The Health-Promoting Quality Attributes, Polyphenols, Iridoids and Antioxidant Activity during the Development and Ripening of Cornelian Cherry (Cornus mas L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Raw Materials
2.3. Physicochemical Attributes
2.4. Samples Preparation for Analyses of Sugars and Organic Acids
2.5. Samples Preparation for Analyses of Bioactive Compounds and Antioxidant Capacity Tests
2.6. Identification of Compounds by UPLC-ESI-qTOF-MS/MS
2.7. Quantification of Compounds by HPLC-PDA
2.7.1. Method 1: Secondary Metabolites
2.7.2. Method 2: Organic Acids
2.8. Quantification of Simple Sugars by HPLC-ELSD
2.9. Antioxidant Capacity
2.10. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Parameters
3.1.1. Fruit Weight
3.1.2. Dry Weight
3.1.3. Total Soluble Solids
3.1.4. Simple Sugars and Sweetness
3.1.5. Titratable Acidity
3.1.6. Organic Acids
3.1.7. Vitamin C
3.2. Bioactive Secondary Metabolites
3.2.1. General
3.2.2. Polyphenols
Phenolic Acids
Hydrolyzable Tannins
Anthocyanins
Flavonols
3.2.3. Iridoids
3.3. Antioxidant Capacity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bayram, H.M.; Arda Ozturkcan, S. Bioactive Components and Biological Properties of Cornelian Cherry (Cornus mas L.): A Comprehensive Review. J. Funct. Foods 2020, 75, 104252. [Google Scholar] [CrossRef]
- Kucharska, A. Active Compounds of Cornelian Cherry Fruit (Cornus mas L.); Monografie/Uniwersytet Przyrodniczy we Wrocławiu; Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu: Wrocław, Poland, 2012; ISSN 2083-5531. [Google Scholar]
- Przybylska, D.; Kucharska, A.Z.; Cybulska, I.; Sozański, T.; Piórecki, N.; Fecka, I. Cornus mas L. Stones: A Valuable by-Product as an Ellagitannin Source with High Antioxidant Potential. Molecules 2020, 25, 4646. [Google Scholar] [CrossRef] [PubMed]
- Spychaj, R.; Kucharska, A.Z.; Szumny, A.; Przybylska, D.; Pejcz, E.; Piórecki, N. Potential Valorization of Cornelian Cherry (Cornus mas L.) Stones: Roasting and Extraction of Bioactive and Volatile Compounds. Food Chem. 2021, 358, 129802. [Google Scholar] [CrossRef]
- Celep, E.; Aydın, A.; Kırmızıbekmez, H.; Yesilada, E. Appraisal of in Vitro and in Vivo Antioxidant Activity Potential of Cornelian Cherry Leaves. FCT 2013, 62, 448–455. [Google Scholar] [CrossRef]
- Forman, V.; Šušaníková, I.; Kukurová, Ľ.; Švajdlenka, E.; Nagy, M.; Mučaji, P. Flower Infusions from Cornus mas and Cornus kousa Inhibit Aldose Reductase Enzyme, Without Any Effects on Lipotoxicity. Nat. Prod. Commun. 2020, 15, 1934578X20912868. [Google Scholar] [CrossRef]
- Klymenko, S.; Kucharska, A.Z.; Sokół-Łętowska, A.; Piórecki, N.; Przybylska, D.; Grygorieva, O. Iridoids, Flavonoids, and Antioxidant Capacity of Cornus mas, C. officinalis, and C. mas × C. officinalis Fruits. Biomolecules 2021, 11, 776. [Google Scholar] [CrossRef] [PubMed]
- Sozański, T.; Kucharska, A.Z.; Rapak, A.; Szumny, D.; Trocha, M.; Merwid-Ląd, A.; Dzimira, S.; Piasecki, T.; Piórecki, N.; Magdalan, J.; et al. Iridoid–Loganic Acid versus Anthocyanins from the Cornus mas Fruits (Cornelian Cherry): Common and Different Effects on Diet-Induced Atherosclerosis, PPARs Expression and Inflammation. Atherosclerosis 2016, 254, 151–160. [Google Scholar] [CrossRef]
