CASK Mediates Oxidative Stress-Induced Microglial Apoptosis-Inducing Factor-Independent Parthanatos Cell Death via Promoting PARP-1 Hyperactivation and Mitochondrial Dysfunction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Antibodies
2.2. Cell Culture
2.3. Generation of Short Hairpin RNA (shRNA) Knockdown Cell Line
2.4. Flow Cytometry for Annexin V/PI Staining
2.5. Intracellular ROS Production and Mitochondrial Membrane Potential Measurements
2.6. Immunoblotting
2.7. Reverse Transcription (RT) and Real-Time Polymerase Chain Reaction (RT-PCR)
2.8. Confocal Microscopy
2.9. Mitochondrial Oxygen Consumption Rate (OCR)
2.10. Statistical Analysis
3. Results
3.1. CASK Silencing Attenuates H2O2-Induced Cell Death in CHME3
3.2. CASK Silencing Reduces H2O2-Induced DNA Damage and PAR Formation in CHME3 Microglia
3.3. CASK Silencing Inhibits H2O2-Induced Mitochondrial Dysfunction and Generation of Mitochondrial and Cytosolic ROS
3.4. CASK Silencing Attenuates OXPHOS Loss and Mitochondrial Fission under H2O2 Treatment
3.5. AIF Does Not Translocate into the Nucleus after H2O2 Treatment
3.6. Autophagy Is Not Involved in H2O2-Induced Microglial Cell Death
3.7. AMPK Inhibition and AKT Activation Contribute to the Cell Protection Effect of CASK Silencing
3.8. CASK Silencing Enhances EGFR Expression While EGFR Activation Is Not Involved in the Action of CASK Silencing
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AIF | Apoptosis-inducing factor |
AKT | Protein kinase B |
AMPK | Adenosine monophosphate-activated protein kinase |
ATP | Adenosine triphosphate |
BafA1 | Bafilomycin A1 |
CASK | Calcium/calmodulin-dependent serine protein kinase |
CHX | Cycloheximide |
CNS | Central nervous system |
DAPI | 4′,6-Diamidino-2-phenylindole |
DHE | Dihydroethidium |
DMEM | Dulbecco’s Modified Eagle Medium |
EGFR | Epidermal growth factor receptor |
ERK | Extracellular signal-regulated kinase |
FBS | Fetal bovine serum |
FCCP | Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone |
H2O2 | Hydrogen peroxide |
JNK | c-Jun N-terminal kinase |
LC3 | Microtubule-associated protein light chain 3 |
LPS | Lipopolysaccharide |
3-MA | 3-Methyladenine |
MAPKs | Mitogen-activated protein kinases |
MIF | Macrophage migration inhibitory factor |
MMP | Mitochondrial membrane potential |
mtROS | Mitochondrial ROS |
NAD | Nicotinamide adenine dinucleotide |
Nec-1 | Necrostatin-1 |
OCR | Oxygen consumption rate |
PAR | Poly(ADP-ribose) |
PARP-1 | Poly (ADP-ribose) polymerase 1 |
PBS | Phosphate buffered saline |
PI | Propidium iodide |
ROS | Reactive oxygen species |
RT | Reverse transcription |
RT-PCR | Real-time polymerase chain reaction |
shRNA | Short hairpin RNA |
TOM20 | Translocase of outer mitochondrial membrane 20 |
zVAD-FMK | Carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone |
References
- Hsueh, Y.P. The role of the MAGUK protein CASK in neural development and synaptic function. Curr. Med. Chem. 2006, 13, 1915–1927. [Google Scholar] [CrossRef]
- Stevenson, D.; Laverty, H.G.; Wenwieser, S.; Douglas, M.; Wilson, J.B. Mapping and expression analysis of the human CASK gene. Mamm. Genome 2000, 11, 934–937. [Google Scholar] [CrossRef]
