Redox Regulation of Mitochondrial Potassium Channels Activity
Abstract
:1. Introduction
1.1. Mitochondrial Membrane Permeability
1.2. Mitochondrial Potassium Channels and Channels’ Pharmacology
1.3. From Redox Homeostasis to Cellular Redox Stress
2. Mitochondrial Potassium Channels in Ischemia/Reperfusion Injury
3. Direct and Indirect Redox Regulation of Mitochondrial Potassium Channels
3.1. Potassium Channels Regulation via Gasotransmitters: Nitric Oxide and Hydrogen Sulfide
3.2. Redox Reactions, Protein Kinases and Mitochondrial Potassium Channels Activity
4. Mitochondrial Potassium Channels and Respiratory Chain
5. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Kakkar, P.; Singh, B.K. Mitochondria: A Hub of Redox Activities and Cellular Distress Control. Mol. Cell. Biochem. 2007, 305, 235–253. [Google Scholar] [CrossRef]
- Hatefi, Y. The Mitochondrial Electron Transport and Oxidative Phosphorylation System. Annu. Rev. Biochem. 1985, 54, 1015–1069. [Google Scholar] [CrossRef]
- Skulachev, V.P.; Vyssokikh, M.Y.; Chernyak, B.V.; Mulkidjanian, A.Y.; Skulachev, M.V.; Shilovsky, G.A.; Lyamzaev, K.G.; Borisov, V.B.; Severin, F.F.; Sadovnichii, V.A. Six Functions of Respiration: Isn’t It Time to Take Control over ROS Production in Mitochondria, and Aging Along with It? Int. J. Mol. Sci. 2023, 24, 12540. [Google Scholar] [CrossRef]
- Saraste, M. Oxidative Phosphorylation at the Fin de Siècle. Science 1999, 283, 1488–1493. [Google Scholar] [CrossRef]
- O-Uchi, J.; Ryu, S.-Y.; Jhun, B.S.; Hurst, S.; Sheu, S.-S. Mitochondrial Ion Channels/Transporters as Sensors and Regulators of Cellular Redox Signaling. Antioxid. Redox Signal. 2014, 21, 987–1006. [Google Scholar] [CrossRef]
- Di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxid. Med. Cell. Longev. 2016, 2016, 1245049. [Google Scholar] [CrossRef]
- Brookes, P.S.; Yoon, Y.; Robotham, J.L.; Anders, M.W.; Sheu, S.-S. Calcium, ATP, and ROS: A Mitochondrial Love-Hate Triangle. Am. J. Physiol. Cell Physiol. 2004, 287, C817–C833. [Google Scholar] [CrossRef]
- Chen, Q.; Vazquez, E.J.; Moghaddas, S.; Hoppel, C.L.; Lesnefsky, E.J. Production of Reactive Oxygen Species by Mitochondria: Central Role of Complex III. J. Biol. Chem. 2003, 278, 36027–36031. [Google Scholar] [CrossRef]
- Pfanner, N.; Warscheid, B.; Wiedemann, N. Mitochondrial Proteins: From Biogenesis to Functional Networks. Nat. Rev. Mol. Cell Biol. 2019, 20, 267–284. [Google Scholar] [CrossRef]
- Szabo, I.; Zoratti, M. Mitochondrial Channels: Ion Fluxes and More. Physiol. Rev. 2014, 94, 519–608. [Google Scholar] [CrossRef]
- Chapa-Dubocq, X.R.; Rodríguez-Graciani, K.M.; Escobales, N.; Javadov, S. Mitochondrial Volume Regulation and Swelling Mechanisms in Cardiomyocytes. Antioxid. Redox Signal. 2023, 12, 1517. [Google Scholar] [CrossRef]
- Garlid, K.D.; Paucek, P. Mitochondrial Potassium Transport: The K+ Cycle. Biochim. Et Biophys. Acta (BBA)-Bioenerg. 2003, 1606, 23–41. [Google Scholar] [CrossRef]
- O’Rourke, B. Mitochondrial Ion Channels. Annu. Rev. Physiol. 2007, 69, 19–49. [Google Scholar] [CrossRef]
- Szabo, I.; Szewczyk, A. Mitochondrial Ion Channels. Annu. Rev. Biophys. 2023, 52, 229–254. [Google Scholar] [CrossRef]
- Debska, G.; Kicińska, A.; Skalska, J.; Szewczyk, A. Intracellular Potassium and Chloride Channels: An Update. Acta Biochim. Pol. 2001, 48, 137–144. [Google Scholar] [CrossRef]
- Kicińska, A.; Debska, G.; Kunz, W.; Szewczyk, A. Mitochondrial Potassium and Chloride Channels. Acta Biochim. Pol. 2000, 47, 541–551. [Google Scholar] [CrossRef]
- Checchetto, V.; Leanza, L.; De Stefani, D.; Rizzuto, R.; Gulbins, E.; Szabo, I. Mitochondrial K+ Channels and Their Implications for Disease Mechanisms. Pharmacol. Ther. 2021, 227, 107874. [Google Scholar] [CrossRef]
- Laskowski, M.; Augustynek, B.; Kulawiak, B.; Koprowski, P.; Bednarczyk, P.; Jarmuszkiewicz, W.; Szewczyk, A. What Do We Not Know about Mitochondrial Potassium Channels? Biochim. Et Biophys. Acta (BBA)-Bioenerg. 2016, 1857, 1247–1257. [Google Scholar] [CrossRef]