- Świerczewska, A.; Buchholz, T.; Melzig, M.F.; Czerwińska, M.E. In Vitro α-Amylase and Pancreatic Lipase Inhibitory Activity of Cornus mas L. and Cornus alba L. Fruit Extracts. J. Food Drug Anal. 2019, 27, 249–258. [Google Scholar] [CrossRef]
- Cardullo, N.; Muccilli, V.; Pulvirenti, L.; Cornu, A.; Pouységu, L.; Deffieux, D.; Quideau, S.; Tringali, C. C-Glucosidic Ellagitannins and Galloylated Glucoses as Potential Functional Food Ingredients with Anti-Diabetic Properties: A Study of α-Glucosidase and α-Amylase Inhibition. Food Chem. 2020, 313, 126099. [Google Scholar] [CrossRef]
- Capcarova, M.; Kalafova, A.; Schwarzova, M.; Schneidgenova, M.; Svik, K.; Prnova, M.S.; Slovak, L.; Kovacik, A.; Lory, V.; Zorad, S.; et al. Cornelian Cherry Fruit Improves Glycaemia and Manifestations of Diabetes in Obese Zucker Diabetic Fatty Rats. Res. Vet. Sci. 2019, 126, 118–123. [Google Scholar] [CrossRef]
- Park, E.; Lee, C.G.; Lim, E.; Hwang, S.; Yun, S.H.; Kim, J.; Jeong, H.; Yong, Y.; Yun, S.-H.; Choi, C.W.; et al. Osteoprotective Effects of Loganic Acid on Osteoblastic and Osteoclastic Cells and Osteoporosis-Induced Mice. Int. J. Mol. Sci. 2020, 22, 233. [Google Scholar] [CrossRef]
- Krzyściak, P.; Krośniak, M.; Gąstoł, M.; Ochońska, D.; Krzyściak, W. Antimicrobial Activity of Cornelian Cherry (Cornus mas L.). Post. Fitoter. 2011, 4, 227–231. [Google Scholar]
- Shiota, S.; Shimizu, M.; Sugiyama, J.; Morita, Y.; Mizushima, T.; Tsuchiya, T. Mechanisms of Action of Corilagin and Tellimagrandin I That Remarkably Potentiate the Activity of β-Lactams against Methicillin-Resistant Staphylococcus Aureus. Microbiol. Immunol. 2004, 48, 67–73. [Google Scholar] [CrossRef]
- Tenuta, M.C.; Deguin, B.; Loizzo, M.R.; Cuyamendous, C.; Bonesi, M.; Sicari, V.; Trabalzini, L.; Mitaine-Offer, A.-C.; Xiao, J.; Tundis, R. An Overview of Traditional Uses, Phytochemical Compositions and Biological Activities of Edible Fruits of European and Asian Cornus Species. Foods 2022, 11, 1240. [Google Scholar] [CrossRef]
- Moldovan, B.; Filip, A.; Clichici, S.; Suharoschi, R.; Bolfa, P.; David, L. Antioxidant Activity of Cornelian Cherry (Cornus mas L.) Fruits Extract and the in Vivo Evaluation of Its Anti-Inflammatory Effects. J. Funct. Foods 2016, 26, 77–87. [Google Scholar] [CrossRef]
- Alavian, S.M.; Banihabib, N.; Es. Haghi, M.; Panahi, F. Protective Effect of Cornus mas Fruits Extract on Serum Biomarkers in CCl4-Induced Hepatotoxicity in Male Rats. Hepat. Mon. 2014, 14, e10330. [Google Scholar] [CrossRef] [PubMed]
- Szumny, D.; Sozański, T.; Kucharska, A.Z.; Dziewiszek, W.; Piórecki, N.; Magdalan, J.; Chlebda-Sieragowska, E.; Kupczynski, R.; Szeląg, A.; Szumny, A. Application of Cornelian Cherry Iridoid-Polyphenolic Fraction and Loganic Acid to Reduce Intraocular Pressure. Evid. Based Complement. Altern. Med. 2015, 2015, 939402. [Google Scholar] [CrossRef] [PubMed]