- Becker, M.; Mastropasqua, F.; Reising, J.P.; Maier, S.; Ho, M.-L.; Rabkina, I.; Li, D.; Neufeld, J.; Ballenberger, L.; Myers, L.; et al. Presynaptic dysfunction in CASK-related neurodevelopmental disorders. Transl. Psychiatry 2020, 10, 312. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, Y.P.; Wang, T.F.; Yang, F.C.; Sheng, M. Nuclear translocation and transcription regulation by the membrane-associated guanylate kinase CASK/LIN-2. Nature 2000, 404, 298–302. [Google Scholar] [CrossRef]
- Tibbe, D.; Pan, Y.E.; Reißner, C.; Harms, F.L.; Kreienkamp, H.J. Functional analysis of CASK transcript variants expressed in human brain. PLoS ONE 2021, 16, e0253223. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, K.; LaConte, L.E.; Srivastava, S. The non-linear path from gene dysfunction to genetic disease: Lessons from the MICPCH mouse model. Cells 2022, 11, 1131. [Google Scholar] [CrossRef]
- Butz, S.; Okamoto, M.; Südhof, T.C. A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell 1998, 94, 773–782. [Google Scholar] [CrossRef]
- LaConte, L.E.; Chavan, V.; Liang, C.; Willis, J.; Schönhense, E.M.; Schoch, S.; Mukherjee, K. CASK stabilizes neurexin and links it to liprin-α in a neuronal activity-dependent manner. Cell. Mol. Life Sci. 2016, 73, 3599–3621. [Google Scholar] [CrossRef]
- Chao, H.W.; Hong, C.J.; Huang, T.N.; Lin, Y.L.; Hsueh, Y.P. SUMOylation of the MAGUK protein CASK regulates dendritic spinogenesis. J. Cell Biol. 2008, 182, 141–155. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, Y.; Wu, A.; Duan, Q.; He, P.; Huang, H.; Gao, Y.; Nie, K.; Liu, Q.; Wang, L. Calcium/calmodulin-dependent serine protein kinase exacerbates mitochondrial calcium uniporter-related mitochondrial calcium overload by phosphorylating α-synuclein in Parkinson’s disease. Int. J. Biochem. Cell Biol. 2023, 157, 106385. [Google Scholar] [CrossRef]
- Kim, S.K. Polarized signaling: Basolateral receptor localization in epithelial cells by PDZ-containing proteins. Curr. Opin. Cell Biol. 1997, 9, 853–859. [Google Scholar] [CrossRef]
- Kaech, S.M.; Whitfield, C.W.; Kim, S.K. The LIN-2/LIN-7/LIN-10 complex mediates basolateral membrane localization of the C. elegans EGF receptor LET-23 in vulval epithelial cells. Cell 1998, 94, 761–771. [Google Scholar] [CrossRef]
- Stetak, A.; Hoier, E.F.; Croce, A.; Cassata, G.; Di Fiore, P.P.; Hajnal, A. Cell fate-specific regulation of EGF receptor trafficking during Caenorhabditis elegans vulval development. EMBO J. 2006, 25, 2347–2357. [Google Scholar] [CrossRef]
- Xu, Y.; Jin, M.Z.; Yang, Z.Y.; Jin, W.L. Microglia in neurodegenerative diseases. Neural Regen. Res. 2021, 16, 270–280. [Google Scholar]
- Solleiro-Villavicencio, H.; Rivas-Arancibia, S. Effect of chronic oxidative stress on neuroinflammatory response mediated by CD4+ T cells in neurodegenerative diseases. Front. Cell. Neurosci. 2018, 12, 114. [Google Scholar] [CrossRef]
- Simpson, D.S.; Oliver, P.L. ROS generation in microglia: Understanding oxidative stress and inflammation in neurodegenerative disease. Antioxidants 2020, 9, 743. [Google Scholar] [CrossRef]
- Lee, K.H.; Cha, M.; Lee, B.H. Crosstalk between neuron and glial cells in oxidative injury and neuroprotection. Int. J. Mol. Sci. 2021, 22, 13315. [Google Scholar] [CrossRef]