- O’Rourke, B. Evidence for Mitochondrial K+ Channels and Their Role in Cardioprotection. Circ. Res. 2004, 94, 420–432. [Google Scholar] [CrossRef]
- Kulawiak, B.; Kudin, A.P.; Szewczyk, A.; Kunz, W.S. BK Channel Openers Inhibit ROS Production of Isolated Rat Brain Mitochondria. Exp. Neurol. 2008, 212, 543–547. [Google Scholar] [CrossRef]
- Szewczyk, A.; Marbán, E. Mitochondria: A New Target for K Channel Openers? Trends Pharmacol. Sci. 1999, 20, 157–161. [Google Scholar] [CrossRef]
- Pérez-Pinzón, M.A. Neuroprotective Effects of Ischemic Preconditioning in Brain Mitochondria Following Cerebral Ischemia. J. Bioenerg. Biomembr. 2004, 36, 323–327. [Google Scholar] [CrossRef]
- Kampa, R.P.; Flori, L.; Sęk, A.; Spezzini, J.; Brogi, S.; Szewczyk, A.; Calderone, V.; Bednarczyk, P.; Testai, L. Luteolin-Induced Activation of Mitochondrial BKCa Channels: Undisclosed Mechanism of Cytoprotection. Antioxid. Redox Signal. 2022, 11, 1892. [Google Scholar] [CrossRef]
- Liang, H.-W.; Xia, Q.; Bruce, I.C. Reactive Oxygen Species Mediate the Neuroprotection Conferred by a Mitochondrial ATP-Sensitive Potassium Channel Opener during Ischemia in the Rat Hippocampal Slice. Brain Res. 2005, 1042, 169–175. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, Y.L.; Li, D.P.; He, R.R. Effect of Anoxic Preconditioning on ATP-Sensitive Potassium Channels in Guinea-Pig Ventricular Myocytes. Pflügers Arch. 2000, 439, 808–813. [Google Scholar] [CrossRef]
- Xu, W.; Liu, Y.; Wang, S.; McDonald, T.; Van Eyk, J.E.; Sidor, A.; O’Rourke, B. Cytoprotective Role of Ca2+- Activated K+ Channels in the Cardiac Inner Mitochondrial Membrane. Science 2002, 298, 1029–1033. [Google Scholar] [CrossRef]
- Yang, M.; Camara, A.K.S.; Aldakkak, M.; Kwok, W.M.; Stowe, D.F. Identity and Function of a Cardiac Mitochondrial Small Conductance Ca2+-Activated K+ Channel Splice Variant. Biochim. Biophys. Acta Bioenerg. 2017, 1858, 442–458. [Google Scholar] [CrossRef]
- Nakai, Y.; Horimoto, H.; Mieno, S.; Sasaki, S. Mitochondrial ATP-Sensitive Potassium Channel Plays a Dominant Role in Ischemic Preconditioning of Rabbit Heart. Eur. Surg. Res. 2001, 33, 57–63. [Google Scholar] [CrossRef]
- Bai, Y.; Muqier; Murakami, H.; Iwasa, M.; Sumi, S.; Yamada, Y.; Ushikoshi, H.; Aoyama, T.; Nishigaki, K.; Takemura, G.; et al. Cilostazol Protects the Heart against Ischaemia Reperfusion Injury in a Rabbit Model of Myocardial Infarction: Focus on Adenosine, Nitric Oxide and Mitochondrial ATP-Sensitive Potassium Channels. Clin. Exp. Pharmacol. Physiol. 2011, 38, 658–665. [Google Scholar] [CrossRef]
- Paucek, P.; Mironova, G.; Mahdi, F.; Beavis, A.D.; Woldegiorgis, G.; Garlid, K.D. Reconstitution and Partial Purification of the Glibenclamide-Sensitive, ATP-Dependent K+ Channel from Rat Liver and Beef Heart Mitochondria. J. Biol. Chem. 1992, 267, 26062–26069. [Google Scholar] [CrossRef]
- Bednarczyk, P.; Kicińska, A.; Kominkova, V.; Ondrias, K.; Dolowy, K.; Szewczyk, A. Quinine Inhibits Mitochondrial ATP-Regulated Potassium Channel from Bovine Heart. J. Membr. Biol. 2004, 199, 63–72. [Google Scholar] [CrossRef]
- Pomerantz, B.J.; Robinson, T.N.; Morrell, T.D.; Heimbach, J.K.; Banerjee, A.; Harken, A.H. Selective Mitochondrial Adenosine Triphosphate–sensitive Potassium Channel Activation Is Sufficient to Precondition Human Myocardium. J. Thorac. Cardiovasc. Surg. 2000, 120, 387–392. [Google Scholar] [CrossRef]
- Bachmann, M.; Pontarin, G.; Szabo, I. The Contribution of Mitochondrial Ion Channels to Cancer Development and Progression. Cell. Physiol. Biochem. 2019, 53, 63–78. [Google Scholar] [CrossRef]
- Checchetto, V.; Azzolini, M.; Peruzzo, R.; Capitanio, P.; Leanza, L. Mitochondrial Potassium Channels in Cell Death. Biochem. Biophys. Res. Commun. 2018, 500, 51–58. [Google Scholar] [CrossRef]