- Lietava, J.; Beerova, N.; Klymenko, S.V.; Panghyova, E.; Varga, I.; Pechanova, O. Effects of Cornelian Cherry on Atherosclerosis and Its Risk Factors. Oxid. Med. Cell. Longev. 2019, 2019, 2515270. [Google Scholar] [CrossRef] [PubMed]
- Gholamrezayi, A.; Aryaeian, N.; Rimaz, S.; Abolghasemi, J.; Fallah, S.; Moradi, N.; Taghizadeh, M. The Effect of Cornus mas Fruit Extract Consumption on Lipid Profile, Glycemic Indices, and Leptin in Postmenopausal Women—A Randomized Clinical Trial. Phytother. Res. 2019, 33, 2979–2988. [Google Scholar] [CrossRef] [PubMed]
- Rafieian-Kopaei, M.; Asgary, S.; Adelnia, A.; Setorki, M.; Khazaei, M.; Kazemi, S.; Shamsi, F. The effects of cornelian cherry on atherosclerosis and atherogenic factors in hypercholesterolemic rabbits. J. Med. Plant Res. 2011, 5, 2670–2676. [Google Scholar]
- Berdowska, I.; Zieliński, B.; Saczko, J.; Sopel, M.; Gamian, A.; Fecka, I. Modulatory Impact of Selected Ellagitannins on the Viability of Human Breast Cancer Cells. J. Funct. Foods 2018, 42, 122–128. [Google Scholar] [CrossRef]
- Francik, R.; Kryczyk, J.; Krośniak, M.; Berköz, M.; Sanocka, I.; Francik, S. The Neuroprotective Effect of Cornus mas on Brain Tissue of Wistar Rats. Sci. World J. 2014, 2014, 847368. [Google Scholar] [CrossRef]
- Berk, S.; Gundogdu, M.; Tuna, S.; Tas, A. Role of Maturity Stages on Phenolic Compounds and Organic Acids Contents in Red Currant Fruits. Int. J. Fruit Sci. 2020, 20 (Suppl. S2), S1054–S1071. [Google Scholar] [CrossRef]
- Gunduz, K.; Saraçoğlu, O.; Özgen, M.; Serce, S. Antioxidant, Physical and Chemical Characteristics of Cornelian Cherry Fruits (Cornus mas L.) at Different Stages of Ripeness. Acta Sci. Pol. Hortorum Cultus 2013, 12, 59–66. [Google Scholar]
- Oszmiański, J.; Lachowicz, S.; Gorzelany, J.; Matłok, N. The Effect of Different Maturity Stages on Phytochemical Composition and Antioxidant Capacity of Cranberry Cultivars. Eur. Food Res. Technol. 2018, 244, 705–719. [Google Scholar] [CrossRef]
- Shi, J.; Xiao, Y.; Jia, C.; Zhang, H.; Gan, Z.; Li, X.; Yang, M.; Yin, Y.; Zhang, G.; Hao, J.; et al. Physiological and Biochemical Changes during Fruit Maturation and Ripening in Highbush Blueberry (Vaccinium corymbosum L.). Food Chem. 2023, 410, 135299. [Google Scholar] [CrossRef] [PubMed]
- Belhadj, F.; Somrani, I.; Aissaoui, N.; Messaoud, C.; Boussaid, M.; Marzouki, M.N. Bioactive Compounds Contents, Antioxidant and Antimicrobial Activities during Ripening of Prunus persica L. Varieties from the North West of Tunisia. Food Chem. 2016, 204, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Sathasivam, R.; Kim, T.J.; Park, B.B.; Kim, J.K.; Park, S.U. Metabolic Profiling and Secondary Metabolite Accumulation during Fruit Development of Cornus officinalis Sieb. et Zucc. Ind. Crops Prod. 2022, 189, 115779. [Google Scholar] [CrossRef]
- Kucharska, A.Z.; Piórecki, N.; Sokół-Łętowska, A.; Żarowska, B. Characteristics of Chemical Composition and Antioxidant Properties of Cornelian Cherry Fruit Fermented in Brine. Zesz. Probl. Postęp. Nauk Rol. 2011, 566, 125–133. [Google Scholar]
