The Effect of Selected Nitric Oxide Synthase Polymorphisms on the Risk of Developing Diabetic Nephropathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Groups
2.2. Methods
2.2.1. Determination of NOS1, NOS2, NOS3, Glucose, Creatinine, eGFR, and CRP Concentrations
2.2.2. Determination of Metal Concentrations
2.2.3. Genotyping Analysis
2.2.4. Statistical Analysis
3. Results
3.1. Concentrations of the NOS Isoforms in the Studied Groups
3.2. The Genotype Distribution of the NOS1, NOS2, and NOS3 Polymorphisms
3.3. The Influence of NOS1, NOS2, and NOS3 Polymorphisms on the Risk of Occurrence of Diabetic Nephropathy or the Likelihood of Renal Replacement Therapy
3.4. The Influence of the Studied Polymorphisms in NOS1, NOS2, and NOS3 on the Concentrations of the NOS Isoforms and Some Selected Parameters
3.4.1. The Influence of the rs3782218 Polymorphism in NOS1 on the Concentrations of the Selected Parameters
3.4.2. The Influence of the rs1137933 Polymorphism in NOS2 on the Concentrations of the Selected Parameters
3.4.3. The Influence of the rs1799983 Polymorphism in NOS3 on the Concentrations of the Selected Parameters
3.4.4. The Influence of the rs2070744 Polymorphism in NOS3 on the Concentrations of the Selected Parameters
3.4.5. The Influence of the rs61722009 Polymorphism in NOS3 on the Concentrations of the Selected Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Golicki, D.; Dudzińska, M.; Zwolak, A.; Tarach, J.S. Quality of life in patients with type 2 diabetes in Poland—Comparison with the general population using the EQ-5D questionnaire. Adv. Clin. Exp. Med. 2015, 24, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Goyal, Y.; Verma, A.K.; Bhatt, D.; Rahmani, A.H.; Yasheshwar; Dev, K. Diabetes: Perspective and challenges in modern era. Gene Rep. 2020, 20, 100759. [Google Scholar] [CrossRef]
- Mukhtar, Y.; Galalain, A.M.; Yunusa, U.M. A modern overview on diabetes mellitus: A chronic endocrine disorder. Eur. J. Biol. 2020, 5, 1–14. [Google Scholar] [CrossRef]
- Madziarska, K.; Banasik, M. Chorzy na cukrzycę w programach hemodializy i dializy otrzewnowej—Zagrożenia, których można uniknąć [Diabetes patients in hemodialysis and peritoneal dialysis programs—Risks that can be avoided]. Probl. Lek. 2006, 45, 240–241. [Google Scholar]
- Sagoo, M.K.; Gnudi, L. Diabetic Nephropathy: An Overview. Methods Mol. Biol. 2020, 2067, 3–7. [Google Scholar] [PubMed]
- Samsu, N. Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment. Biomed. Res. Int. 2021, 2021, 1497449. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Díaz, A.G.; Pazarín-Villaseñor, L.; Yanowsky-Escatell, F.G.; Andrade-Sierra, J. Oxidative Stress in Diabetic Nephropathy with Early Chronic Kidney Disease. J. Diabetes Res. 2016, 2016, 7047238. [Google Scholar] [CrossRef] [PubMed]
- Hojs, N.V.; Bevc, S.; Ekart, R.; Hojs, R. Oxidative Stress Markers in Chronic Kidney Disease with Emphasis on Diabetic Nephropathy. Antioxidants 2020, 9, 925. [Google Scholar] [CrossRef] [PubMed]
- Sagoo, M.K.; Gnudi, L. Diabetic nephropathy: Is there a role for oxidative stress? Free. Radic. Biol. Med. 2018, 116, 50–63. [Google Scholar] [CrossRef]
- Ferreira, C.A.; Ni, D.; Rosenkrans, Z.T.; Cai, W. Scavenging of reactive oxygen and nitrogen species with nanomaterials. Nano Res. 2018, 11, 4955. [Google Scholar] [CrossRef]
- Pérez-Torres, I.; Manzano-Pech, L.; Rubio-Ruíz, M.E.; Soto, M.E.; Guarner-Lans, V. Nitrosative Stress and Its Association with Cardiometabolic Disorders. Molecules 2020, 25, 2555. [Google Scholar] [CrossRef] [PubMed]
- Król, M.; Kepinska, M. Human Nitric Oxide Synthase—Its Functions, Polymorphisms, and Inhibitors in the Context of Inflammation, Diabetes and Cardiovascular Diseases. Int. J. Mol. Sci. 2020, 22, 56. [Google Scholar] [CrossRef] [PubMed]
- Dellamea, B.S.; Leitão, C.B.; Friedman, R.; Canani, L.H. Nitric oxide system and diabetic nephropathy. Diabetol. Metab. Syndrome 2014, 6, 17. [Google Scholar] [CrossRef] [PubMed]
- Evans, T.C.; Capell, P. Diabetic nephropathy. Clin. Diabetol. 2021, 2, 15–23. [Google Scholar]
