Phytonutritional Composition and Antioxidant Properties of Southern African, Purple-Fleshed Sweet Potato (Ipomoea batatas (L.) Lam.) Storage Roots
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Total Marketable Yield and Morphological Assessment
2.3. Colour Measurement
2.4. Chemical Analysis
2.4.1. Chemicals
2.4.2. Total Phenolic Content (TPC)
2.4.3. Ferric Reducing Antioxidant Power (FRAP)
2.4.4. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Assay
2.4.5. 2,2′-Azino-bis (3-Ethylbenzothiazoline-6-sulfonic Acid) Scavenging Activity
2.5. Mineral Composition
2.6. Quantification of Phenolic Compounds Using UPLC-QTOF/MS
2.7. Proximate Composition
2.8. Statistical Analysis
3. Results and Discussion
3.1. Morphological Characteristics of Five Purple-Fleshed Genotypes
3.2. Colour Properties
3.3. Total Phenolic Content
3.4. UHPLC-QTOF-MS Identification and Characterisation of Phenolic Compounds
3.4.1. Chlorogenic Acid Derivatives and Flavonoids
3.4.2. Anthocyanins
3.5. The Metabolomic and Chemometric Profiles of Five Purple Sweet Potatoes Available in the Sub-Saharan African Region
3.6. Antioxidant Activities
3.7. Protein, Fat, Dietary Fibre
3.8. Fe, Zn and K Content
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Behera, S.; Chauhan, V.B.S.; Pati, K.; Bansode, V.; Nedunchezhiyan, M.; Verma, A.K.; Naik, S.K. Biology and biotechnological aspect of sweet potato (Ipomoea batatas L.): A commercially important tuber crop. Planta 2022, 256, 40. [Google Scholar] [CrossRef]
- Pereira, G.S.; Amankwaah, V.A.; Ketavi, M.; Oloka, B.M.; Nair, A.G.; da Mata, A.P.; Campos, H. Sweet potato: Nutritional constituents and genetic composition. In Compendium of Crop Genome Designing for Nutraceuticals; Springer Nature: Singapore, 2023; pp. 1–43. [Google Scholar] [CrossRef]
- Hayati, M.; Anhar, A. Morphological characteristics and yields of several sweet potato (Ipomoea batatas L.) tubers. IOP Conf. Ser. Earth Environ. Sci. 2020, 425, 012055. [Google Scholar] [CrossRef]
- Textor, C. Sweet Potatoes Production in China, 2012–2022. The Statistic Shows the Extent of Sweet Potato Production in China from 2012 to 2022. Available online: https://www.statista.com/statistics/697819/china-sweet-potatoes-production/#:~:text=The%20statistic%20shows%20the%20extent,potatoes%20were%20produced%20in%20China (accessed on 27 February 2024).
- South Africa—Sweet Potato—Market Analysis, Forecast, Size, Trends and Insights Please mention the Source. Available online: https://www.indexbox.io/search/production-sweet-potato-south-africa/ (accessed on 27 February 2024).
- FAOSTAT. Food and Agriculture Organization of the United Nations-Statistic Division, 2019. Available online: https://www.fao.org/faostat/en/#data (accessed on 9 February 2024).