- Szot, I.; Szot, P.; Lipa, T.; Sosnowska, B.; Dobrzański, B. Changes in Physical and Chemical Properties of Cornelian Cherry (Cornus mas L.) Fruits in Dependence on Degree of Ripening and Ecotypes. Acta Sci. Pol. Hortorum Cultus 2019, 18, 251–262. [Google Scholar] [CrossRef]
- Przybylska, D.; Kucharska, A.; Sozański, T. A Review on Bioactive Iridoids in Edible Fruits–from Garden to Food and Pharmaceutical Products. Food Rev. Int. 2022, 39, 6447–6477. [Google Scholar] [CrossRef]
- Sosnowska, D.; Kajszczak, D.; Podsędek, A. The Effect of Different Growth Stages of Black Chokeberry Fruits on Phytonutrients, Anti-Lipase Activity, and Antioxidant Capacity. Molecules 2022, 27, 8031. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Koron, D.; Zorenc, Z.; Veberic, R. Do Optimally Ripe Blackberries Contain the Highest Levels of Metabolites? Food Chem. 2017, 215, 41–49. [Google Scholar] [CrossRef] [PubMed]
- De Pilli, T.; Lopriore, G. Ripeness Stage Effects on Quality Characteristics of Smoothies Made up of Sweet Cherries (P. avium L., cv. ‘Lapins’). Emir. J. Food Agric. 2018, 30, 959–967. [Google Scholar] [CrossRef]
- Elmastaş, M.; Demir, A.; Genç, N.; Dölek, Ü.; Güneş, M. Changes in Flavonoid and Phenolic Acid Contents in Some Rosa Species during Ripening. Food Chem. 2017, 235, 154–159. [Google Scholar] [CrossRef]
- Fecka, I.; Nowicka, A.; Kucharska, A.Z.; Sokół-Łętowska, A. The Effect of Strawberry Ripeness on the Content of Polyphenols, Cinnamates, L-Ascorbic and Carboxylic Acids. J. Food Compos. Anal. 2021, 95, 103669. [Google Scholar] [CrossRef]
- Usenik, V.; Kastelec, D.; Veberič, R.; Štampar, F. Quality Changes during Ripening of Plums (Prunus domestica L.). Food Chem. 2008, 111, 830–836. [Google Scholar] [CrossRef]
- Dare, A.P.; Günther, C.S.; Grey, A.C.; Guo, G.; Demarais, N.J.; Cordiner, S.; McGhie, T.K.; Boldingh, H.; Hunt, M.; Deng, C.; et al. Resolving the Developmental Distribution Patterns of Polyphenols and Related Primary Metabolites in Bilberry (Vaccinium myrtillus) Fruit. Food Chem. 2022, 374, 131703. [Google Scholar] [CrossRef]
- Phan, A.D.T.; Zhang, J.; Seididamyeh, M.; Srivarathan, S.; Netzel, M.E.; Sivakumar, D.; Sultanbawa, Y. Hydrolysable Tannins, Physicochemical Properties, and Antioxidant Property of Wild-Harvested Terminalia ferdinandiana (Exell) Fruit at Different Maturity Stages. Front. Nutr. 2022, 9, 96167. [Google Scholar] [CrossRef]
- Fenech, M.; Amaya, I.; Valpuesta, V.; Botella, M.A. Vitamin C Content in Fruits: Biosynthesis and Regulation. Front. Plant Sci. 2019, 9, 2006. [Google Scholar] [CrossRef]
- Jia, D.; Xu, Z.; Chen, L.; Huang, Q.; Huang, C.; Tao, J.; Qu, X.; Xu, X. Analysis of Organic Acid Metabolism Reveals Citric Acid and Malic Acid Play Major Roles in Determining Acid Quality during the Development of Kiwifruit (Actinidia eriantha). J. Sci. Food Agric. 2023, 103, 6055–6069. [Google Scholar] [CrossRef]
- Regulation-1333/2008-EN-Additives-EUR-Lex. Available online: https://eur-lex.europa.eu/eli/reg/2008/1333/oj (accessed on 3 February 2024).