- Bischof, H.; Maier, S.; Koprowski, P.; Kulawiak, B.; Burgstaller, S.; Jasińska, J.; Serafimov, K.; Gross, D.; Schroth, W.; Matt, L.; et al. MitoBKCa Is Functionally Expressed in Murine and Human Breast Cancer Cells and Promotes Metabolic Reprogramming. eLife 2023, 12, RP92511. [Google Scholar] [CrossRef]
- Leanza, L.; Venturini, E.; Kadow, S.; Carpinteiro, A.; Gulbins, E.; Becker, K.A. Targeting a Mitochondrial Potassium Channel to Fight Cancer. Cell Calcium 2015, 58, 131–138. [Google Scholar] [CrossRef]
- Szabo, I.; Zoratti, M.; Biasutto, L. Targeting Mitochondrial Ion Channels for Cancer Therapy. Redox Biol. 2021, 42, 101846. [Google Scholar] [CrossRef]
- Augustynek, B.; Kunz, W.S.; Szewczyk, A. Guide to the Pharmacology of Mitochondrial Potassium Channels. In Pharmacology of Mitochondria; Singh, H., Sheu, S.-S., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 103–127. ISBN 9783319573137. [Google Scholar]
- Bentzen, B.H.; Nardi, A.; Calloe, K.; Madsen, L.S.; Olesen, S.-P.; Grunnet, M. The Small Molecule NS11021 Is a Potent and Specific Activator of Ca2+-Activated Big-Conductance K+ Channels. Mol. Pharmacol. 2007, 72, 1033–1044. [Google Scholar] [CrossRef]
- Siemen, D.; Loupatatzis, C.; Borecky, J.; Gulbins, E.; Lang, F. Ca2+-Activated K Channel of the BK-Type in the Inner Mitochondrial Membrane of a Human Glioma Cell Line. Biochem. Biophys. Res. Commun. 1999, 257, 549–554. [Google Scholar] [CrossRef]
- Bednarczyk, P.; Wieckowski, M.R.; Broszkiewicz, M.; Skowronek, K.; Siemen, D.; Szewczyk, A. Putative Structural and Functional Coupling of the Mitochondrial BK Channel to the Respiratory Chain. PLoS ONE 2013, 8, e68125. [Google Scholar] [CrossRef]
- Wrzosek, A.; Gałecka, S.; Żochowska, M.; Olszewska, A.; Kulawiak, B. Alternative Targets for Modulators of Mitochondrial Potassium Channels. Molecules 2022, 27, 299. [Google Scholar] [CrossRef]
- Park, C.S.; Miller, C. Mapping Function to Structure in a Channel-Blocking Peptide: Electrostatic Mutants of Charybdotoxin. Biochemistry 1992, 31, 7749–7755. [Google Scholar] [CrossRef]
- Candia, S.; Garcia, M.L.; Latorre, R. Mode of Action of Iberiotoxin, a Potent Blocker of the Large Conductance Ca2+-Activated K+ Channel. Biophys. J. 1992, 63, 583–590. [Google Scholar] [CrossRef]
- Sun, W.-T.; Xue, H.-M.; Hou, H.-T.; Chen, H.-X.; Wang, J.; He, G.-W.; Yang, Q. Homocysteine Alters Vasoreactivity of Human Internal Mammary Artery by Affecting the K Channel Family. Ann. Transl. Med. 2021, 9, 625. [Google Scholar] [CrossRef]
- Kabil, O.; Motl, N.; Banerjee, R. H2S and Its Role in Redox Signaling. Biochim. Et Biophys. Acta (BBA)-Proteins Proteom. 2014, 1844, 1355–1366. [Google Scholar] [CrossRef]
- Ruhland, B.R.; Reniere, M.L. Sense and Sensor Ability: Redox-Responsive Regulators in Listeria Monocytogenes. Curr. Opin. Microbiol. 2019, 47, 20–25. [Google Scholar] [CrossRef]
- Tretter, V.; Hochreiter, B.; Zach, M.L.; Krenn, K.; Klein, K.U. Understanding Cellular Redox Homeostasis: A Challenge for Precision Medicine. Int. J. Mol. Sci. 2022, 23, 106. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H. Targeting Oxidative Stress in Disease: Promise and Limitations of Antioxidant Therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef]
- Kalogeris, T.; Baines, C.P.; Krenz, M.; Korthuis, R.J. Cell Biology of Ischemia/reperfusion Injury. Int. Rev. Cell Mol. Biol. 2012, 298, 229–317. [Google Scholar] [CrossRef]
- Honda, H.M.; Korge, P.; Weiss, J.N. Mitochondria and Ischemia/reperfusion Injury. Ann. N. Y. Acad. Sci. 2005, 1047, 248–258. [Google Scholar] [CrossRef]
- Rey, S.; Semenza, G.L. Hypoxia-Inducible Factor-1-Dependent Mechanisms of Vascularization and Vascular Remodelling. Cardiovasc. Res. 2010, 86, 236–242. [Google Scholar] [CrossRef]
- Kadenbach, B.; Ramzan, R.; Moosdorf, R.; Vogt, S. The Role of Mitochondrial Membrane Potential in Ischemic Heart Failure. Mitochondrion 2011, 11, 700–706. [Google Scholar] [CrossRef]