- Adela, R.; Nethi, S.K.; Bagul, P.K.; Barui, A.K.; Mattapally, S.; Kuncha, M.; Patra, C.R.; Reddy, P.N.; Banerjee, S.K. Hyperglycaemia Enhances Nitric Oxide Production in Diabetes: A Study from South Indian Patients. PLoS ONE 2015, 10, e0125270. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Ren, L.; Wei, Q.; Shao, H.; Chen, L.; Liu, N. Advanced glycation end-products decreases expression of endothelial nitric oxide synthase through oxidative stress in human coronary artery endothelial cells. Cardiovasc. Diabetol. 2017, 16, 52. [Google Scholar] [CrossRef] [PubMed]
- Mezghenna, K.; Pomiès, P.; Chalançon, A.; Castex, F.; Leroy, J.; Niclauss, N.; Nadal, B.; Cambier, L.; Cazevieille, C.; Petit, P.; et al. Increased neuronal nitric oxide synthase dimerisation is involved in rat and human pancreatic beta cell hyperactivity in obesity. Diabetologia 2011, 54, 2856–2866. [Google Scholar] [CrossRef] [PubMed]
- Muniyappa, R.; Sowers, J.R. Role of Insulin Resistance in Endothelial Dysfunction. Rev. Endocr. Metab. Disord. 2013, 14, 5. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, Y.K.; Ishikawa, T. Dual role of nitric oxide in pancreatic β-cells. J. Pharmacol. Sci. 2013, 123, 295–300. [Google Scholar] [CrossRef]
- He, Y.; Fan, Z.; Zhang, J.; Zhang, Q.; Zheng, M.; Li, Y.; Zhang, D.; Gu, S.; Yang, H. Polymorphisms of eNOS gene are associated with diabetic nephropathy: A meta-analysis. Mutagenesis 2011, 26, 339–349. [Google Scholar] [CrossRef]
- Zeng, R.; Duan, L.; Sun, L.; Kong, Y.; Wu, X.; Wang, Y.; Xin, G.; Yang, K. A meta-analysis on the relationship of eNOS 4b/a polymorphism and diabetic nephropathy susceptibility. Ren. Fail. 2014, 36, 1520–1535. [Google Scholar] [CrossRef] [PubMed]
- Raina, P.; Sikka, R.; Gupta, H.; Matharoo, K.; Bali, S.K.; Singh, V.; Bhanwer, A.J.S. Association of eNOS and MCP-1 Genetic Variants with Type 2 Diabetes and Diabetic Nephropathy Susceptibility: A Case–Control and Meta-Analysis Study. Biochem. Genet. 2021, 59, 966–996. [Google Scholar] [CrossRef]
- Padhi, U.N.; Mulkalwar, M.; Saikrishna, L.; Verma, H.K.; Bhaskar, L.V.K.S. NOS3 gene intron 4 a/b polymorphism is associated with ESRD in autosomal dominant polycystic kidney disease patients. J. Bras. Nefrol. 2022, 44, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Garme, Y.; Moudi, M.; Saravani, R.; Galavi, H. Nitric Oxide Synthase 2 Polymorphisms (rs2779248T/C and rs1137933C/T) and the Risk of Type 2 Diabetes in Zahedan, Southeastern Iran. Iran. J. Public Health 2018, 47, 1734. [Google Scholar] [PubMed]
- Chen, F.; Li, Y.M.; Yang, L.Q.; Zhong, C.G.; Zhuang, Z.X. Association of NOS2 and NOS3 gene polymorphisms with susceptibility to type 2 diabetes mellitus and diabetic nephropathy in the Chinese Han population. IUBMB Life 2016, 68, 516–525. [Google Scholar] [CrossRef]
- Yigit, S.; Nursal, A.F.; Uzun, S.; Rustemoglu, H.; Dashatan, P.A.; Soylu, H.; Atmaca, A.; Rustemoglu, A.; Kuruca, N.; Karakus, N. Impact of Endothelial NOS VNTR Variant on Susceptibility to Diabetic Neuropathy and Type 2 Diabetes Mellitus. Curr. Neurovasc. Res. 2020, 17, 700–705. [Google Scholar] [CrossRef] [PubMed]
- Shoukry, A.; Shalaby, S.M.; Abdelazim, S.; Abdelazim, M.; Ramadan, A.; Ismail, M.I.; Fouad, M. Endothelial nitric oxide synthase gene polymorphisms and the risk of diabetic nephropathy in type 2 diabetes mellitus. Genet. Test. Mol. Biomark. 2012, 16, 574–579. [Google Scholar] [CrossRef] [PubMed]
- Levinsson, A.; Olin, A.C.; Björck, L.; Rosengren, A.; Nyberg, F. Nitric oxide synthase (NOS) single nucleotide polymorphisms are associated with coronary heart disease and hypertension in the INTERGENE study. Nitric Oxide 2014, 39, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sarginson, J.E.; Deakin, J.F.; Anderson, I.M.; Downey, D.; Thomas, E.; Elliott, R.; Juhasz, G. Neuronal Nitric Oxide Synthase (NOS1) Polymorphisms Interact with Financial Hardship to Affect Depression Risk. Neuropsychopharmacology 2014, 39, 2857–2866. [Google Scholar] [CrossRef]