- Oke, M.O.; Workneh, T.S. A review on sweet potato postharvest processing and preservation technology. Afr. J. Agric. Res. 2013, 8, 4990–5003. [Google Scholar] [CrossRef]
- Prakash, P.; Prabhat Kishore, D.; Jaganathan, S.I.; Sivakumar, P.S. The Status, Performance and Impact of Sweet Potato Cultivation on Farming Communities of Odisha, India; AgEcon: St. Paul, MN, USA, 2018. [Google Scholar] [CrossRef]
- Tumwegamire, S.; Kapinga, R.; Rubaihayo, P.R.; LaBonte, D.R.; Grüneberg, W.J.; Burgos, G.; Mwanga, R.O. Evaluation of dry matter, protein, starch, sucrose, β-carotene, iron, zinc, calcium, and magnesium in East African sweetpotato [Ipomoea batatas (L.) Lam] germplasm. HortScience 2011, 46, 348–357. [Google Scholar] [CrossRef]
- Laurie, S.M.; Mulabisana, J.; Sutherland, R.; Sivakumar, D.; Pofu, K.; Mphela, W.M.; Bairu, M.W. Seventy years of sweet potato [Ipomoea batatas L. Lam] research in South Africa. Crop Sci. 2023. [Google Scholar] [CrossRef]
- Phahlane, C.J.; Laurie, S.M.; Shoko, T.; Manhivi, V.E.; Sivakumar, D. Comparison of caffeoylquinic acids and functional properties of domestic sweet potato (Ipomoea batatas (L.) Lam.) storage roots with established overseas varieties. Foods 2022, 11, 1329. [Google Scholar] [CrossRef] [PubMed]
- Laurie, S.M.; Booyse, M.; Labuschagne, M.T.; Greyling, M.M. Multienvironment performance of new orange-fleshed sweetpotato cultivars in South Africa. Crop Sci. 2015, 55, 1585–1595. [Google Scholar] [CrossRef]
- Laurie, S.M.; Tjale, S.S.; van den Berg, A.A.; Mtileni, M.M.; Labuschagne, M.T. Agronomic performance of new cream to yellow-orange sweetpotato cultivars in diverse environments across South Africa. S. Afr. J. Plant Soil 2015, 32, 147–155. [Google Scholar] [CrossRef]
- Parker, T.; Leach, K.; Stoddard, C.S.; Roser, L.; Palkovic, A.; Williams, T.; Brummer, E.C. Opportunities to Breed Diverse Sweetpotato Varieties for California Organic Production. Agriculture 2023, 13, 2191. [Google Scholar] [CrossRef]
- Ginting, E.; Yulifianti, R.; Indriani, F.C. Selected purple-fleshed sweet potato genotypes with high anthocyanin contents. IOP Conf. Ser. Earth Environ. Sci. 2020, 456, 012023. [Google Scholar] [CrossRef]
- De Albuquerque, T.M.R.; Sampaio, K.B.; de Souza, E.L. Sweet potato roots: Unrevealing an old food as a source of health promoting bioactive compounds—A review. Trends Food Sci. Technol. 2018, 85, 277–286. [Google Scholar] [CrossRef]
- Laveriano-Santos, E.P.; López-Yerena, A.; Jaime-Rodríguez, C.; González-Coria, J.; Lamuela-Raventós, R.M.; Vallverdú-Queralt, A.; Pérez, M. Sweet potato is not simply an abundant food crop: A comprehensive review of its phytochemical constituents, biological activities, and the effects of processing. Antioxidants 2022, 11, 1648. [Google Scholar] [CrossRef]
- Ghasemzadeh, A.; Talei, D.; Jaafar, H.Z.; Juraimi, A.S.; Mohamed, M.T.M.; Puteh, A.; Halim, M.R.A. Plant-growth regulators alter phytochemical constituents and pharmaceutical quality in Sweet potato (Ipomoea batatas L.). BMC Complement. Altern. Med. 2016, 16, 152. [Google Scholar] [CrossRef]