- Kulawiak, B.; Szewczyk, A. Current Challenges of Mitochondrial Potassium Channel Research. Front. Physiol. 2022, 13, 907015. [Google Scholar] [CrossRef]
- Di Lisa, F.; Bernardi, P. Mitochondria and Ischemia-Reperfusion Injury of the Heart: Fixing a Hole. Cardiovasc. Res. 2006, 70, 191–199. [Google Scholar] [CrossRef]
- Halestrap, A.P.; Pasdois, P. The Role of the Mitochondrial Permeability Transition Pore in Heart Disease. Biochim. Biophys. Acta 2009, 1787, 1402–1415. [Google Scholar] [CrossRef]
- Halestrap, A.P. Mitochondrial Calcium in Health and Disease. Biochim. Biophys. Acta 2009, 1787, 1289–1290. [Google Scholar] [CrossRef]
- Hausenloy, D.J.; Yellon, D.M. Reperfusion Injury Salvage Kinase Signalling: Taking a RISK for Cardioprotection. Heart Fail. Rev. 2007, 12, 217–234. [Google Scholar] [CrossRef]
- Krabbendam, I.E.; Honrath, B.; Culmsee, C.; Dolga, A.M. Mitochondrial Ca2+-Activated K+ Channels and Their Role in Cell Life and Death Pathways. Cell Calcium 2018, 69, 101–111. [Google Scholar] [CrossRef]
- Malinska, D.; Mirandola, S.R.; Kunz, W.S. Mitochondrial Potassium Channels and Reactive Oxygen Species. FEBS Lett. 2010, 584, 2043–2048. [Google Scholar] [CrossRef]
- Szewczyk, A.; Kajma, A.; Malinska, D.; Wrzosek, A.; Bednarczyk, P.; Zabłocka, B.; Dołowy, K. Pharmacology of Mitochondrial Potassium Channels: Dark Side of the Field. FEBS Lett. 2010, 584, 2063–2069. [Google Scholar] [CrossRef]
- Korge, P.; Honda, H.M.; Weiss, J.N. Protection of Cardiac Mitochondria by Diazoxide and Protein Kinase C: Implications for Ischemic Preconditioning. Proc. Natl. Acad. Sci. USA 2002, 99, 3312–3317. [Google Scholar] [CrossRef] [PubMed]
- Krabbendam, I. The Role of Small Conductance Calcium-Activated Potassium Channels in Mitochondrial Dysfunction: Targeting Metabolic Reprogramming and Calcium Homeostasis. Ph.D. Thesis, University of Groningen, Groningen, The Nertherlands, 2020; 248p. Chapter 4. [Google Scholar] [CrossRef]
- Urbani, A.; Prosdocimi, E.; Carrer, A.; Checchetto, V.; Szabò, I. Mitochondrial Ion Channels of the Inner Membrane and Their Regulation in Cell Death Signaling. Front. Cell Dev. Biol. 2021, 8, 620081. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, E.C. Pathophysiology of Ischemia-Reperfusion Injury and Its Management with Hyperbaric Oxygen (HBO): A Review. J. Emerg. Crit. Care Med. 2019, 3. [Google Scholar] [CrossRef]
- Behera, R.; Sharma, V.; Grewal, A.K.; Kumar, A.; Arora, B.; Najda, A.; Albadrani, G.M.; Altyar, A.E.; Abdel-Daim, M.M.; Singh, T.G. Mechanistic Correlation between Mitochondrial Permeability Transition Pores and Mitochondrial ATP Dependent Potassium Channels in Ischemia Reperfusion. Biomed. Pharmacother. 2023, 162, 114599. [Google Scholar] [CrossRef]
- Jarmuszkiewicz, W.; Szewczyk, A. Energy-Dissipating Hub in Muscle Mitochondria: Potassium Channels and Uncoupling Proteins. Arch. Biochem. Biophys. 2019, 664, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Borutaite, V.; Toleikis, A.; Brown, G.C. In the Eye of the Storm: Mitochondrial Damage during Heart and Brain Ischaemia. FEBS J. 2013, 280, 4999–5014. [Google Scholar] [CrossRef] [PubMed]
- Kulawiak, B.; Bednarczyk, P.; Szewczyk, A. Multidimensional Regulation of Cardiac Mitochondrial Potassium Channels. Cells 2021, 10, 1554. [Google Scholar] [CrossRef]
- Rotko, D.; Kunz, W.S.; Szewczyk, A.; Kulawiak, B. Signaling Pathways Targeting Mitochondrial Potassium Channels. Int. J. Biochem. Cell Biol. 2020, 125, 105792. [Google Scholar] [CrossRef]
- Wang, R. The Gasotransmitter Role of Hydrogen Sulfide. Antioxid. Redox Signal. 2003, 5, 493–501. [Google Scholar] [CrossRef]
- Wang, R. Signal Transduction and the Gasotransmitters: NO, CO, and H2S in Biology and Medicine; Humana Press Inc.: Totowa, NJ, USA, 2004; ISBN 9781592598069. [Google Scholar]
- Gessner, G.; Sahoo, N.; Swain, S.M.; Hirth, G.; Schönherr, R.; Mede, R.; Westerhausen, M.; Brewitz, H.H.; Heimer, P.; Imhof, D.; et al. CO-Independent Modification of K+ Channels by tricarbonyldichlororuthenium(II) Dimer (CORM-2). Eur. J. Pharmacol. 2017, 815, 33–41. [Google Scholar] [CrossRef]