- Guo, C.; Sun, L.; Chen, X.; Zhang, D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen. Res. 2013, 8, 2003–2014. [Google Scholar] [PubMed]
- Hopperton, K.E.; Mohammad, D.; Trépanier, M.O.; Giuliano, V.; Bazinet, R.P. Markers of microglia in post-mortem brain samples from patients with Alzheimer’s disease: A systematic review. Mol. Psychiatry 2018, 23, 177–198. [Google Scholar] [CrossRef] [PubMed]
- White, C.A.; McCombe, P.A.; Pender, M.P. Microglia are more susceptible than macrophages to apoptosis in the central nervous system in experimental autoimmune encephalomyelitis through a mechanism not involving Fas (CD95). Int. Immunol. 1998, 10, 935–941. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cella, M.; Mallinson, K.; Ulrich, J.D.; Young, K.L.; Robinette, M.L.; Gilfillan, S.; Krishnan, G.M.; Sudhakar, S.; Zinselmeyer, B.H.; et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 2015, 160, 1061–1071. [Google Scholar] [CrossRef]
- Stoica, B.A.; Loane, D.J.; Zhao, Z.; Kabadi, S.V.; Hanscom, M.; Byrnes, K.R.; Faden, A.I. PARP-1 inhibition attenuates neuronal loss, microglia activation and neurological deficits after traumatic brain injury. J. Neurotrauma 2014, 31, 758–772. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Li, Y.; Zhang, Q.; Wang, H.; Xiu, W.; Xu, P.; Deng, Y.; Huang, W.; Wang, D.O. Crocetin antagonizes parthanatos in ischemic stroke via inhibiting NOX2 and preserving mitochondrial hexokinase-I. Cell Death Dis. 2023, 14, 50. [Google Scholar] [CrossRef] [PubMed]
- Tavassoly, O.; Sato, T.; Tavassoly, I. Inhibition of brain epidermal growth factor receptor activation: A novel target in neurodegenerative diseases and brain injuries. Mol. Pharmacol. 2020, 98, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Qu, W.-s.; Tian, D.-s.; Guo, Z.-b.; Fang, J.; Zhang, Q.; Yu, Z.-y.; Xie, M.-j.; Zhang, H.-q.; Lü, J.-g.; Wang, W. Inhibition of EGFR/MAPK signaling reduces microglial inflammatory response and the associated secondary damage in rats after spinal cord injury. J. Neuroinflamm. 2012, 9, 178. [Google Scholar] [CrossRef] [PubMed]
- Martín, R.; Cordova, C.; Nieto, M.L. Secreted phospholipase A 2-IIA-induced a phenotype of activated microglia in BV-2 cells requires epidermal growth factor receptor transactivation and proHB-EGF shedding. J. Neuroinflamm. 2012, 9, 154. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Sun, Y.; Hu, R.; Yan, J.; Wang, Z.; Li, W.; Jiang, H. Morphine promotes microglial activation by upregulating the EGFR/ERK signaling pathway. PLoS ONE 2021, 16, e0256870. [Google Scholar] [CrossRef]
- Qu, W.S.; Liu, J.L.; Li, C.Y.; Li, X.; Xie, M.J.; Wang, W.; Tian, D.S. Rapidly activated epidermal growth factor receptor mediates lipopolysaccharide-triggered migration of microglia. Neurochem. Int. 2015, 90, 85–92. [Google Scholar] [CrossRef]
- Huang, P.; Chen, G.; Jin, W.; Mao, K.; Wan, H.; He, Y. Molecular mechanisms of Parthanatos and its role in diverse diseases. Int. J. Mol. Sci. 2022, 23, 7292. [Google Scholar] [CrossRef]
- Katsyuba, E.; Romani, M.; Hofer, D.; Auwerx, J. NAD+ homeostasis in health and disease. Nat. Metab. 2020, 2, 9–31. [Google Scholar] [CrossRef]