- Adibmanesh, A.; Bijanzadeh, M.; Mohammadzadeh, G.; Alidadi, R.; Rashidi, M.; Talaiezadeh, A. The Correlation of Endothelial Nitric Oxide Synthase Gene rs1799983 Polymorphisms with Colorectal Cancer. Int. J. Cancer Manag. 2020, 13, 97220. [Google Scholar] [CrossRef]
- Heidari, M.M.; Khatami, M.; Tahamtan, Y. Molecular Analysis of rs2070744 and rs1799983 Polymorphisms of NOS3 Gene in Iranian Patients with Multiple Sclerosis. Basic Clin. Neurosci. 2017, 8, 279. [Google Scholar] [CrossRef] [PubMed]
- Fishchuk, L.; Rossokha, Z.; Pokhylko, V.; Cherniavska, Y.; Dubitska, O.; Vershyhora, V.; Tsvirenko, S.; Kovtun, S.; Gorovenko, N. NOS3 (rs61722009) gene variants testing in prediction of COVID-19 pneumonia severity. Nitric Oxide 2023, 134–135, 44–48. [Google Scholar] [CrossRef]
- Kubota, M.; Matsuda, S.; Matsuda, M.; Yamamoto, K.; Yoshii, Y. Association of Serum Zinc Level with severity of chronic kidney disease in diabetic patients: A cross-sectional study. BMC Nephrol. 2022, 23, 1–8. [Google Scholar] [CrossRef]
- Ming, J.; Sana, S.R.G.L.; Deng, X. Identification of copper-related biomarkers and potential molecule mechanism in diabetic nephropathy. Front. Endocrinol. 2022, 13, 978601. [Google Scholar] [CrossRef] [PubMed]
- Król-Kulikowska, M.; Abramenko, N.; Jakubek, M.; Banasik, M.; Kepinska, M. The Role of Angiotensin-Converting Enzyme (ACE) Polymorphisms in the Risk of Development and Treatment of Diabetic Nephropathy. J. Clin. Med. 2024, 13, 995. [Google Scholar] [CrossRef]
- Selby, N.M.; Bmbs, B.; Dm, M.; Taal, M.W.; Mmed, B. An updated overview of diabetic nephropathy: Diagnosis, prognosis, treatment goals and latest guidelines. Diabetes Obes. Metab. 2020, 22, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Pelle, M.C.; Provenzano, M.; Busutti, M.; Porcu, C.V.; Zaffina, I.; Stanga, L.; Arturi, F. Up-Date on Diabetic Nephropathy. Life 2022, 12, 1202. [Google Scholar] [CrossRef] [PubMed]
- Varghese, S.; Kumar, S.G. Role of eNOS and TGFβ1 gene polymorphisms in the development of diabetic nephropathy in type 2 diabetic patients in South Indian population. Egypt. J. Med. Hum. Genet. 2022, 23, 1–10. [Google Scholar] [CrossRef]
- Dobrijević, Z.; Stevanović, J.; Robajac, D.; Penezić, A.; Četić, D.; Baralić, M.; Nedić, O. Association between nitric oxide synthase (NOS3) gene polymorphisms and diabetic nephropathy: An updated meta-analysis. Mol. Cell. Endocrinol. 2024, 586, 112197. [Google Scholar] [CrossRef]
- Varghese, S.; Kumar, S.G. Association between genetic variants of NOS3, TGF-β and susceptibility of diabetic nephropathy: A meta-analysis. Meta Gene 2019, 21, 100573. [Google Scholar] [CrossRef]
- Oliveira-Paula, G.H.; Lacchini, R.; Tanus-Santos, J.E. Endothelial nitric oxide synthase: From biochemistry and gene structure to clinical implications of NOS3 polymorphisms. Gene 2016, 575, 584–599. [Google Scholar] [CrossRef] [PubMed]
- Yuzawa, Y.; Niki, I.; Kosugi, T.; Maruyama, S.; Yoshida, F.; Takeda, M.; Tagawa, Y.; Kaneko, Y.; Kimura, T.; Kato, N.; et al. Overexpression of Calmodulin in Pancreatic β Cells Induces Diabetic Nephropathy. J. Am. Soc. Nephrol. 2008, 19, 1701–1711. [Google Scholar] [CrossRef] [PubMed]
- Mikhailov, A.V.; Liu, Y.; Cheng, H.J.; Lin, J.J.; Cheng, C.P. Calmodulin-dependent protein kinase II activation promotes kidney mesangial expansion in streptozotocin-induced diabetic mice. Heliyon 2022, 8, e11653. [Google Scholar] [CrossRef] [PubMed]
- Benchoula, K.; Mediani, A.; Hwa, W.E. The functions of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in diabetes progression. J. Cell Commun. Signal. 2023, 17, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Cotta Filho, C.K.; Oliveira-Paula, G.H.; Rondon Pereira, V.C.; Lacchini, R. Clinically relevant endothelial nitric oxide synthase polymorphisms and their impact on drug response. Expert Opin. Drug Metab. Toxicol. 2020, 16, 927–951. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Otaki, Y.; Watanabe, T.; Wanezaki, M.; Kutsuzawa, D.; Kato, S.; Tamura, H.; Nishiyama, S.; Arimoto, T.; Takahashi, H.; et al. Effects of Nitric Oxide Synthase 3 Gene Polymorphisms on Cardiovascular Events in a General Japanese Population—The Yamagata (Takahata) Study. Circ. Rep. 2022, 4, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Shahid, S.M.; Nawab, S.N.; Shaikh, R.; Mahboob, T. Glycemic control, dyslipidemia and endothelial dysfunction in coexisted diabetes, hypertension and nephropathy. Pak. J. Pharm. Sci. 2012, 25, 123–129. [Google Scholar] [PubMed]