- Dwiyanti, G.; Siswaningsih, W.; Febrianti, A. Production of purple sweet potato (Ipomoea batatas L.) juice having high anthocyanin content and antioxidant activity. J. Phys. Conf. Ser. 2018, 1013, 012194. [Google Scholar] [CrossRef]
- Bennett, A.A.; Mahood, E.H.; Fan, K.; Moghe, G.D. Untargeted metabolomics of purple and orange-fleshed sweet potatoes reveals a large structural diversity of anthocyanins and flavonoids. Sci. Rep. 2021, 11, 16408. [Google Scholar] [CrossRef]
- Selokela, L.M.; Laurie, S.M.; Sivakumar, D. Impact of different postharvest thermal processes on changes in antioxidant constituents, activity and nutritional compounds in sweet potato with varying flesh colour. S. Afr. J. Bot. 2022, 144, 380–388. [Google Scholar] [CrossRef]
- Michael Jackson, D.; Harrison, H.F.; Jarret, R.L.; Wadl, P.A. Color analysis of storage roots from the USDA, ARS sweetpotato (Ipomoea batatas) germplasm collection. Gene Res. Crop Evol. 2018, 65, 1217–1236. [Google Scholar] [CrossRef]
- Laurie, S.M.; Mphela, W.M. Consumer acceptability of fried chips made from South African sweet potato cultivars. S. Afr. J. Plant Soil 2022, 39, 290–298. [Google Scholar] [CrossRef]
- Hong, J.; Mu, T.; Sun, H.; Richel, A.; Bleck, C. Valorization of the green waste parts from sweet potato (Impoea batatas L.): Nutritional, phytochemical composition, and bioactivity evaluation. Food Sci. Nutr. 2020, 8, 4086–4097. [Google Scholar] [CrossRef] [PubMed]
- Suárez, S.; Mu, T.; Sun, H.; Añón, M.C. Antioxidant activity, nutritional, and phenolic composition of sweet potato leaves as affected by harvesting period. Int. J. Food Prop. 2020, 23, 178–188. [Google Scholar] [CrossRef]
- Seke, F.; Manhivi, V.E.; Shoko, T.; Slabbert, R.M.; Sultanbawa, Y.; Sivakumar, D. Effect of freeze drying and simulated gastrointestinal digestion on phenolic metabolites and antioxidant property of the Natal plum (Carissa macrocarpa). Foods 2021, 10, 1420. [Google Scholar] [CrossRef] [PubMed]
- Managa, M.G.; Sultanbawa, Y.; Sivakumar, D. Effects of different drying methods on untargeted phenolic metabolites, and antioxidant activity in Chinese cabbage (Brassica rapa L. subsp. chinensis) and nightshade (Solanum retroflexum Dun.). Molecules 2020, 25, 1326. [Google Scholar] [CrossRef] [PubMed]
- Ndou, A.; Tinyani, P.P.; Slabbert, R.M.; Sultanbawa, Y.; Sivakumar, D. An integrated approach for harvesting Natal plum (Carissa macrocarpa) for quality and functional compounds related to maturity stages. Food Chem. 2019, 293, 499–510. [Google Scholar] [CrossRef] [PubMed]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis of the Association of Analytical Chemists International; Association of Official Analytical Chemists: Bray, Ireland, 2017. [Google Scholar]
- Hossain, M.M.; Rahim, M.A.; Moutosi, H.N.; Das, L. Evaluation of the growth, storage root yield, proximate composition, and mineral content of colored sweet potato genotypes. J. Agric. Food Res. 2022, 8, 100289. [Google Scholar] [CrossRef]
- Gajanayake, B.; Reddy, K.R.; Shankle, M.W.; Arancibia, R.A.; Villordon, A.O. Quantifying storage root initiation, growth, and developmental responses of sweetpotato to early season temperature. Agron. J. 2014, 106, 1795–1804. [Google Scholar] [CrossRef]
- Leite, C.E.C.; Souza, B.D.K.F.; Manfio, C.E.; Wamser, G.H.; Alves, D.P.; de Francisco, A. Sweet potato new varieties screening based on morphology, pulp color, proximal composition, and total dietary fiber content via factor analysis and principal component analysis. Front. Plant Sci. 2022, 13, 852709. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, S.; Setoguchi, Y.; Ohmura, R.; Toshima, S.; Park, H.; Narasako, Y.; Kunitake, H. Effects of cross combination on the total content and its composition of anthocyanins in sweetpotato (Ipomoea batatas L.). Sci. Hort. 2022, 299, 110999. [Google Scholar] [CrossRef]
- Im, Y.R.; Kim, I.; Lee, J. Phenolic composition and antioxidant activity of purple sweet potato (Ipomoea batatas (L.) Lam.): Varietal comparisons and physical distribution. Antioxidants 2021, 10, 462. [Google Scholar] [CrossRef]
- Franková, H.; Musilová, J.; Árvay, J.; Harangozo, L.; Šnirc, M.; Vollmannová, A.; Jaško, E. Variability of bioactive substances in potatoes (Solanum tuberosum L.) depending on variety and maturity. Agronomy 2022, 12, 1454. [Google Scholar] [CrossRef]
- Terahara, N.; Shimizu, T.; Kato, Y.; Nakamura, M.; Maitani, T.; Yamaguchi, M.A.; Goda, Y. Six diacylated anthocyanins from the storage roots of purple sweet potato, Ipomoea batatas. Biosci. Biotech. Biochem. 1991, 63, 1420–1424. [Google Scholar] [CrossRef]
- Xu, J.; Su, X.; Lim, S.; Griffin, J.; Carey, E.; Katz, B.; Tomich, J.; Smith, J.S.; Wang, W. Characterisation and stability of anthocyanins in purple-fleshed sweet potato P40. Food Chem. 2015, 186, 90–96. [Google Scholar] [CrossRef]
- Montilla, E.C.; Hillebrand, S.; Butschbach, D.; Baldermann, S.; Watanabe, N.; Winterhalter, P. Preparative isolation of anthocyanins from Japanese purple sweet potato (Ipomoea batatas L.) varieties by high-speed countercurrent chromatography, 2010. J. Agric. Food Chem. 2010, 58, 9899–9904. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Yoshimoto, M.; Terahara, N.; Yamakawa, O. Anthocyanin compositions in sweetpotato (Ipomoea batatas L.) leaves. Biosci. Biotech. Biochem. 2002, 66, 2483–2486. [Google Scholar] [CrossRef]
- Kurnianingsih, N.; Ratnawati, R.; Nazwar, T.A.; Ali, M.; Fatchiyah, F. Purple sweet potatoes from East Java of Indonesia revealed the macronutrient, anthocyanin compound and antidepressant activity candidate. Med. Arch. 2021, 75, 94. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Ros, R.; Knaze, V.; Lujan-Barroso, L.; Slimani, N.; Romieu, I.; Touillaud, M.; Gonzalez, C.A. Estimation of the intake of anthocyanidins and their food sources in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Br. J. Nutr. 2011, 106, 1090–1099. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Alonso, M.; Minihane, A.M.; Rimbach, G.; Rivas-Gonzalo, J.C.; de Pascual-Teresa, S. Red wine anthocyanins are rapidly absorbed in humans and affect monocyte chemoattractant protein 1 levels and antioxidant capacity of plasma, 2009. J. Nutr. Biochem. 2009, 20, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.C.; Lin, C.; Chen, M.H.; Chiang, P.Y. Stability and quality of anthocyanin in purple sweet potato extracts. Foods 2019, 8, 393. [Google Scholar] [CrossRef]
- Ishiguro, K.; Yahara, S.; Yoshimoto, M. Changes in Polyphenolic Content and Radical-Scavenging Activity of Sweetpotato (Ipomoea batatas L.) during Storage at Optimal and Low Temperatures. J. Agric. Food Chem. 2007, 55, 10773–10778. [Google Scholar] [CrossRef]
- Padda, M.S.; Picha, D.H. Quantification of phenolic acids and antioxidant activity in sweetpotato genotypes. Sci. Hortic. 2008, 119, 17–20. [Google Scholar] [CrossRef]
- Nicoletto, C.; Vianello, F.; Sambo, P. Effect of different home-cooking methods on textural and nutritional properties of sweet potato genotypes grown in temperate climate conditions. J. Sci. Food Agric. 2018, 98, 574–581. [Google Scholar] [CrossRef]
- Yi, W.; Akoh, C.C.; Fischer, J.; Krewer, G. Absorption of anthocyanins from blueberry extracts by caco-2 human intestinal cell monolayers. J. Agric. Food Chem. 2006, 54, 5651–5658. [Google Scholar] [CrossRef] [PubMed]
- Makori, S.I.; Mu, T.H.; Sun, H.N. Total polyphenol content, antioxidant activity, and individual phenolic composition of different edible parts of 4 sweet potato cultivars. Nat. Prod. Comm. 2020, 15, 1934578X20936931. [Google Scholar] [CrossRef]
- Lee, L.C.; Liong, C.Y.; Jemain, A.A. Partial least squares-discriminant analysis (PLS-DA) for classification of high-dimensional (HD) data: A review of contemporary practice strategies and knowledge gaps. Analyst 2018, 143, 3526–3539. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.V.; Santana, L.F.; da Silva, V.D.A.; Costa, S.L.; Zambotti-Villelae, L.; Colepicolo, P.; Ribeiro, P.R. Combination of a multiplatform metabolite profiling approach and chemometrics as a powerful strategy to identify bioactive metabolites in Lepidium meyenii (Peruvian maca). Food Chem. 2021, 364, 130453. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Zhang, H.; Li, H.; Li, Y. Analysis on the Nutrition Composition and Antioxidant Activity of Different Types of Sweet Potato Cultivars. Food Nutr. Sci. 2015, 6, 161–167. [Google Scholar] [CrossRef]
- Rautenbach, F.; Faber, M.; Laurie, S.; Laurie, R. Antioxidant capacity and antioxidant content in roots of 4 sweetpotato varieties, 2010. J. Food Sci. 2010, 75, C400–C405. [Google Scholar] [CrossRef] [PubMed]
- Setoguchi, Y.; Nakagawa, S.; Ohmura, R.; Toshima, S.; Park, H.; Narasako, Y.; Kunitake, H. Effect of Growth Stages on Anthocyanins and Polyphenols in the Root System of Sweet Potato. Plants 2023, 12, 1907. [Google Scholar] [CrossRef]
- Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; XiaoHui, Z. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharm. 2018, 97, 67–74. [Google Scholar] [CrossRef]
- Liao, M.; Zou, B.; Chen, J.; Yao, Z.; Huang, L.; Luo, Z.; Wang, Z. Effect of domestic cooking methods on the anthocyanins and antioxidant activity of deeply purple-fleshed sweetpotato GZ9. Heliyon 2019, 5, e01515. [Google Scholar] [CrossRef]
- Motohashi, N.; Sakagami, H. Functionality of anthocyanins as alternative medicine. In Bioactive Heterocycles VI: Flavonoids and Anthocyanins in Plants, and Latest Bioactive Heterocycles I; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–48. [Google Scholar] [CrossRef]