- Jang, K.H.; Do, Y.J.; Son, D.; Son, E.; Choi, J.S.; Kim, E. AIF-independent parthanatos in the pathogenesis of dry age-related macular degeneration. Cell Death Dis. 2018, 8, e2526. [Google Scholar] [CrossRef]
- Akhiani, A.A.; Werlenius, O.; Aurelius, J.; Movitz, C.; Martner, A.; Hellstrand, K.; Thorén, F.B. Role of the ERK pathway for oxidant-induced parthanatos in human lymphocytes. PLoS ONE 2014, 9, e89646. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Yuan, Y.; Yu, Q.; Liu, G.; Long, M.; Zhang, K.; Bian, J.; Gu, J.; Zou, H.; Wang, Y.; et al. PARP-1 overexpression contributes to Cadmium-induced death in rat proximal tubular cells via parthanatos and the MAPK signalling pathway. Sci. Rep. 2017, 7, 4331. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Wang, C.; Luo, T.; Lu, B.; Ma, H.; Zhou, Z.; Zhu, D.; Chi, G.; Ge, P.; Luo, Y. JNK Activation Contributes to Oxidative Stress-Induced Parthanatos in Glioma Cells via Increase of Intracellular ROS Production. Mol. Neurobiol. 2017, 54, 3492–3505. [Google Scholar] [CrossRef]
- Kim, T.W.; Cho, H.M.; Choi, S.Y.; Suguira, Y.; Hayasaka, T.; Setou, M.; Koh, H.C.; Hwang, E.M.; Park, J.Y.; Kang, S.J.; et al. (ADP-ribose) polymerase 1 and AMP-activated protein kinase mediate progressive dopaminergic neuronal degeneration in a mouse model of Parkinson’s disease. Cell Death Dis. 2013, 4, e919. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; Li, J.; Jiang, M.; Guo, S.; Yang, G.; Zhang, L.; Wang, F.; Yi, S.; Wang, J.; et al. Inhibition of AKT induces p53/SIRT6/PARP1-dependent parthanatos to suppress tumor growth. Cell Commun. Signal. 2022, 20, 93. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S.J.; Jeong, H.R.; Park, J.H.; Moon, M.; Hoe, H.S. Inhibiting EGFR/HER-2 ameliorates neuroinflammatory responses and the early stage of tau pathology through DYRK1A. Front. Immunol. 2022, 13, 903309. [Google Scholar] [CrossRef]
- Bachiller, S.; Jiménez-Ferrer, I.; Paulus, A.; Yang, Y.; Swanberg, M.; Deierborg, T.; Boza-Serrano, A. Microglia in neurological diseases: A road map to brain-disease dependent-inflammatory response. Front. Cell. Neurosci. 2018, 12, 488. [Google Scholar] [CrossRef]
- Gonzalez-Pena, D.; Nixon, S.E.; Southey, B.R.; Lawson, M.A.; McCusker, R.H.; Hernandez, A.G.; Dantzer, R.; Kelley, K.W.; Rodriguez-Zas, S.L. Differential transcriptome networks between IDO1-knockout and wild-type mice in brain microglia and macrophages. PLoS ONE 2016, 11, e0157727. [Google Scholar] [CrossRef] [PubMed]
- Popescu, A.S.; Butler, C.A.; Allendorf, D.H.; Piers, T.M.; Mallach, A.; Roewe, J.; Reinhardt, P.; Cinti, A.; Redaelli, L.; Boudesco, C.; et al. Alzheimer’s disease-associated R47H TREM2 increases, but wild-type TREM2 decreases, microglial phagocytosis of synaptosomes and neuronal loss. Glia 2023, 71, 974–990. [Google Scholar] [CrossRef] [PubMed]
- Flynn, G.; Maru, S.; Loughlin, J.; Romero, I.A.; Male, D.J. Regulation of chemokine receptor expression in human microglia and astrocytes. Neuroimmunology 2003, 136, 84–93. [Google Scholar] [CrossRef]