- Walewska, A.; Szewczyk, A.; Koprowski, P. Gas Signaling Molecules and Mitochondrial Potassium Channels. Int. J. Mol. Sci. 2018, 19, 3227. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.D.T.; Garlid, K.D. Intramitochondrial Signaling: Interactions among mitoKATP, PKCε, ROS, and MPT. Am. J. Physiol. -Heart Circ. Physiol. 2008, 295, H874–H882. [Google Scholar] [CrossRef] [PubMed]
- Queliconi, B.B.; Wojtovich, A.P.; Nadtochiy, S.M.; Kowaltowski, A.J.; Brookes, P.S. Redox Regulation of the Mitochondrial KATP Channel in Cardioprotection. Biochim. Biophys. Acta 2011, 1813, 1309–1315. [Google Scholar] [CrossRef] [PubMed]
- Harada, N.; Miura, T.; Dairaku, Y.; Kametani, R.; Shibuya, M.; Wang, R.; Kawamura, S.; Matsuzaki, M. NO Donor-Activated PKC-δ Plays a Pivotal Role in Ischemic Myocardial Protection through Accelerated Opening of Mitochondrial K-ATP Channels. J. Cardiovasc. Pharmacol. 2004, 44, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Chiandussi, E.; Petrussa, E.; Macrì, F.; Vianello, A. Modulation of a Plant Mitochondrial K+ATP Channel and Its Involvement in Cytochrome c Release. J. Bioenerg. Biomembr. 2002, 34, 177–184. [Google Scholar] [CrossRef]
- Zhang, D.X.; Chen, Y.-F.; Campbell, W.B.; Zou, A.-P.; Gross, G.J.; Li, P.-L. Characteristics and Superoxide-Induced Activation of Reconstituted Myocardial Mitochondrial ATP-Sensitive Potassium Channels. Circ. Res. 2001, 89, 1177–1183. [Google Scholar] [CrossRef] [PubMed]
- Walewska, A.; Szewczyk, A.; Krajewska, M.; Koprowski, P. Targeting Mitochondrial Large-Conductance Calcium-Activated Potassium Channel by Hydrogen Sulfide via Heme-Binding Site. J. Pharmacol. Exp. Ther. 2022, 381, 137–150. [Google Scholar] [CrossRef]
- Frankenreiter, S.; Bednarczyk, P.; Kniess, A.; Bork, N.I.; Straubinger, J.; Koprowski, P.; Wrzosek, A.; Mohr, E.; Logan, A.; Murphy, M.P.; et al. cGMP-Elevating Compounds and Ischemic Conditioning Provide Cardioprotection Against Ischemia and Reperfusion Injury via Cardiomyocyte-Specific BK Channels. Circulation 2017, 136, 2337–2355. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.; Morgan, J.T.; Ragsdale, S.W. Identification of a Thiol/disulfide Redox Switch in the Human BK Channel That Controls Its Affinity for Heme and CO. J. Biol. Chem. 2010, 285, 20117–20127. [Google Scholar] [CrossRef]
- Paul, B.D.; Snyder, S.H.; Kashfi, K. Effects of Hydrogen Sulfide on Mitochondrial Function and Cellular Bioenergetics. Redox Biol. 2021, 38, 101772. [Google Scholar] [CrossRef]
- Łoboda, A.; Dulak, J. Cardioprotective Effects of Hydrogen Sulfide and Its Potential Therapeutic Implications in the Amelioration of Duchenne Muscular Dystrophy Cardiomyopathy. Cells 2024, 13, 158. [Google Scholar] [CrossRef] [PubMed]
- Iciek, M.; Kowalczyk-Pachel, D.; Bilska-Wilkosz, A.; Kwiecień, I.; Górny, M.; Włodek, L. S-Sulfhydration as a Cellular Redox Regulation. Biosci. Rep. 2016, 36, e00304. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Chen, J.; Mo, L.; Ke, X.; Zhang, W.; Zheng, D.; Pan, W.; Wu, S.; Feng, J.; Song, M.; et al. ATP-Sensitive K+ Channels Contribute to the Protective Effects of Exogenous Hydrogen Sulfide against High Glucose-Induced Injury in H9c2 Cardiac Cells. Int. J. Mol. Med. 2016, 37, 763–772. [Google Scholar] [CrossRef] [PubMed]
- Flori, L.; Montanaro, R.; Pagnotta, E.; Ugolini, L.; Righetti, L.; Martelli, A.; Di Cesare Mannelli, L.; Ghelardini, C.; Brancaleone, V.; Testai, L.; et al. Erucin Exerts Cardioprotective Effects on Ischemia/Reperfusion Injury through the Modulation of mitoKATP Channels. Biomedicines 2023, 11, 3281. [Google Scholar] [CrossRef] [PubMed]
- Vrettou, S.; Wirth, B. S-Glutathionylation and S-Nitrosylation in Mitochondria: Focus on Homeostasis and Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 15849. [Google Scholar] [CrossRef] [PubMed]