- Siti Azima, A.M.; Noriham, A.; Manshoor, N. Anthocyanin content in relation to the antioxidant activity and colour properties of Garcinia mangostana peel, Syzigium cumini and Clitoria ternatea extracts. Int. Food Res. J. 2014, 21, 2369–2375. [Google Scholar]
- Cartier, A.; Woods, J.; Sismour, E.; Allen, J.; Ford, E.; Githinji, L.; Xu, Y. Physiochemical, nutritional and antioxidant properties of fourteen Virginia-grown sweet potato varieties. J. Food Meas. Charact. 2017, 11, 1333–1341. [Google Scholar] [CrossRef]
- Rodrigues, N.D.R.; Barbosa Junior, J.L.; Barbosa, M.I.M.J. Determination of physico-chemical composition, nutritional facts and technological quality of organic orange and purple-fleshed sweet potatoes and its flours. Int. Food Res. J. 2016, 23, 74–98. [Google Scholar] [CrossRef]
- Gurmu, F.; Shimelis, H.; Laing, M.; Mashilo, J. Genotype-by-environment interaction analysis of nutritional composition in newly-developed sweetpotato clones. J. Food Comp. Analy 2020, 88, 103426. [Google Scholar] [CrossRef]
- Mitiku, D.H.; Teka, T.A. Nutrient and antinutrient composition of improved sweet potato [Ipomea batatas (L.) Lam] varieties grown in eastern Ethiopia. Nutr. Food Sci. 2017, 47, 369–380. [Google Scholar] [CrossRef]
- Gill, S.K.; Rossi, M.; Bajka, B.; Whelan, K. Dietary fibre in gastrointestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Mudgil, D. The interaction between insoluble and soluble fiber. In Dietary Fiber for the Prevention of Cardiovascular Disease; Academic Press: Cambridge, MA, USA, 2017; pp. 35–59. [Google Scholar] [CrossRef]
- Sanoussi, A.F.; Adjatin, A.; Dansi, A.; Adebowale, A.; Sanni, L.O.; Sanni, A. Mineral composition of ten elites’ sweet potato (Ipomoea Batatas L. Lam) landraces of Benin. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 103–115. [Google Scholar] [CrossRef]
- Li, J.; Cao, D.; Huang, Y.; Chen, B.; Chen, Z.; Wang, R.; Liu, L. Zinc intakes and health outcomes: An umbrella review. Front. Nutr. 2022, 9, 798078. [Google Scholar] [CrossRef]
- Senthilkumar, R.; Muragod, P.P.; Muruli, N.V. Nutrient analysis of sweet potato and its health benefits. Ind. J. Pure Appl. Biosci. 2020, 8, 614–618. [Google Scholar] [CrossRef]
Purple Sweet Potato Genotypes | Skin Colour | Flesh Colour | Shape | Surface Defects |
---|---|---|---|---|
‘08-21P’ | Light purple | Violet, pink-cream | Long elliptic | Absent |
‘2019-1-1′ | Purple | Purple, cream ring | Obovate–elliptic | Grooves, some cracks |
Purple-purple | Dark purple | Very dark purple | Long elliptic | Long thick veins |
‘16-283P’ | Light purple | Dark purple, slight ring | Long elliptic | Absent |
Genotype | Yield (kg/20 Plants) S1 | Length (cm) | Diameter (cm) | Cortex (mm) |
---|---|---|---|---|
‘08-21P’ | 20.64+ 1.90 a | 21.80 ± 2.88 a | 5.07 ± 1.28 a | 3.40 ± 1.17 ab |
‘2019-1-1′ | 5.45 ± 1.26 d | 16.85 ± 3.35 bc | 5.48 ± 1.17 a | 1.16 ± 0.31 c |
Purple-purple | 15.48 ± 2.43 b | 20.40 ± 3.85 ab | 4.26 ± 0.83 b | 3.85 ± 1.03 a |
‘16-283P’ | 7.56 ± 1.72 c | 17.00 ± 3.63 bc | 4.18 ± 0.91 b | 2.80 ± 0.75 b |
LSD | 2.81 | 7.19 | 2.19 | 1.65 |
Genotypes | L* | a* | b* |
---|---|---|---|
‘08-21P’ | 45.58 ± 3.50 a | 30.58 ± 5.14 a | 5.57 ± 2.20 a |
‘2019-1-1′ | 42.69 ± 5.94 b | 8.64 ± 3.02 c | 5.18 ± 4.98 b |
Purple-purple | 28.82 ± 2.74 d | 18.36 ± 3.18 b | 3.09 ± 0.51 c |
‘16-283P’ | 34.79 ± 3.39 c | 8.12 ± 1.11 c | 2.21 ± 2.64 cd |
LSD | 4.4 | 3.79 | 3.3 |
Genotypes | Total Phenolic (CAE mg/g) DW |
---|---|
‘08-21P’ | 43.54 ± 7.90 b |
‘2019-1-1′ | 50.69 ± 1.48 a |
Purple-purple | 42.45 ± 5.31 b |
‘16-283P’ | 53.24 ± 3.86 a |
LSD | 8.72 |
RT | [M-H]− (m/z) | MSE Fragments | Molecular Formula | Tentative Identification | Sweet Potato Genotypes (Roots) | |||
---|---|---|---|---|---|---|---|---|
‘16-283P’ | ‘08-21P’ | ‘2019-1-1′ | Purple-purple | |||||
Concentrations of cinnamic acids and derivatives in mg/kg | ||||||||
4.44 | 353.087 | 135.043 179.034 191.055 201.016 | C16H18O9 | Chlorogenic acid 3CQA 3-O-Caffeoylquinic acid | 246.26 a ± 3.54 | 118.81 d ± 1.81 | 147.41 c ± 3.22 | 198.26 b ± 1.19 |
5.29 | 707.182 | 135.043 161.022 179.034 191.055 353.088 707.183 | C16H18O9 | Chlorogenic acid 3CQA 3-O-Caffeoylquinic acid | 2201.27 b ± 2.02 | 450.30 c ± 2.25 | 670.03 c ± 2.37 | 3032.33 a ± 1.46 |
5.29 | 353.087 | 135.043 161.023 179.034 191.055 353.088 | C16H18O9 | Chlorogenic acid 5CQA 5-O-Caffeoylquinic acid (Neochlorogenic acid) | 4354.93 a ± 1.66 | 2195.08 b ± 2.43 | 2178.12 b ± 2.60 | 4210.58 a ± 2.52 |
6.48 | 367.103 | 191.056 | C17H20O9 | 3-O-Caffeoyl-4-O-methylquinic acid (MCGA3) | 184.71 b ± 5.14 | 95.49 d ± 2.89 | 106.71 c ± 2.53 | 221.10 a ± 1.73 |
7.41 | 515.119 | 135.043 161.023 173.044 179.033 191.055 201.016 335.076 353.087 388.996 | C25H24O12 | 1,3-Dicaffeoylquinic acid (1,3-diCQA) | 222.45 b ± 1.03 | 433.27 a ± 1.28 | 98.34 d ± 2.45 | 179.91 c ± 1.34 |
7.60 | 515.119 | 135.043 179.033 191.055 353.087 375.069 | C25H24O12 | Dicaffeoylquinic acid isomer 1 diCQA | 10547.26 a ± 1.44 | 5420.71 b ± 1.98 | 3068.42 c ± 2.02 | 3467.92 c ± 3.07 |
8.04 | 515.119 | 173.044 191.054 353.088 375.070 | C25H24O12 | Dicaffeoylquinic acid isomer 2 diCQA | 124.65 a ± 0.23 | 118.34 a ± 1.11 | 82.08 b ± 1.84 | 61.58 c ± 1.90 |
8.68 | 515.119 | 179.034 191.055 339.050 353.087 375.070 | C25H24O12 | Dicaffeoylquinic acid isomer 3 diCQA | 18.08 a ± 1.10 | 11.48 b ± 0.88 | 7.19 c ± 0.20 | 6.33 c ± 0.49 |
8.89 | 529.136 | 367.104 375.167 397.146 519.331 | C26H26O12 | 3,5-Dicaffeoylquinic methyl ester; (-)-3,5-Dicaffeoylquinic methyl ester 3,5-diCQA) | 22.13 a ± 1.01 | 14.76 b ± 0.86 | 6.66 c ± 0.32 | 9.43 c ± 3.44 |
Concentrations of flavonoids in mg/kg | ||||||||
6.28 | 625.141 | 300.027 301.032 339.051 371.098 471.152 533.129 555.112 | C27H30O17 | Quercetin 3,4′-diglucoside | 29.23 a ± 0.71 | 8.54 c ± 0.52 | 7.86 c ± 0.23 | 18.88 b ± 0.46 |
RT | [M-H]− (m/z) | MSE Fragments | M-H Formula | Identified Compound | Sweet Potato Genotypes (Roots) | |||
---|---|---|---|---|---|---|---|---|
‘16-283P’ | ‘08-21P’ | ‘2019-1-1′ | Purple-purple | |||||
Concentrations in mg/kg | ||||||||
5.66 | 933.231 | 287.055 | C42H45O24 | Cyanidin-caffeoyl-sophoroside-glucoside | 123.12 a ± 1.13 | 18.17 c ± 0.30 | 11.54 c ± 0.75 | 47.25 b ± 1.48 |