- Green, J.A.; Rand, L.; Moores, R.; Dholakia, S.; Pezas, T.; Elkington, P.T.; Friedland, J.S.J. In an in vitro model of human tuberculosis, monocyte-microglial networks regulate matrix metalloproteinase-1 and -3 gene expression and secretion via a p38 mitogen activated protein kinase-dependent pathway. Neuroinflammation 2013, 10, 107. [Google Scholar] [CrossRef] [PubMed]
- Patnaik, S.; Rai, M.; Jalali, S.; Agarwal, K.; Badakere, A.; Puppala, L.; Vishwakarma, S.; Balakrishnan, D.; Rani, P.K.; Kekunnaya, R.; et al. An interplay of microglia and matrix metalloproteinase MMP9 under hypoxic stress regulates the opticin expression in retina. Sci. Rep. 2021, 11, 7444. [Google Scholar] [CrossRef] [PubMed]
- Hou, R.C.; Wu, C.C.; Huang, J.R.; Chen, Y.S.; Jeng, K.C. Oxidative toxicity in BV-2 microglia cells: Sesamolin neuroprotection of H2O2 injury involving activation of p38 mitogen-activated protein kinase. Ann. N. Y. Acad. Sci. 2005, 1042, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Z.; Liang, S.P.; Chen, X.; Wang, Z.C.; Li, C.; Feng, C.S.; Lu, S.; He, C.; Wang, Y.B.; Chi, G.F.; et al. TAX1BP1 contributes to deoxypodophyllotoxin-induced glioma cell parthanatos via inducing nuclear translocation of AIF by activation of mitochondrial respiratory chain complex I. Acta Pharmacol. Sin. 2023, 44, 1906–1919. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Zhou, T.; Sun, X.; Zheng, Y.; Cheng, B.; Li, M.; Liu, X.; He, C. Necroptosis in microglia contributes to neuroinflammation and retinal degeneration through TLR4 activation. Cell Death Differ. 2018, 25, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Wei, Y.; Sun, G.; Xu, L.; Wang, T.; Tian, Y.; Chao, H.; Tu, Y.; Ji, J. Fetuin-A alleviates neuroinflammation against traumatic brain injury-induced microglial necroptosis by regulating Nrf-2/HO-1 pathway. J. Neuroinflammation 2022, 19, 269. [Google Scholar] [CrossRef]
- David, K.K.; Andrabi, S.A.; Dawson, T.M.; Dawson, V.L. Parthanatos, a messenger of death. Front. Biosci. (Landmark Ed.) 2009, 14, 1116. [Google Scholar] [CrossRef]
- Zhong, H.; Song, R.; Pang, Q.; Liu, Y.; Zhuang, J.; Chen, Y.; Hu, J.; Hu, J.; Liu, Y.; Liu, Z.; et al. Propofol inhibits parthanatos via ROS-ER-calcium-mitochondria signal pathway in vivo and vitro. Cell Death Dis. 2018, 9, 932. [Google Scholar] [CrossRef]
- Wu, A.Y.T.; Sekar, P.; Huang, D.Y.; Hsu, S.H.; Chan, C.M.; Lin, W.W. Spatiotemporal roles of AMPK in PARP-1- and autophagy-dependent retinal pigment epithelial cell death caused by UVA. J. Biomed. Sci. 2023, 30, 91. [Google Scholar] [CrossRef]
- Fouquerel, E.; Goellner, E.M.; Yu, Z.; Gagne, J.P.; de Moura, M.B.; Feinstein, T.; Wheeler, D.; Redpath, P.; Li, J.; Romero, G.; et al. ARTD1/PARP1 negatively regulates glycolysis by inhibiting hexokinase 1 independent of NAD+ depletion. Cell Rep. 2014, 8, 1819–1831. [Google Scholar] [CrossRef]
- Regdon, Z.; Robaszkiewicz, A.; Kovács, K.; Rygielska, Ż.; Hegedűs, C.; Bodoor, K.; Szabó, É.; Virág, L. LPS protects macrophages from AIF-independent parthanatos by downregulation of PARP1 expression, induction of SOD2 expression, and a metabolic shift to aerobic glycolysis. Free. Radic. Biol. Med. 2019, 131, 184–196. [Google Scholar] [CrossRef]
- Chiu, L.Y.; Ho, F.M.; Shiah, S.G.; Chang, Y.; Lin, W.W. Oxidative stress initiates DNA damager MNNG-induced poly(ADP ribose)polymerase-1-dependent parthanatos cell death. Biochem. Pharmacol. 2011, 81, 459–470. [Google Scholar] [CrossRef] [PubMed]
- Sekar, P.; Huang, D.Y.; Hsieh, S.L.; Chang, S.F.; Lin, W.W. AMPK-dependent and independent actions of P2X7 in regulation of mitochondrial and lysosomal functions in microglia. Cell Commun. Signal. 2018, 16, 83. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.M.; Sekar, P.; Huang, D.Y.; Hsu, S.H.; Lin, W.W. Different effects of metformin and A769662 on sodium iodate-induced cytotoxicity in retinal pigment epithelial cells: Distinct actions on mitochondrial fission and respiration. Antioxidants 2020, 9, 1057. [Google Scholar] [CrossRef] [PubMed]
- Sekar, P.; Hsiao, G.; Hsu, S.H.; Huang, D.Y.; Lin, W.W.; Chan, C.M. Metformin inhibits methylglyoxal-induced retinal pigment epithelial cell death and retinopathy via AMPK-dependent mechanisms: Reverse mitochondrial dysfunction and upregulation of glyoxalase 1. Redox Biol. 2023, 64, 102786. [Google Scholar] [CrossRef] [PubMed]
- Chiu, L.Y.; Wu, N.L.; Hung, C.F.; Bai, P.; Dai, Y.S.; Lin, W.W. PARP-1 involves in UVB-induced inflammatory response in keratinocytes and skin injury via regulation of ROS-dependent EGFR transactivation and p38 signaling. FASEB J. 2021, 35, e21393. [Google Scholar] [CrossRef]
Gene | Forward (5′ to 3′) | Reverse (3′ to 5′) | Gene Accession Number |
---|---|---|---|
β-Actin | CGG GGA CCT GAC TGA CTA CC | AGG AAG GCT GGA AGA GTG C | NG_007992 |
CASK | TTG AAA TCG TAA AGC GAG CTG A | CAG TAG CGT AGA GCT TCC AGT A | NG_016754 |
EGFR | GAC CTC CAT GCC TTT GAG AA | GCT GAC GAC TGC AAG AGA AA | NG_007726 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheong, K.J.H.; Huang, D.-Y.; Sekar, P.; Chen, R.J.; Cheng, I.H.-J.; Chan, C.-M.; Chen, Y.-S.; Lin, W.-W. CASK Mediates Oxidative Stress-Induced Microglial Apoptosis-Inducing Factor-Independent Parthanatos Cell Death via Promoting PARP-1 Hyperactivation and Mitochondrial Dysfunction. Antioxidants 2024, 13, 343. https://doi.org/10.3390/antiox13030343
Cheong KJH, Huang D-Y, Sekar P, Chen RJ, Cheng IH-J, Chan C-M, Chen Y-S, Lin W-W. CASK Mediates Oxidative Stress-Induced Microglial Apoptosis-Inducing Factor-Independent Parthanatos Cell Death via Promoting PARP-1 Hyperactivation and Mitochondrial Dysfunction. Antioxidants. 2024; 13(3):343. https://doi.org/10.3390/antiox13030343
Chicago/Turabian StyleCheong, Keith Jun Hao, Duen-Yi Huang, Ponarulselvam Sekar, Rou Jhen Chen, Irene Han-Juo Cheng, Chi-Ming Chan, Yuan-Shen Chen, and Wan-Wan Lin. 2024. "CASK Mediates Oxidative Stress-Induced Microglial Apoptosis-Inducing Factor-Independent Parthanatos Cell Death via Promoting PARP-1 Hyperactivation and Mitochondrial Dysfunction" Antioxidants 13, no. 3: 343. https://doi.org/10.3390/antiox13030343
APA StyleCheong, K. J. H., Huang, D. -Y., Sekar, P., Chen, R. J., Cheng, I. H. -J., Chan, C. -M., Chen, Y. -S., & Lin, W. -W. (2024). CASK Mediates Oxidative Stress-Induced Microglial Apoptosis-Inducing Factor-Independent Parthanatos Cell Death via Promoting PARP-1 Hyperactivation and Mitochondrial Dysfunction. Antioxidants, 13(3), 343. https://doi.org/10.3390/antiox13030343