- Górska, K.; Pietkiewicz, J.J. Funkcje technologiczne i charakterystyka kwasów dodawanych do żywności. In Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu; Nauki Inżynierskie i Technologie 1; Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu: Wrocław, Poland, 2009; pp. 141–158. [Google Scholar]
- Bai, J.; Wu, Y.; Bu, Q.; Zhong, K.; Gao, H. Comparative Study on Antibacterial Mechanism of Shikimic Acid and Quinic Acid against Staphylococcus aureus through Transcriptomic and Metabolomic Approaches. LWT 2022, 153, 112441. [Google Scholar] [CrossRef]
- Chen, F.-X.; Liu, X.-H.; Chen, L.-S. Developmental Changes in Pulp Organic Acid Concentration and Activities of Acid-Metabolising Enzymes during the Fruit Development of Two Loquat (Eriobotrya japonica Lindl.) Cultivars Differing in Fruit Acidity. Food Chem. 2009, 114, 657–664. [Google Scholar] [CrossRef]
- Wang, J.; Yang, E.; Chaurand, P.; Raghavan, V. Visualizing the Distribution of Strawberry Plant Metabolites at Different Maturity Stages by MALDI-TOF Imaging Mass Spectrometry. Food Chem. 2021, 345, 128838. [Google Scholar] [CrossRef]
- Ye, Z.; Shang, Z.; Li, M.; Zhang, X.; Ren, H.; Hu, X.; Yi, J. Effect of Ripening and Variety on the Physiochemical Quality and Flavor of Fermented Chinese Chili Pepper (Paojiao). Food Chem. 2022, 368, 130797. [Google Scholar] [CrossRef]
- Del Bubba, M.; Giordani, E.; Pippucci, L.; Cincinelli, A.; Checchini, L.; Galvan, P. Changes in Tannins, Ascorbic Acid and Sugar Content in Astringent Persimmons during on-Tree Growth and Ripening and in Response to Different Postharvest Treatments. J. Food Compos. Anal. 2009, 22, 668–677. [Google Scholar] [CrossRef]
- Stiller, A.; Garrison, K.; Gurdyumov, K.; Kenner, J.; Yasmin, F.; Yates, P.; Song, B.-H. From Fighting Critters to Saving Lives: Polyphenols in Plant Defense and Human Health. Int. J. Mol. Sci. 2021, 22, 8995. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules 2019, 24, 2452. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Goel, N. Phenolic Acids: Natural Versatile Molecules with Promising Therapeutic Applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef] [PubMed]
- Gawlik-Dziki, U. Fenolokwasy jako bioaktywne składniki żywności. Żywn. Nauka Technol. Jakość 2004, 11, 29–40. [Google Scholar]
- Tanaka, T.; Matsuo, Y.; Saito, Y. Solubility of Tannins and Preparation of Oil-Soluble Derivatives. J. Oleo Sci. 2018, 67, 1179–1187. [Google Scholar] [CrossRef] [PubMed]
- Ployon, S.; Morzel, M.; Belloir, C.; Bonnotte, A.; Bourillot, E.; Briand, L.; Lesniewska, E.; Lherminier, J.; Aybeke, E.; Canon, F. Mechanisms of Astringency: Structural Alteration of the Oral Mucosal Pellicle by Dietary Tannins and Protective Effect of bPRPs. Food Chem. 2018, 253, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Lavoie, S.; Côté, I.; Pichette, A.; Gauthier, C.; Ouellet, M.; Nagau-Lavoie, F.; Mshvildadze, V.; Legault, J. Chemical Composition and Anti-Herpes Simplex Virus Type 1 (HSV-1) Activity of Extracts from Cornus canadensis. BMC Complement. Altern. Med. 2017, 17, 123. [Google Scholar] [CrossRef] [PubMed]
- Olchowik-Grabarek, E.; Sekowski, S.; Bitiucki, M.; Dobrzynska, I.; Shlyonsky, V.; Ionov, M.; Burzynski, P.; Roszkowska, A.; Swiecicka, I.; Abdulladjanova, N.; et al. Inhibition of Interaction between Staphylococcus aureus α-Hemolysin and Erythrocytes Membrane by Hydrolysable Tannins: Structure-Related Activity Study. Sci. Rep. 2020, 10, 11168. [Google Scholar] [CrossRef] [PubMed]
- Usenik, V.; Štampar, F.; Veberič, R. Anthocyanins and Fruit Colour in Plums (Prunus domestica L.) during Ripening. Food Chem. 2009, 114, 529–534. [Google Scholar] [CrossRef]
- Kucharska, A.Z.; Szumny, A.; Sokół-Łętowska, A.; Piórecki, N.; Klymenko, S.V. Iridoids and Anthocyanins in Cornelian Cherry (Cornus mas L.) Cultivars. J. Food Compos. Anal. 2015, 40, 95–102. [Google Scholar] [CrossRef]
- Szot, I.; Łysiak, G.P.; Sosnowska, B.; Chojdak-Łukasiewicz, J. Health-Promoting Properties of Anthocyanins from Cornelian Cherry (Cornus mas L.) Fruits. Molecules 2024, 29, 449. [Google Scholar] [CrossRef]
- Gowd, V.; Jia, Z.; Chen, W. Anthocyanins as Promising Molecules and Dietary Bioactive Components against Diabetes–A Review of Recent Advances. Trends Food Sci. Technol. 2017, 68, 1–13. [Google Scholar] [CrossRef]
- Duda-Chodak, A.D.; Tarko, T.; Tuszyński, T. Antioxidant Activity of Apples-An Impact of Maturity Stage and Fruit Part. Acta Sci. Pol. Technol. Aliment. 2011, 10, 443–454. [Google Scholar]
- Liu, Z.; Liu, Y.; Man, S.; Guo, L.; Li, X.; Gao, W. Functional Factors, Nutritional Value and Development Strategies of Cornus: A Review. Trends Food Sci. Technol. 2023, 139, 104121. [Google Scholar] [CrossRef]
Stage | Glucose | Fructose | TS [g/100 g dw] | Tartaric Acid | Malic Acid | Quinic Acid | Shikimic Acid | OA [g/100 g dw] | TA [g MA/100 g dw] | AA [mg/100 g dw] | TS/OA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bol | S1 | 1.65 ± 0.08 j | 0.22 ± 0.02 m | 1.86 p | 0.25 ± 0.06 fghi | 0.55 ± 0.07 jkl | 10.24 ± 0.55 de | 0.40 ± 0.00 i | 11.45 ghi | 6.16 ± 0.00 jk | 333.59 ± 1.97 e | 0.16 l |
S2 | 2.51 ± 0.15 ij | 0.55 ± 0.06 m | 3.06 po | 0.17 ± 0.02 hi | 1.05 ± 0.10 jk | 7.90 ± 0.67 g | 0.44 ± 0.02 hi | 9.56 jk | 7.37 ± 0.18 i | 457.30 ± 10.00 b | 0.32 jkl | |