7.00 | 1109.278 | 287.055 | C52H53O27 | Cyanidin-caffeoyl-feruloyl-sophoroside-glucoside | 159.22 b ± 2.79 | 151.45 b ± 3.48 | 17.91 c ± 0.52 | 230.90 a ± 1.10 |
6.47 | 961.263 | 301.071 | C44H49O24 | Peonidin feruloyl-sophoroside-glucoside | 301.27 b ± 1.5 | 160.03 c ±1.79 | 167.06 c ± 5.11 | 353.33 a ± 1.97 |
6.50 | 947.247 | 301.091 | C43H47O24 | Peonidin caffeoyl-sophoroside-glucoside | 203.34 b ± 1.46 | 28.42 c ± 1.73 | 12.71 c ± 0.95 | 327.52 a ± 1.69 |
6.90 | 1067.268 | 301.071 463.123 | C50H51O26 | Peonidin-caffeoyl-hydroxybenzoyl-sophoriside-glucoside | 180.97 b ± 1.62 | 159.41 c ± 1.85 | 18.05 d ± 0.76 | 276.95 a ± 1.70 |
7.03 | 1123.293 | 301.071 463.124 | C53H55O27 | Peonidin caffeoyl-feruloyl-sophoroside-glucoside | 147.9 b ± 1.75 | 19.13 c ± 0.35 | 0c | 185.25 a ± 1.16 |
Genotype | FRAP TEAC mM/g | ABTS IC50 Value mg/g | DPPH IC50 Value mg/g |
---|---|---|---|
‘08-21P’ | 16.03 ± 0.83 b | 1.68 ± 0.07 b | 1.84 ± 0.07 c |
‘2019-1-1′ | 14.56 ± 2.43 b | 1.99 ± 0.11 b | 2.31 ± 0.15 d |
Purple-purple | 21.23 ± 1.51 a | 1.50 ± 0.09 a | 1.41 ± 0.01 b |
‘16-283P’ | 21.19 ± 1.80 a | 1.21 ± 0.02 a | 1.05 ± 0.02 a |
LSD | 2.97 | 0.60 | 0.28 |
Genotypes | Fat g/100 g | Protein g/100 g | Total Dietary Fibre g/100 g |
---|---|---|---|
‘08-21 P’ | 0.75 ± 0.01 b | 24.31 ± 1.25 b | 5.35 ± 0.06 a |
‘2019-1-1′ | 0.83 ± 0.01 a | 21.44 ± 1.31 c | 3.81 ± 0.01 b |
Purple-purple | 0.47 ± 0.02 c | 28.81 ± 1.34 a | 2.51 ± 0.03 c |
‘16-283P’ | 0.76 ± 0.10 b | 19.12 ± 0.62 d | 2.86 ± 0.12 c |
LSD | 0.02 | 0.34 | 0.78 |
K (mg/100 g) | Fe mg/100 g | Zn mg/100 g | |
---|---|---|---|
‘08-21P’ | 17.2 ± 0.11 bc | 2.08 ± 0.05 d | 0.95 ± 0.09 c |
‘2019-1-1′ | 22.2 ± 0.06 a | 2.77 ± 0.06 a | 1.42 ± 0.20 a |
Purple-purple | 16.9 ± 0.04 bc | 2.17 ± 0.08 c | 1.3 ± 0.13 a |
‘16-283P’ | 16.8 ± 0.11 c | 2.60 ± 0.13 b | 1.32 ± 0.10 a |
CV% | 5.2 | 3.18 | 10.23 |
LSD | 0.17 | 0.20 | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngcobo, A.; Mianda, S.M.; Seke, F.; Sunette, L.M.; Sivakumar, D. Phytonutritional Composition and Antioxidant Properties of Southern African, Purple-Fleshed Sweet Potato (Ipomoea batatas (L.) Lam.) Storage Roots. Antioxidants 2024, 13, 338. https://doi.org/10.3390/antiox13030338
Ngcobo A, Mianda SM, Seke F, Sunette LM, Sivakumar D. Phytonutritional Composition and Antioxidant Properties of Southern African, Purple-Fleshed Sweet Potato (Ipomoea batatas (L.) Lam.) Storage Roots. Antioxidants. 2024; 13(3):338. https://doi.org/10.3390/antiox13030338
Chicago/Turabian StyleNgcobo, Ayanda, Sephora Mutombo Mianda, Faith Seke, Laurie M. Sunette, and Dharini Sivakumar. 2024. "Phytonutritional Composition and Antioxidant Properties of Southern African, Purple-Fleshed Sweet Potato (Ipomoea batatas (L.) Lam.) Storage Roots" Antioxidants 13, no. 3: 338. https://doi.org/10.3390/antiox13030338
APA StyleNgcobo, A., Mianda, S. M., Seke, F., Sunette, L. M., & Sivakumar, D. (2024). Phytonutritional Composition and Antioxidant Properties of Southern African, Purple-Fleshed Sweet Potato (Ipomoea batatas (L.) Lam.) Storage Roots. Antioxidants, 13(3), 338. https://doi.org/10.3390/antiox13030338