- Goto, S.; Kawakatsu, M.; Izumi, S.; Urata, Y.; Kageyama, K.; Ihara, Y.; Koji, T.; Kondo, T. Glutathione S-Transferase Pi Localizes in Mitochondria and Protects against Oxidative Stress. Free Radic. Biol. Med. 2009, 46, 1392–1403. [Google Scholar] [CrossRef] [PubMed]
- Shemarova, I.; Nesterov, V.; Emelyanova, L.; Korotkov, S. Mitochondrial Mechanisms by Which Gasotransmitters (H2S, NO and CO) Protect Cardiovascular System against Hypoxia. Front. Biosci. 2021, 13, 105–130. [Google Scholar] [CrossRef]
- Yang, Y.; Shi, W.; Cui, N.; Wu, Z.; Jiang, C. Oxidative Stress Inhibits Vascular KATP Channels by S-Glutathionylation. J. Biol. Chem. 2010, 285, 38641–38648. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Shi, W.; Chen, X.; Cui, N.; Konduru, A.S.; Shi, Y.; Trower, T.C.; Zhang, S.; Jiang, C. Molecular Basis and Structural Insight of Vascular KATP Channel Gating by S-Glutathionylation. J. Biol. Chem. 2011, 286, 9298–9307. [Google Scholar] [CrossRef]
- Weise-Cross, L.; Resta, T.C.; Jernigan, N.L. Redox Regulation of Ion Channels and Receptors in Pulmonary Hypertension. Antioxid. Redox Signal. 2019, 31, 898–915. [Google Scholar] [CrossRef]
- Peng, K.; Hu, J.; Xiao, J.; Dan, G.; Yang, L.; Ye, F.; Zou, Z.; Cao, J.; Sai, Y. Mitochondrial ATP-Sensitive Potassium Channel Regulates Mitochondrial Dynamics to Participate in Neurodegeneration of Parkinson’s Disease. Biochim. Et Biophys. Acta (BBA)-Mol. Basis Dis. 2018, 1864, 1086–1103. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, X.; Zhang, J.; Xu, S.; Li, J.; Wang, W.; Yan, M. Small Molecule Fluorescent Probes for the Detection of Reactive Nitrogen Species in Biological Systems. Coord. Chem. Rev. 2023, 493, 215258. [Google Scholar] [CrossRef]
- Favaloro, J.L.; Kemp-Harper, B.K. The Nitroxyl Anion (HNO) Is a Potent Dilator of Rat Coronary Vasculature. Cardiovasc. Res. 2007, 73, 587–596. [Google Scholar] [CrossRef]
- Favaloro, J.L.; Kemp-Harper, B.K. Redox Variants of NO (NO• and HNO) Elicit Vasorelaxation of Resistance Arteries via Distinct Mechanisms. Am. J. Physiol. Heart Circ. Physiol. 2009, 296, H1274–H1280. [Google Scholar] [CrossRef] [PubMed]
- Bullen, M.L.; Miller, A.A.; Andrews, K.L.; Irvine, J.C.; Ritchie, R.H.; Sobey, C.G.; Kemp-Harper, B.K. Nitroxyl (HNO) as a Vasoprotective Signaling Molecule. Antioxid. Redox Signal. 2011, 14, 1675–1686. [Google Scholar] [CrossRef] [PubMed]
- Zarpelon, A.C.; Souza, G.R.; Cunha, T.M.; Schivo, I.R.; Marchesi, M.; Casagrande, R.; Pinge-Filho, P.; Cunha, F.Q.; Ferreira, S.H.; Miranda, K.M.; et al. The Nitroxyl Donor, Angeli’s Salt, Inhibits Inflammatory Hyperalgesia in Rats. Neuropharmacology 2013, 71, 1–9. [Google Scholar] [CrossRef]
- Irvine, J.C.; Favaloro, J.L.; Kemp-Harper, B.K. NO− Activates Soluble Guanylate Cyclase and Kv Channels to Vasodilate Resistance Arteries. Hypertension 2003, 41, 1301–1307. [Google Scholar] [CrossRef]
- Nadtochiy, S.M.; Baker, P.R.S.; Freeman, B.A.; Brookes, P.S. Mitochondrial Nitroalkene Formation and Mild Uncoupling in Ischaemic Preconditioning: Implications for Cardioprotection. Cardiovasc. Res. 2008, 82, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Brunori, M.; Giuffrè, A.; Forte, E.; Mastronicola, D.; Barone, M.C.; Sarti, P. Control of Cytochrome c Oxidase Activity by Nitric Oxide. Biochim. Et Biophys. Acta (BBA)-Bioenerg. 2004, 1655, 365–371. [Google Scholar] [CrossRef]
- Sanchez, L.D.; Sanchez-Aranguren, L.; Marwah, M.; Wang, K.; Spickett, C.M.; Griffiths, H.R.; Dias, I.H.K. Exploring Mitochondrial Hydrogen Sulfide Signalling for Therapeutic Interventions in Vascular Diseases. Adv. Redox Res. 2022, 4, 100030. [Google Scholar] [CrossRef]