S3 | 4.56 ± 0.09 hi | 1.12 ± 0.03 lm | 5.68 no | 0.13 ± 0.00 i | 2.28 ± 0.01 hi | 8.41 ± 0.01 fg | 0.32 ± 0.00 j | 11.15 hi | 10.53 ± 0.23 g | 495.56 ± 26.61 a | 0.51 ijk | |
S4 | 10.25 ± 0.24 fg | 3.36 ± 0.41 jk | 13.62 jk | 0.09 ± 0.00 i | 5.45 ± 0.17 f | 4.26 ± 0.20 i | 0.14 ± 0.00 m | 9.94 ijk | 13.18 ± 0.71 e | 402.11 ± 26.91 cd | 1.37 g | |
S5 | 11.34 ± 1.43 f | 5.88 ± 0.58 gh | 17.22 hi | 0.13 ± 0.01 i | 9.23 ± 0.95 b | 2.29 ± 0.29 jk | 0.19 ± 0.03 l | 11.85 efgh | 17.24 ± 0.55 bc | 257.16 ± 2.98 g | 1.45 fg | |
S6 | 50.80 ± 1.64 a | 28.09 ± 0.95 a | 78.89 a | 0.20 ± 0.00 ghi | 12.24 ± 0.81 a | 2.37 ± 0.44 jk | 0.01 ± 0.00 o | 14.83 abc | 16.46 ± 0.03 cd | 76.32 ± 1.87 k | 5.32 c | |
Słow | S1 | 0.82 ± 0.04 j | 0.26 ± 0.00 m | 1.08 p | 1.01 ± 0.00 c | 0.36 ± 0.00 kl | 12.10 ± 0.02 b | 0.54 ± 0.00 e | 14.01 bcd | 6.59 ± 0.14 ij | 131.56 ± 1.77 j | 0.08 l |
S2 | 1.46 ± 0.03 j | 1.05 ± 0.06 lm | 2.51 p | 0.91 ± 0.00 c | 1.16 ± 0.00 j | 10.68 ± 0.01 cd | 0.64 ± 0.00 d | 13.38 cde | 6.49 ± 0.05 ijk | 190.06 ± 8.14 i | 0.19 l | |
S3 | 5.28 ± 0.73 h | 3.50 ± 0.33 jk | 8.78 m | 0.64 ± 0.07 d | 2.20 ± 0.06 hi | 9.82 ± 0.68 de | 0.68 ± 0.03 d | 13.34 cde | 8.90 ± 0.04 h | 319.61 ± 9.67 ef | 0.66 i | |
S4 | 10.41 ± 1.13 fg | 4.70 ± 0.89 hij | 15.11 ji | 0.36 ± 0.02 efgh | 4.90 ± 0.06 f | 5.87 ± 0.11 h | 0.46 ± 0.01 fg | 11.59 fgh | 13.17 ± 0.54 e | 427.29 ± 28.46 c | 1.30 g | |
S5 | 17.74 ± 0.85 d | 10.17 ± 2.28 e | 27.92 e | 0.28 ± 0.01 fghi | 7.19 ± 0.39 de | 2.88 ± 0.09 j | 0.26 ± 0.01 k | 10.62 hij | 15.80 ± 1.75 d | 425.77 ± 18.15 c | 2.63 e | |
S6 | 34.57 ± 4.20 b | 19.85 ± 0.87 c | 54.42 c | 0.12 ± 0.00 i | 7.79 ± 0.16 cd | 1.07 ± 0.01 l | 0.03 ± 0.00 o | 9.02 k | 16.53 ± 0.30 cd | 167.26 ± 11.25 i | 6.03 b | |
Pacz | S1 | 2.99 ± 0.11 hij | 0.17 ± 0.01 m | 3.15 po | 0.53 ± 0.00 def | 0.65 ± 0.14 jkl | 1.68 ± 0.23 cde | 1.29 ± 0.05 b | 12.94 defg | 6.50 ± 0.08 ijk | 168.36 ± 9.22 i | 0.24 kl |
S2 | 5.41 ± 0.03 h | 4.25 ± 0.00 ij | 9.66 lm | 0.41 ± 0.07 efg | 1.86 ± 0.34 i | 1.47 ± 0.04 ef | 1.43 ± 0.00 a | 13.12 def | 6.69 ± 0.06 ij | 336.32 ± 24.71 e | 0.74 i | |
S3 | 7.97 ± 0.37 g | 5.34 ± 0.03 ghi | 13.31 jk | 0.37 ± 0.07 efgh | 3.87 ± 0.44 g | 1.07 ± 0.07 g | 1.03 ± 0.07 c | 13.04 def | 10.59 ± 0.06 g | 408.61 ± 9.04 cd | 1.03 h | |
S4 | 10.63 ± 1.11 f | 7.42 ± 1.04 f | 18.05 h | 0.26 ± 0.05 fghi | 6.55 ± 0.21 e | 0.44 ± 0.05 ij | 0.52 ± 0.04 e | 10.73 hij | 14.15 ± 1.05 e | 392.69 ± 0.77 d | 1.68 f | |
S5 | 17.83 ± 0.25 d | 11.92 ± 0.66 d | 29.75 e | 0.17 ± 0.01 hi | 9.15 ± 0.61 b | 0.18 ± 0.00 kl | 0.40 ± 0.02 i | 11.08 hij | 18.06 ± 0.65 b | 395.11 ± 4.63 d | 2.69 e | |
S6 | 34.74 ± 0.83 b | 22.57 ± 0.64 b | 57.31 b | 0.09 ± 0.00 i | 8.18 ± 0.02 c | 0.11 ± 0.00 l | 0.08 ± 0.00 n | 8.96 k | 16.61 ± 0.36 cd | 177.28 ± 14.13 i | 6.40 a | |
Flor | S1 | 2.29 ± 0.18 ij | 1.01 ± 0.00 lm | 3.13 po | 1.86 ± 0.17 a | 0.13 ± 0.00 l | 10.81 ± 0.02 cd | 0.41 ± 0.00 i | 13.20 de | 5.36 ± 0.01 k | 41.14 ± 2.16 l | 0.25 kl |
S2 | 5.39 ± 0.10 h | 2.67 ± 0.09 k | 8.06 mn | 1.53 ± 0.21 b | 0.53 ± 0.08 jkl | 11.74 ± 0.06 bc | 0.49 ± 0.00 efg | 14.28 abcd | 6.05 ± 0.04 jk | 133.68 ± 0.48 j | 0.56 ij | |
S3 | 9.67 ± 0.22 fg | 2.31 ± 0.08 kl | 11.98 kl | 1.08 ± 0.00 c | 1.02 ± 0.01 jk | 12.63 ± 0.02 ab | 0.49 ± 0.00 ef | 15.23 ab | 6.38 ± 0.14 ijk | 222.17 ± 5.32 h | 0.79 hi | |
S4 | 14.98 ± 0.55 e | 6.67 ± 0.11 fg | 21.66 g | 0.96 ± 0.31 c | 0.76 ± 0.04 jkl | 13.27 ± 1.66 a | 0.34 ± 0.04 j | 15.33 ab | 7.53 ± 0.06 i | 341.06 ± 8.86 e | 1.43 fg | |
S5 | 18.56 ± 0.15 d | 6.47 ± 0.36 fg | 25.02 f | 0.87 ± 0.01 c | 2.74 ± 0.14 h | 11.76 ± 0.42 bc | 0.22 ± 0.01 l | 15.59 a | 12.06 ± 0.55 f | 298.49 ± 9.38 f | 1.61 fg | |
S6 | 23.69 ± 1.40 c | 12.73 ± 0.80 d | 36.42 d | 0.55 ± 0.01 de | 5.50 ± 0.02 f | 6.00 ± 0.08 h | 0.12 ± 0.00 mn | 12.17 efgh | 19.70 ± 0.07 a | 195.07 ± 19.46 hi | 2.99 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Przybylska, D.; Kucharska, A.Z.; Piórecki, N.; Sozański, T. The Health-Promoting Quality Attributes, Polyphenols, Iridoids and Antioxidant Activity during the Development and Ripening of Cornelian Cherry (Cornus mas L.). Antioxidants 2024, 13, 229. https://doi.org/10.3390/antiox13020229
Przybylska D, Kucharska AZ, Piórecki N, Sozański T. The Health-Promoting Quality Attributes, Polyphenols, Iridoids and Antioxidant Activity during the Development and Ripening of Cornelian Cherry (Cornus mas L.). Antioxidants. 2024; 13(2):229. https://doi.org/10.3390/antiox13020229
Chicago/Turabian StylePrzybylska, Dominika, Alicja Z. Kucharska, Narcyz Piórecki, and Tomasz Sozański. 2024. "The Health-Promoting Quality Attributes, Polyphenols, Iridoids and Antioxidant Activity during the Development and Ripening of Cornelian Cherry (Cornus mas L.)" Antioxidants 13, no. 2: 229. https://doi.org/10.3390/antiox13020229
APA StylePrzybylska, D., Kucharska, A. Z., Piórecki, N., & Sozański, T. (2024). The Health-Promoting Quality Attributes, Polyphenols, Iridoids and Antioxidant Activity during the Development and Ripening of Cornelian Cherry (Cornus mas L.). Antioxidants, 13(2), 229. https://doi.org/10.3390/antiox13020229