- Al-Timimi, D.J.; Sulieman, D.M.; Hussen, K.R. Zinc Status in Type 2 Diabetic Patients: Relation to the Progression of Diabetic Nephropathy. J. Clin. Diagn. Res. 2014, 8, CC04. [Google Scholar] [CrossRef]
- Barman, S.; Pradeep, S.R.; Srinivasan, K. Zinc supplementation alleviates the progression of diabetic nephropathy by inhibiting the overexpression of oxidative-stress-mediated molecular markers in streptozotocin-induced experimental rats. J. Nutr. Biochem. 2018, 54, 113–129. [Google Scholar] [CrossRef]
- Feng, J.; Wang, H.; Jing, Z.; Wang, Y.; Wang, W.; Jiang, Y.; Sun, W. Relationships of the Trace Elements Zinc and Magnesium with Diabetic Nephropathy-Associated Renal Functional Damage in Patients with Type 2 Diabetes Mellitus. Front. Med. 2021, 8, 626909. [Google Scholar] [CrossRef]
- Ume, A.C.; Wenegieme, T.Y.; Adams, D.N.; Adesina, S.E.; Williams, C.R. Zinc Deficiency: A Potential Hidden Driver of the Detrimental Cycle of Chronic Kidney Disease and Hypertension. Kidney360 2023, 4, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, M.; Yaghooti, H.; Adibmanesh, A.; Mohammadtaghvaie, N.; Akhormeh, A.K.; Eslami, M. Endothelial Nitric Oxide Synthase 4a/B Polymorphism and Its Interaction with Enos G894T Variants in Type 2 Diabetic Patients: Modifying the Risk of Diabetic Nephropathy. Iran. J. Public Health 2022, 51, 219. [Google Scholar] [PubMed]
- Li, H.; Shu, G.; Gao, H. Epithelial nitric oxide synthases (eNOS) 894 G < T polymorphism and diabetic nephropathy susceptibility: A meta-Analysis. Pteridines 2022, 33, 49–57. [Google Scholar]
- Duan, J.-Y.; Duan, G.-C.; Wang, C.-J.; Liu, D.-W.; Qiao, Y.-J.; Pan, S.-K.; Jiang, D.-K.; Liu, Y.; Zhao, Z.-H.; Liang, L.-L.; et al. Prevalence and risk factors of chronic kidney disease and diabetic kidney disease in a central Chinese urban population: A cross-sectional survey. BMC Nephrol. 2020, 21, 1–13. [Google Scholar] [CrossRef]
- Natesan, V.; Kim, S.J. Diabetic Nephropathy—A Review of Risk Factors, Progression, Mechanism, and Dietary Management. Biomol. Ther. 2021, 29, 365. [Google Scholar] [CrossRef]
SNP | Primers | PCR-RFLP Conditions |
---|---|---|
rs3782218 (NOS1) | Forward primer—5′ CTG AGA GCA GAA GGT GGG TG 3′ Reverse primer—5′ GTC CTG GAT GGG TTT CCC TG 3′ | the initial denaturation—95 °C for 15 min denaturation—95 °C for 40 s annealing—62 °C for 35 s elongation—72 °C for 40 s the final elongation—72 °C for 10 min |
Restriction enzyme | Restriction enzyme digestion conditions | |
Hpy99I | 37 °C for 1 h | |
rs1137933 (NOS2) | Primers | PCR-RFLP Conditions |
Forward primer—5′ CTC ACC AAA AAG TCT TCA GAC TCA CA 3′ Reverse primer—5′ GGC CCC AGT TAA ATT GTG TCT ACC 3′ | the initial denaturation—95 °C for 15 min denaturation—95 °C for 40 s annealing—59 °C for 35 s elongation—72 °C for 40 s the final elongation—72 °C for 10 min | |
Restriction enzyme | Restriction enzyme digestion conditions | |
Hin1I | 37 °C for 16 h | |
rs1799983 (NOS3) | Primers | PCR-RFLP Conditions |
Forward primer—5′ GAC CCT GGA GAT GAA GGC AG 3′ Reverse primer—5′ CAT CCC ACC CAG TCA ATC CC 3′ | the initial denaturation—95 °C for 5 min denaturation—95 °C for 40 s annealing—60.4 °C for 35 s elongation—72 °C for 40 s the final elongation—72 °C for 10 min | |
Restriction enzyme | Restriction enzyme digestion conditions | |
MboI | 37 °C for 16 h | |
rs2070744 (NOS3) | Primers | PCR-RFLP Conditions |
Forward primer—5′ CTA GTG GCC TTT CTC CAG CC 3′ Reverse primer—5′ GCC CAG CAA GGA TGT AGT GA 3′ | the initial denaturation—95 °C for 15 min denaturation—95 °C for 40 s annealing—62.0 °C for 35 s elongation—72 °C for 1 min the final elongation—72 °C for 10 min | |
Restriction enzyme | Restriction enzyme digestion conditions | |
MspI | 37 °C for 16 h | |
rs61722009 (NOS3) | Primers | PCR Conditions |
Forward primer—5′ CTA TGG TAG TGC CTT GGC TGG AG 3′ Reverse primer—5′ GTC ACA GGC GTT CCA GTA ACT AAG 3′ | the initial denaturation—95 °C for 15 min denaturation—95 °C for 20 s annealing—58.0 °C for 35 s elongation—72 °C for 40 s the final elongation—72 °C for 10 min |
Polymorphism (Gene) | Groups (N) | Genotype Frequencies (%) | p | ||
---|---|---|---|---|---|
C/C | C/T | T/T | |||
rs3782218 (NOS1) | Control (N = 47) | N = 4 (8.51%) | N = 32 (68.09%) | N = 11 (23.40%) | 0.008 |
Diabetic Nephropathy (N = 79) | N = 26 (32.91%) | N = 35 (44.30%) | N = 18 (22.79%) | ||
Kidney Transplant Diabetic Nephropathy (N = 96) | N = 18 (18.75%) | N = 47 (48.96%) | N = 31 (32.29%) | ||
Polymorphism (Gene) | Groups (N) | Genotype Frequencies (%) | p | ||
G/G | G/A | A/A | |||
rs1137933 (NOS2) | Control (N = 44) | N = 28 (63.64%) | N = 14 (31.82%) | N = 2 (4.54%) | 0.931 |
Diabetic Nephropathy (N = 83) | N = 55 (66.26%) | N = 24 (28.92%) | N = 4 (4.82%) | ||
Kidney Transplant Diabetic Nephropathy (N = 97) | N = 58 (59.79%) | N = 34 (35.05%) | N = 5 (5.16%) | ||
Polymorphism (Gene) | Groups (N) | Genotype Frequencies (%) | p | ||
G/G | G/T | T/T | |||
rs1799983 (NOS3) | Control (N = 50) | N = 26 (52.00%) | N = 19 (38.00%) | N = 5 (10.00%) | 0.026 |
Diabetic Nephropathy (N = 77) | N = 29 (37.66%) | N = 46 (59.74%) | N = 2 (2.60%) | ||
Kidney Transplant Diabetic Nephropathy (N = 82) | N = 24 (29.27%) | N = 52 (63.41%) | N = 6 (7.32%) | ||
Polymorphism (Gene) | Groups (N) | Genotype Frequencies (%) | p | ||
C/C | C/T | T/T | |||
rs2070744 (NOS3) | Control (N = 50) | N = 7 (14.00%) | N = 5 (10.00%) | N = 38 (76.00%) | 0.495 |
Diabetic Nephropathy (N = 84) | N = 6 (7.14%) | N = 13 (15.48%) | N = 65 (77.38%) | ||
Kidney Transplant Diabetic Nephropathy (N = 97) | N = 12 (12.37%) | N = 9 (9.28%) | N = 76 (78.35%) | ||
Polymorphism (Gene) | Groups (N) | Genotype Frequencies (%) | p | ||
4a/4a | 4a/4b | 4b/4b | |||
rs61722009 (NOS3) | Control (N = 50) | N = 2 (4.00%) | N = 15 (30.00%) | N = 33 (66.00%) | 0.839 |
Diabetic Nephropathy (N = 85) | N = 2 (2.35%) | N = 31 (36.47%) | N = 52 (61.18%) | ||
Kidney Transplant Diabetic Nephropathy (N = 97) | N = 3 (3.09%) | N = 38 (39.18%) | N = 56 (57.73%) |
SNP (Gene) | Genotype | Diabetic Nephropathy Group | Control Group | p | OR | 95% CI OR |
---|---|---|---|---|---|---|
rs3782218 (NOS1) | C/C | 44 | 4 | 0.035 | 12.094 | 1.189–123.004 |
C/T | 82 | 32 | 0.740 | 0.813 | 0.239–2.768 | |
T/T | 49 | 11 | - | 1.000 | - | |
C allele | 170 | 40 | 0.300 | 1.275 | 0.850–2.019 | |
T allele | 180 | 54 | - | 1.000 | - | |
rs1137933 (NOS2) | G/G | 113 | 28 | 0.893 | 0.897 | 0.183–4.385 |
G/A | 58 | 14 | 0.921 | 0.921 | 0.179–4.744 | |
A/A | 9 | 2 | - | 1.000 | - | |
G allele | 284 | 70 | 0.892 | 0.961 | 0.540–1.710 | |
A allele | 76 | 18 | - | 1.000 | - | |
rs1799983 (NOS3) | G/G | 53 | 26 | 0.412 | 2.219 | 0.331–14.895 |
G/T | 98 | 19 | 0.273 | 2.809 | 0.444–17.777 | |
T/T | 8 | 5 | - | 1.000 | - | |
G allele | 204 | 71 | 0.209 | 0.731 | 0.448–1.192 | |
T allele | 114 | 29 | - | 1.000 | - | |
rs2070744 (NOS3) | C/C | 18 | 7 | 0.446 | 0.693 | 0.270–1.781 |
C/T | 22 | 5 | 0.747 | 1.186 | 0.421–3.338 | |
T/T | 141 | 38 | - | 1.000 | - | |
C allele | 58 | 19 | 0.480 | 0.813 | 0.459–1.443 | |
T allele | 304 | 81 | - | 1.000 | - | |
rs61722009 (NOS3) | 4a/4a | 5 | 2 | 0.754 | 0.764 | 0.142–4.122 |
4a/4b | 69 | 15 | 0.327 | 1.406 | 0.711–2.777 | |
4b/4b | 108 | 33 | - | 1.000 | - | |
4a allele | 79 | 19 | 0.558 | 1.182 | 0.676–2.065 | |
4b allele | 285 | 81 | - | 1.000 | - | |
Other Variables | Category | Diabetic Nephropathy Group | Control Group | p | OR | 95% CI OR |
Age | - | - | - | <0.001 | 1.179 | 1.113–1.249 |
BMI | - | - | - | 0.774 | 1.019 | 0.894–1.162 |
Sex | Men | 94 | 21 | - | 1.000 | - |
Women | 90 | 29 | 0.256 | 0.693 | 0.369–1.304 |
SNP (Gene) | Genotype | Kidney Transplant Diabetic Nephropathy Group | Control Group | p | OR | 95% CI OR |
---|---|---|---|---|---|---|
rs3782218 (NOS1) | C/C | 18 | 4 | 0.475 | 1.597 | 0.442–5.762 |
C/T | 47 | 32 | 0.120 | 0.521 | 0.229–1.185 | |
T/T | 31 | 11 | - | 1.000 | - | |
C allele | 83 | 40 | 0.002 | 2.056 | 1.296–3.262 | |
T allele | 109 | 54 | - | 1.000 | - | |
rs1137933 (NOS2) | G/G | 58 | 28 | 0.828 | 0.829 | 0.151–4.539 |
G/A | 34 | 14 | 0.974 | 0.971 | 0.168–5.613 | |
A/A | 5 | 2 | - | 1.000 | - | |
G allele | 150 | 70 | 0.007 | 0.438 | 0.242–0.795 | |
A allele | 44 | 18 | - | 1.000 | - | |
rs1799983 (NOS3) | G/G | 24 | 26 | 0.531 | 0.767 | 0.334–1.761 |
G/T | 52 | 19 | 0.076 | 2.102 | 0.925–4.777 | |
T/T | 6 | 5 | - | 1.000 | - | |
G allele | 100 | 71 | 0.099 | 0.638 | 0.374–1.088 | |
T allele | 64 | 29 | - | 1.000 | - | |
rs2070744 (NOS3) | C/C | 12 | 7 | 0.765 | 0.857 | 0.312–2.354 |
C/T | 9 | 5 | 0.856 | 0.900 | 0.282–2.872 | |
T/T | 76 | 38 | - | 1.000 | - | |
C allele | 33 | 19 | 0.672 | 0.874 | 0.468–1.632 | |
T allele | 161 | 81 | - | 1.000 | - | |
rs61722009 (NOS3) | 4a/4a | 3 | 2 | 0.896 | 0.884 | 0.140–5.567 |
4a/4b | 38 | 15 | 0.286 | 1.493 | 0.715–3.118 | |
4b/4b | 56 | 33 | - | 1.000 | - | |
4a allele | 44 | 19 | 0.467 | 1.251 | 0.685–2.283 | |
4b allele | 150 | 81 | - | 1.000 | - | |
Other Variables | Category | Kidney Transplant Diabetic Nephropathy Group | Control Group | p | OR | 95% CI OR |
Age | - | - | - | <0.001 | 1.177 | 1.111–1.246 |
BMI | - | - | - | 0.785 | 0.982 | 0.864–1.117 |
Sex | Men | 50 | 21 | - | 1.000 | - |
Women | 49 | 29 | 0.327 | 0.710 | 0.357–1.409 |
Parameter | Control Group (N = 47) | Diabetic Nephropathy Group (N = 79) | Kidney Transplant Diabetic Nephropathy Group (N = 96) | ||||||
---|---|---|---|---|---|---|---|---|---|
C/C (N = 4) | C/T (N = 32) | T/T (N = 11) | C/C (N = 26) | C/T (N = 35) | T/T (N = 18) | C/C (N = 18) | C/T (N = 47) | T/T (N = 31) | |
NOS1 (ng/mL) | {19.47; 40.24; 48.14} | {4.41; 8.15; 25.98} | {3.86; 11.38; 24.90} | {4.40; 5.88; 16.40} | {4.07; 5.69; 11.05} | {5.30; 7.02; 13.35} | {3.93; 9.34; 22.43} | {4.12; 6.32; 15.40} | {4.92; 7.76; 21.77} |
Glucose (mg/dL) | {74.43; 81.99; 90.54} | {81.99; 86.04; 88.92} | {81.00; 86.49; 93.96} | {106.00; 141.00; 183.00} * | {103.00; 124.00; 154.00} ** | {115.00; 145.00; 224.00} *** | {106.50; 121.50; 149.65} | {130.00; 153.00; 213.00} ** | {104.00; 132.50; 153.00} |
Creatinine (mg/dL) | - | - | - | {1.20; 1.34; 1.82} | {1.12; 1.30; 1.72} | {1.04; 1.35; 1.60} | {1.03; 1.54; 2.01} | {1.14; 1.32; 1.70} | {1.12; 1.22; 1.45} |
eGFR (mL/min/1.73 m2) | - | - | - | {30.00; 46.00; 55.00} | {36.00; 51.00; 61.00} | {39.00; 49.50; 61.00} | {35.00; 49.68; 60.50} | {40.00; 51.00; 62.00} | {51.00; 55.00; 65.50} |
CRP (mg/L) | {015; 017; 0.31} | {0.34; 0.64; 0.97} | {0.50; 1.20; 1.40} | {0.24 1.54; 3.92} | {1.94; 2.38; 5.27} ** | {1.03; 3.39; 4.49} | {1.49; 3.44; 8.12} * | {0.73; 1.63; 3.65} | {1.38; 2.69; 4.07} |
Zn (µg/L) | {803.97; 856.71; 1101.53} | {853.50; 926.72; 1093.47} | {890.78; 964.51; 995.98} | {767.00; 835.00; 945.00} | {741.00; 826.00; 915.00} ** | {739.00; 799.00; 840.00} | {632.00; 742.50; 887.00} | {733.00; 804.00; 854.00} ** | {727.00; 815.00; 928.00} |
Cu (µg/L) | {774.67; 827.77; 882.82} | {950.14; 995.71; 1081.33} | {1024.94; 1181.65; 1241.38} | {916.00; 1058.00; 1212.00} | {826.00; 1058.00; 1153.00} | {896.00; 1003.00; 1125.00} | {890.00; 1022.00; 1141.00} | {879.00; 1081.00; 1294.00} | {994.00; 1098.00; 1190.00} |
Parameter | Control Group (N = 44) | Diabetic Nephropathy Group (N = 83) | Kidney Transplant Diabetic Nephropathy Group (N = 97) | ||||||
---|---|---|---|---|---|---|---|---|---|
G/G (N = 28) | G/A (N = 14) | A/A (N = 2) | G/G (N = 55) | G/A (N = 24) | A/A (N = 4) | G/G (N = 58) | G/A (N = 34) | A/A (N = 5) | |
NOS2 (ng/mL) | {6.47; 13.86; 30.92} | {4.32; 7.74; 33.37} | {40.93; 66.29; 91.66} | {5.46; 7.51; 12.11} | {4.72; 8.36; 21.64} | {1.57; 7.80; 16.41} | {5.69; 8.08; 16.42} | {4.88; 8.55; 21.79} | {9.13; 31.68; 54.22} |
Glucose (mg/dL) | {80.46; 83.48; 87.48} | {84.96; 88.92; 91.08} | {75.96; 76.95; 77.94} | {101.00; 112.50; 171.50} * | {101.00; 111.50; 150.00} ** | {102.00; 142.00; 228.00} | {121.00; 143.00; 173.00} * | {103.00; 139.50; 176.00} ** | {110.00; 140.00; 147.00} |
Creatinine (mg/dL) | - | - | - | {1.13; 1.29; 1.82} | {1.21; 1.38; 1.55} | {1.30; 1.52; 1.72} | {1.14; 1.30; 1.61} | {1.07; 1.28; 1.80} | {1.46; 1.58; 2.07} |
eGFR (mL/min/1.73 m2) | - | - | - | {34.00; 48.00; 58.00} | {37.50; 49.50; 59.50} | {35.00; 42.00; 53.00} | {46.00; 53.00; 62.00} | {36.00; 55.50; 63.00} | {26.00; 47.00; 52.00} |
CRP (mg/L) | {0.38; 0.65; 1.13} | {0.20; 0.64; 0.93} | {0.15; 0.60; 1.05} | {0.67; 3.07; 5.35} * | {0.71; 1.14; 2.38} | {1.76; 2.79; 3.14} | {0.66; 2.22; 4.70} * | {1.49; 2.87; 3.71} ** | {2.66; 3.36; 3.82} |
Zn (µg/L) | {843.22; 913.53; 1018.25} | {924.03; 981.37; 1031.87} | {852.79; 1077.01; 1301.23} | {752.00; 817.00; 927.00} * | {739.00; 796.00; 876.50} | {830.50; 929.50; 960.50} | {718.00; 813.50; 910.00} | {720.00; 751.00; 829.00} ** | {733.00; 791.00; 902.00} |
Cu (µg/L) | {866.96; 979.66; 1128.35} | {996.68; 1076.99; 1231.94} | {747.10; 1423.73; 2100.35} | {896.00; 1058.00; 1205.00} | {867.50; 1011.50; 1123.50} | {817.00; 919.00; 1009.00} | {899.00; 1080.50; 1200.00} | {935.00; 1097.50; 1254.00} | {993.00; 1025.00; 1079.00} |
Parameter | Control Group (N = 50) | Diabetic Nephropathy Group (N = 77) | Kidney Transplant Diabetic Nephropathy Group (N = 82) | ||||||
---|---|---|---|---|---|---|---|---|---|
G/G (N = 26) | G/T (N = 19) | T/T (N = 5) | G/G (N = 29) | G/T (N = 46) | T/T (N = 2) | G/G (N = 24) | G/T (N = 52) | T/T (N = 6) | |
NOS3 (ng/mL) | {0.69; 0.77; 0.87} | {0.69; 0.75; 0.82} | {0.76; 0.79; 0.83} | {0.30; 0.38; 0.51} * | {0.30; 0.37; 0.49} ** | {0.30; 0.67; 1.04} | {0.35; 0.43; 0.47} * | {0.30; 0.37; 0.53} ** | {0.41; 0.46; 0.54} |
Glucose (mg/dL) | {81.90; 85.50; 90.00} | {79.92; 84.51; 88.92} | {81.00; 86.94; 88.92} | {101.00; 135.00; 187.00} * | {101.00; 108.50; 146.00} ** | {110.00; 127.50; 145.00} | {115.00; 129.00; 153.00} * | {111.50; 150.00; 173.00} ** | {89.00; 134.00; 179.00} |
Creatinine (mg/dL) | - | - | - | {1.07; 1.44; 1.80} | {1.16; 1.29; 1.59} | {1.60; 2.15; 2.70} | {1.14; 1.35; 2.00} | {1.07; 1.28; 1.59} | {1.44; 1.84; 2.23} |
eGFR (mL/min/1.73 m2) | - | - | - | {34.50; 45.50; 54.50} | {36.00; 49.00; 58.00} | {24.00; 37.00; 50.00} | {36.00; 44.50; 54.00} | {45.50; 58.50; 64.00} | {25.00; 40.00; 55.00} |
CRP (mg/L) | {0.34; 0.61; 1.10} | {0.15; 0.80; 1.01} | {0.53; 0.94; 1.21} | {1.94; 5.42; 7.15} * | {0.71; 1.24; 2.38} | {2.38; 2.91; 3.43} | {0.63; 2.43; 5.28} | {1.06; 2.66; 4.11} ** | {0.99; 2.54; 4.09} |
Zn (µg/L) | {895.37; 987.03; 1081.96} | {854.21; 964.51; 1020.85} | {803.53; 825.70; 890.78} | {744.00; 789.00; 898.00} * | {777.00; 839.00; 927.00} | {762.00; 799.00; 836.00} | {711.50; 811.00; 891.00} * | {737.50; 808.00; 918.50} ** | {672.00; 730.00; 749.00} |
Cu (µg/L) | {978.17; 1049.14; 1282.70} | {802.23; 912.33; 1024.94} * | {1046.20; 1100.73; 1184.39} | {930.00; 1070.00; 1205.00} | {851.00; 970.50; 1133.00} | {876.00; 1073.50; 1271.00} | {905.50; 1087.50; 1162.50} | {915.00; 1066.00; 1195.00} | {993.00; 1144.00; 1200.00} |
Parameter | Control Group (N = 50) | Diabetic Nephropathy Group (N = 84) | Kidney Transplant Diabetic Nephropathy Group (N = 97) | ||||||
---|---|---|---|---|---|---|---|---|---|
C/C (N = 7) | C/T (N = 5) | T/T (N = 38) | C/C (N = 6) | C/T (N = 13) | T/T (N = 65) | C/C (N = 12) | C/T (N = 9) | T/T (N = 76) | |
NOS3 (ng/mL) | {0.76; 0.79; 0.84} | {0.69; 0.72; 0.75} | {0.69; 0.78; 0.83} | {0.30; 0.39; 0.41} * | {0.31; 0.33; 0.44} | {0.30; 0.39; 0.52} ** | {0.36; 0.42; 0.75} | {0.31; 0.41; 0.50} | {0.32; 0.41; 0.54} ** |
Glucose (mg/dL) | {81.00; 83.52; 86.94} | {77.04; 91.98; 93.06} | {81.90; 85.50; 88.92} | {110.50; 127.50; 142.50} | {110.00; 126.00; 154.00} | {105.00; 145.00; 180.00} ** | {115.00; 152.00; 183.00} * | {120.00; 146.00; 177.00} | {112.00; 136.00; 173.00} ** |
Creatinine (mg/dL) | - | - | - | {0.97; 1.20; 1.63} | {1.17; 1.55; 2.22} | {1.14; 1.33; 1.59} | {1.24; 1.32; 1.95} | {1.22; 1.30; 1.75} | {1.08; 1.28; 1.67} |
eGFR (mL/min/1.73 m2) | - | - | - | {39.50; 57.00; 72.00} | {26.50; 45.50; 63.00} | {36.00; 49.00; 57.00} | {36.00; 46.00; 62.00} | {41.50; 61.00; 69.00} | {42.00; 53.50; 63.00} |
CRP (mg/L) | {0.15; 0.40; 1.21} | {0.37; 0.78; 1.01} | {0.34; 0.72; 1.15} | {2.16; 2.80; 3.44} | {3.60; 3.84; 5.70} | {0.71; 1.71; 4.49} | {0.77; 3.59; 8.12} | {1.67; 2.20; 4.07} | {0.97; 2.46; 4.09} ** |
Zn (µg/L) | {803.53; 927.92; 995.98} | {907.67; 924.03; 1020.85} | {856.07; 972.73; 1043.34} | {788.00; 906.50; 945.00} | {759.00; 838.00; 912.00} | {744.00; 812.00; 887.00} ** | {677.00; 751.00; 811.50} | {854.00; 902.00; 967.00} | {718.00; 804.50; 874.50} ** |
Cu (µg/L) | {868.53; 1046.20; 1100.73} | {994.74; 996.68; 1024.94} | {912.33; 998.18; 1184.39} | {961.00; 1120.50; 1205.00} | {973.00; 1145.00; 1226.00} | {851.00; 1009.00; 1129.00} | {862.50; 1053.50; 1239.50} | {1014.00; 1165.00; 1215.00} | {910.00; 1080.50; 1199.00} |
Parameter | Control Group (N = 50) | Diabetic Nephropathy Group (N = 85) | Kidney Transplant Diabetic Nephropathy Group (N = 97) | ||||||
---|---|---|---|---|---|---|---|---|---|
4a/4a (N = 2) | 4a/4b (N = 15) | 4b/4b (N = 33) | 4a/4a (N = 2) | 4a/4b (N = 31) | 4b/4b (N = 52) | 4a/4a (N = 3) | 4a/4b (N = 38) | 4b/4b (N = 56) | |
NOS3 (ng/mL) | {0.61; 0.73; 0.84} | {0.69; 0.75; 0.87} | {0.70; 0.77; 0.82} | {0.27; 0.30; 0.32} | {0.26; 0.33; 0.46} * | {0.32; 0.40; 0.52} ** | {0.35; 0.41; 0.47} | {0.32; 0.39; 0.45} * | {0.32; 0.44; 0.58} ** |
Glucose (mg/dL) | {86.04; 88.02; 90.00} | {79.92; 86.04; 93.06} | {81.00; 83.97; 88.92} | {110.00; 125.00; 140.00} | {101.00; 145.00; 191.00} * | {101.00; 107.00; 142.00} ** | {90.00; 93.50; 97.00} | {115.00; 143.00; 173.00} * | {116.00; 139.00; 183.00} ** |
Creatinine (mg/dL) | - | - | - | {1.08; 1.17; 1.25} | {1.14; 1.45; 1.83} | {1.15; 1.32; 1.58} | {1.14; 1.19; 1.24} | {1.02; 1.16; 1.32} | {1.18; 1.41; 1.80} |
eGFR (mL/min/1.73 m2) | - | - | - | {45.00; 48.50; 52.00} | {30.00; 45.00; 61.00} | {39.00; 50.00; 58.00} | {46.00; 60.50; 75.00} | {43.00; 59.00; 66.00} | {36.00; 51.00; 58.00} |
CRP (mg/L) | {0.33; 1.16; 1.99} | {0.20; 0.64; 0.93} | {0.37; 0.78; 1.20} | {2.38; 2.91; 3.43} | {0.57; 1.03; 5.42} | {0.74; 1.91; 4.49} ** | {0.77; 1.22; 1.67} | {1.49; 3.06; 5.28} * | {0.97; 2.20; 4.11} ** |
Zn (µg/L) | {927.92; 954.86; 981.79} | {856.07; 918.00; 1115.95} | {846.35; 964.51; 1020.85} | {788.00; 797.50; 807.00} | {737.00; 847.00; 937.00} | {755.50; 821.50; 886.50} ** | {739.00; 980.00; 1015.00} | {742.00; 808.00; 921.00} * | {714.00; 787.50; 846.50} ** |
Cu (µg/L) | {1067.96; 1124.81; 1181.65} | {853.30; 996.68; 1232.50} | {920.91; 1018.42; 1155.12} | {1058.00; 1139.00; 1220.00} | {840.00; 1070.00; 1205.00} | {880.00; 1009.00; 1146.00} | {794.00; 1349.00; 1547.00} | {904.00; 1084.50; 1187.00} | {910.00; 1080.50; 1195.00} |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Król-Kulikowska, M.; Banasik, M.; Kepinska, M. The Effect of Selected Nitric Oxide Synthase Polymorphisms on the Risk of Developing Diabetic Nephropathy. Antioxidants 2024, 13, 838. https://doi.org/10.3390/antiox13070838
Król-Kulikowska M, Banasik M, Kepinska M. The Effect of Selected Nitric Oxide Synthase Polymorphisms on the Risk of Developing Diabetic Nephropathy. Antioxidants. 2024; 13(7):838. https://doi.org/10.3390/antiox13070838
Chicago/Turabian StyleKról-Kulikowska, Magdalena, Mirosław Banasik, and Marta Kepinska. 2024. "The Effect of Selected Nitric Oxide Synthase Polymorphisms on the Risk of Developing Diabetic Nephropathy" Antioxidants 13, no. 7: 838. https://doi.org/10.3390/antiox13070838
APA StyleKról-Kulikowska, M., Banasik, M., & Kepinska, M. (2024). The Effect of Selected Nitric Oxide Synthase Polymorphisms on the Risk of Developing Diabetic Nephropathy. Antioxidants, 13(7), 838. https://doi.org/10.3390/antiox13070838