- Kang, M.; Hashimoto, A.; Gade, A.; Akbarali, H.I. Interaction between Hydrogen Sulfide-Induced Sulfhydration and Tyrosine Nitration in the KATP Channel Complex. Am. J. Physiol. Gastrointest. Liver Physiol. 2015, 308, G532–G539. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Tang, G.; Cao, K.; Wu, L.; Wang, R. Molecular Mechanism for H2S-Induced Activation of KATP Channels. Antioxid. Redox Signal. 2010, 12, 1167–1178. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, Q. Advances of H2S in Regulating Neurodegenerative Diseases by Preserving Mitochondria Function. Antioxid. Redox Signal. 2023, 12, 652. [Google Scholar] [CrossRef] [PubMed]
- Kimura, H. Signaling Molecules: Hydrogen Sulfide and Polysulfide. Antioxid. Redox Signal. 2015, 22, 362–376. [Google Scholar] [CrossRef] [PubMed]
- Sobey, C.G.; Heistad, D.D.; Faraci, F.M. Mechanisms of Bradykinin-Induced Cerebral Vasodilatation in Rats. Evidence That Reactive Oxygen Species Activate K+ Channels. Stroke 1997, 28, 2290–2294, discussion 2295. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.D.; Daggett, H.; Hanner, M.; Garcia, M.L.; McManus, O.B.; Brot, N.; Weissbach, H.; Heinemann, S.H.; Hoshi, T. Oxidative Regulation of Large Conductance Calcium-Activated Potassium Channels. J. Gen. Physiol. 2001, 117, 253–274. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Park, M.; So, I.; Earm, Y.E. NADH and NAD Modulates Ca2+-Activated K+ Channels in Small Pulmonary Arterial Smooth Muscle Cells of the Rabbit. Pflügers Arch. 1994, 427, 378–380. [Google Scholar] [CrossRef] [PubMed]
- Brakemeier, S.; Eichler, I.; Knorr, A.; Fassheber, T.; Köhler, R.; Hoyer, J. Modulation of Ca2+-Activated K+ Channel in Renal Artery Endothelium in Situ by Nitric Oxide and Reactive Oxygen Species. Kidney Int. 2003, 64, 199–207. [Google Scholar] [CrossRef] [PubMed]
- DiChiara, T.J.; Reinhart, P.H. Redox Modulation of Hslo Ca2+-Activated K+ Channels. J. Neurosci. 1997, 17, 4942–4955. [Google Scholar] [CrossRef]
- Wang, Z.-W.; Nara, M.; Wang, Y.-X.; Kotlikoff, M.I. Redox Regulation of Large Conductance Ca2+-Activated K+ Channels in Smooth Muscle Cells. J. Gen. Physiol. 1997, 110, 35–44. [Google Scholar] [CrossRef]
- Tang, X.D.; Garcia, M.L.; Heinemann, S.H.; Hoshi, T. Reactive Oxygen Species Impair Slo1 BK Channel Function by Altering Cysteine-Mediated Calcium Sensing. Nat. Struct. Mol. Biol. 2004, 11, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Heinemann, S.H.; Hoshi, T. Modulation of BKCa Channel Gating by Endogenous Signaling Molecules. Physiology 2009, 24, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Horrigan, F.T.; Xu, R.; Heinemann, S.H.; Hoshi, T. Comparative Effects of H+ and Ca2+ on Large-Conductance Ca2+- and Voltage-Gated Slo1 K+ Channels. Channels 2009, 3, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.P. Mitochondrial Thiols in Antioxidant Protection and Redox Signaling: Distinct Roles for Glutathionylation and Other Thiol Modifications. Antioxid. Redox Signal. 2012, 16, 476–495. [Google Scholar] [CrossRef] [PubMed]
- Brzezinska, A.K.; Gebremedhin, D.; Chilian, W.M.; Kalyanaraman, B.; Elliott, S.J. Peroxynitrite Reversibly Inhibits Ca2+-Activated K+ Channels in Rat Cerebral Artery Smooth Muscle Cells. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H1883–H1890. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gutterman, D.D. Oxidative Stress and Potassium Channel Function. Clin. Exp. Pharmacol. Physiol. 2002, 29, 305–311. [Google Scholar] [CrossRef]
- Liu, Y.; Terata, K.; Chai, Q.; Li, H.; Kleinman, L.H.; Gutterman, D.D. Peroxynitrite Inhibits Ca2+-Activated K+ Channel Activity in Smooth Muscle of Human Coronary Arterioles. Circ. Res. 2002, 91, 1070–1076. [Google Scholar] [CrossRef]
- Alliegro, M.C. Effects of Dithiothreitol on Protein Activity Unrelated to Thiol–Disulfide Exchange: For Consideration in the Analysis of Protein Function with Cleland’s Reagent. Anal. Biochem. 2000, 282, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Nishida, H.; Sato, T.; Ogura, T.; Nakaya, H. New Aspects for the Treatment of Cardiac Diseases Based on the Diversity of Functional Controls on Cardiac Muscles: Mitochondrial Ion Channels and Cardioprotection. J. Pharmacol. Sci. 2009, 109, 341–347. [Google Scholar] [CrossRef]
- Genestra, M. Oxyl Radicals, Redox-Sensitive Signalling Cascades and Antioxidants. Cell. Signal. 2007, 19, 1807–1819. [Google Scholar] [CrossRef]
- Wrzosek, A.; Augustynek, B.; Żochowska, M.; Szewczyk, A. Mitochondrial Potassium Channels as Druggable Targets. Biomolecules 2020, 10, 1200. [Google Scholar] [CrossRef] [PubMed]
- Fornazari, M.; de Paula, J.G.; Castilho, R.F.; Kowaltowski, A.J. Redox Properties of the Adenoside Triphosphate-Sensitive K+ Channel in Brain Mitochondria. J. Neurosci. Res. 2008, 86, 1548–1556. [Google Scholar] [CrossRef] [PubMed]
- Mancardi, D.; Pagliaro, P.; Ridnour, L.A.; Tocchetti, C.G.; Miranda, K.; Juhaszova, M.; Sollott, S.J.; Wink, D.A.; Paolocci, N. HNO Protects the Myocardium against Reperfusion Injury, Inhibiting the mPTP Opening via PKCε Activation. Antioxidants 2022, 11, 382. [Google Scholar] [CrossRef] [PubMed]
- Garlid, K.D.; Halestrap, A.P. The Mitochondrial KATP Channel--Fact or Fiction? J. Mol. Cell. Cardiol. 2012, 52, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Kathiresan, T.; Harvey, M.; Orchard, S.; Sakai, Y.; Sokolowski, B. A Protein Interaction Network for the Large Conductance Ca2+-Activated K+ Channel in the Mouse Cochlea. Mol. Cell. Proteom. 2009, 8, 1972–1987. [Google Scholar] [CrossRef]
- Peng, Z.; Sakai, Y.; Kurgan, L.; Sokolowski, B.; Uversky, V. Intrinsic Disorder in the BK Channel and Its Interactome. PLoS ONE 2014, 9, e94331. [Google Scholar] [CrossRef] [PubMed]
- Sokolowski, B.; Orchard, S.; Harvey, M.; Sridhar, S.; Sakai, Y. Conserved BK Channel-Protein Interactions Reveal Signals Relevant to Cell Death and Survival. PLoS ONE 2011, 6, e28532. [Google Scholar] [CrossRef] [PubMed]
- Ardehali, H.; Chen, Z.; Ko, Y.; Mejia-Alvarez, R.; Marban, E. Multiprotein Complex Containing Succinate Dehydrogenase Confers Mitochondrial ATP-Sensitive K+ Channel Activity. Proc. Natl. Acad. Sci. USA 2004, 101, 11880–11885. [Google Scholar] [CrossRef] [PubMed]
- Wojtovich, A.P.; Williams, D.M.; Karcz, M.K.; Lopes, C.M.; Gray, D.A.; Nehrke, K.W.; Brookes, P.S. A Novel Mitochondrial KATP Channel Assay. Circ. Res. 2010, 106, 1190–1196. [Google Scholar] [CrossRef]
- Ohya, S.; Kuwata, Y.; Sakamoto, K.; Muraki, K.; Imaizumi, Y. Cardioprotective Effects of Estradiol Include the Activation of Large-Conductance Ca2+-Activated K+ Channels in Cardiac Mitochondria. Am. J. Physiol.-Heart Circ. Physiol. 2005, 289, H1635–H1642. [Google Scholar] [CrossRef]
- Zhang, J.; Li, M.; Zhang, Z.; Zhu, R.; Olcese, R.; Stefani, E.; Toro, L. The Mitochondrial BKCa Channel Cardiac Interactome Reveals BKCa Association with the Mitochondrial Import Receptor Subunit Tom22, and the Adenine Nucleotide Translocator. Mitochondrion 2017, 33, 84–101. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Li, M.; Hall, L.; Chen, S.; Sukur, S.; Lu, R.; Caputo, A.; Meredith, A.L.; Stefani, E.; Toro, L. MaxiK Channel Interactome Reveals Its Interaction with GABA Transporter 3 and Heat Shock Protein 60 in the Mammalian Brain. Neuroscience 2016, 317, 76–107. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; McHedlishvili, D.; McIntire, W.E.; Guagliardo, N.A.; Erisir, A.; Coburn, C.A.; Santarelli, V.P.; Bayliss, D.A.; Barrett, P.Q. Functional TASK-3-Like Channels in Mitochondria of Aldosterone-Producing Zona Glomerulosa Cells. Hypertension 2017, 70, 347–356. [Google Scholar] [CrossRef]
- Peruzzo, R.; Mattarei, A.; Azzolini, M.; Becker-Flegler, K.A.; Romio, M.; Rigoni, G.; Carrer, A.; Biasutto, L.; Parrasia, S.; Kadow, S.; et al. Insight into the Mechanism of Cytotoxicity of Membrane-Permeant Psoralenic Kv1.3 Channel Inhibitors by Chemical Dissection of a Novel Member of the Family. Redox Biol. 2020, 37, 101705. [Google Scholar] [CrossRef] [PubMed]
- Szewczyk, A.; Bednarczyk, P. Modulation of the Mitochondrial Potassium Channel Activity by Infrared Light. