy, E.D.; Davis, J.G.; et al. Loss of NAD Homeostasis Leads to Progressive and Reversible Degeneration of Skeletal Muscle. Cell Metab. 2016, 24, 269–282. [Google Scholar] [CrossRef] [PubMed]
- Clement, J.; Wong, M.; Poljak, A.; Sachdev, P.; Braidy, N. The Plasma NAD+ Metabolome Is Dysregulated in “Normal” Aging. Rejuvenation Res. 2019, 22, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Palla, A.R.; Ravichandran, M.; Wang, Y.X.; Alexandrova, L.; Yang, A.V.; Kraft, P.; Holbrook, C.A.; Schurch, C.M.; Ho, A.T.V.; Blau, H.M. Inhibition of prostaglandin-degrading enzyme 15-PGDH rejuvenates aged muscle mass and strength. Science 2021, 371, eabc8059. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Wong, I.C.K.; Chui, C.S.L.; Zheng, J.; Huang, Y.; Schooling, C.M.; Yeung, S.L.A. Effects of putative metformin targets on phenotypic age and leukocyte telomere length: A mendelian randomisation study using data from the UK Biobank. Lancet Healthy Longev. 2023, 4, e337–e344. [Google Scholar] [CrossRef]
- Wei, M.; Fabrizio, P.; Madia, F.; Hu, J.; Ge, H.; Li, L.M.; Longo, V.D. Tor1/Sch9-regulated carbon source substitution is as effective as calorie restriction in life span extension. PLoS Genet. 2009, 5, e1000467. [Google Scholar] [CrossRef]
- Nakamura, M.; Imaoka, M.; Sakai, K.; Kubo, T.; Imai, R.; Hida, M.; Tazaki, F.; Orui, J.; Inoue, T.; Takeda, M. Complement component C3 is associated with body composition parameters and sarcopenia in community-dwelling older adults: A cross-sectional study in Japan. BMC Geriatr. 2024, 24, 102. [Google Scholar] [CrossRef]
Peptides | Score | KO/WT | Cell Compart-ment | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Acc.no | Gene | Protein Name | Total | Unique | 4 Mnts | 12 Mnths | p-Value | Biological-/Molecular Function | ||
Inflammation related | ||||||||||
A8E5E5 | anxa3b | Annexin | 8 | 8 | 25 | 9.5 | ** | |||
A0A8M1P530 | smpdl3b | Sphingomyelin phosphodiesterase acid like 3B | 2 | 2 | 8 | 5.4 | 3.3 | ** | ex.c | sphingomyelin catabolic process |
A0A8M1Q7M7 | emilin2a | Elastin microfibril interfacer 2a | 2 | 2 | 8 | 2.1 | * | ex.c | ||
Q6NYX8 | pithd1 | PITH domain containing 1 | 2 | 2 | 6 | 2.1 | * | n, c | positive regulation of megakaryocyte differentiation | |
A0A8M9Q4F0 | LOC110439158 | Alpha-1-antiproteinase 2-like | 7 | 4 | 28 | 2.1 | * | ex.c | serine-type endopeptidase inhibitor activity | |
F1QX13 | c3a.3 | Complement C3a | 21 | 3 | 76 | 0.2 | 0.3 | *** | ex.c | immune response |
Q7ZUH8 | mgst3a | Microsomal glutathione S-transferase 3a | 2 | 2 | 12 | 0.3 | * | n,er,m | leukotriene metabolic process | |
Q804G3 | anxa11b | Annexin A11b | 4 | 2 | 24 | 0.5 | * | pm, c | phagocytosis, cytokinetic process | |
Mitochondrial translation and metabolism | ||||||||||
A0A8M1N0E2 | decr1 | 2,4-dienoyl CoA reductase 1 | 5 | 5 | 25 | 0.2 | 0.2 | *** | m | fatty acid beta-oxidation |
Q6NYM8 | adhfe1 | Alcohol dehydrogenase iron containing 1 | 2 | 2 | 7 | 0.4 | 0.3 | ** | m | alcohol dehydrogenase (NAD+) activity |
A0A8N7T6Q4 | mrpl49 | Mitochondrial ribosomal protein L49 | 2 | 2 | 6 | 0.4 | 0.2 | * | m | translation |
A0A0R4ILL2 | mrpl4 | Mitochondrial ribosomal protein L4 | 2 | 2 | 4 | 0.5 | 0.2 | * | m | translation |
Q502J9 | mrpl30 | Mitochondrial ribosomal protein L30 | 2 | 2 | 5 | 0.5 | * | m | translation | |
A0A8M1Q6V5 | aars2 | Alanyl-tRNA synthetase 2 | 3 | 3 | 11 | 0.5 | * | m | translation | |
A0A8M1PVC0 | gadd45gip1 | Large ribosomal subunit protein mL64 | 2 | 2 | 5 | 0.5 | * | m, n | cell cycle | |
Q58EB4 | hibch | 3-hydroxyisobutyryl-CoA hydrolase | 4 | 4 | 16 | 0.5 | * | m | valine catabolic process | |
E7FAZ1 | ppm1ka | Protein phosphatase, Mg2+/Mn2+ dep.Ka | 2 | 2 | 7 | 0.5 | ** | m | peptidyl-threonine dephosphorylation | |
A0A0R4IVC8 | cox5ab | Cytochrome c oxidase subunit 5Ab | 5 | 2 | 32 | 0.5 | * | m | mitochondrial electron transport | |
Actin organization | ||||||||||
A0A8M3AZ01 | actn2a | Actinin, alpha 2a | 3 | 2 | 28 | 0.1 | 0.1 | *** | ||
Q2YDR5 | actn2b | Actinin, alpha 2b | 14 | 3 | 169 | 0.1 | 0.1 | *** | pm | actin cytoskeleton organization, sarcomere organization |
Other | ||||||||||
B8JLR6 | si:ch211-251b21.1 | Glutamate receptor | 4 | 4 | 36 | 4.1 | **** | pm | synaptic transmission | |
Q4QRF7 | leg1b | Protein leg1b | 6 | 4 | 27 | 0.3 | ** | ex.c | ||
A0A8M2B601 | ampd3b | AMP deaminase | 7 | 3 | 12 | 0.4 | ** | c | AMP metabolic process | |
Q7T1E0 | gpd1b | Glycerol-3-phosphate dehydrogenase | 6 | 4 | 23 | 0.1 | **** | c | NADH oxidation | |
Q6DEI9 | ptgr2 | Prostaglandin reductase 2 | 2 | 2 | 64 | 0.3 | * | c | Prostaglandin metabolic process | |
Q503F8 | crot | Peroxisomal carnitine O-octanoyltransferase | 2 | 2 | 6 | 0.3 | **** | p | Lipid metabolism |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rostad, K.O.; Trognitz, T.; Frøyset, A.K.; Bifulco, E.; Fladmark, K.E. Accelerated Sarcopenia Phenotype in the DJ-1/Park7-Knockout Zebrafish. Antioxidants 2024, 13, 1509. https://doi.org/10.3390/antiox13121509
Rostad KO, Trognitz T, Frøyset AK, Bifulco E, Fladmark KE. Accelerated Sarcopenia Phenotype in the DJ-1/Park7-Knockout Zebrafish. Antioxidants. 2024; 13(12):1509. https://doi.org/10.3390/antiox13121509
Chicago/Turabian StyleRostad, Kristine O., Tobias Trognitz, Ann Kristin Frøyset, Ersilia Bifulco, and Kari E. Fladmark. 2024. "Accelerated Sarcopenia Phenotype in the DJ-1/Park7-Knockout Zebrafish" Antioxidants 13, no. 12: 1509. https://doi.org/10.3390/antiox13121509
APA StyleRostad, K. O., Trognitz, T., Frøyset, A. K., Bifulco, E., & Fladmark, K. E. (2024). Accelerated Sarcopenia Phenotype in the DJ-1/Park7-Knockout Zebrafish. Antioxidants, 13(12), 1509. https://doi.org/10.3390/antiox13121509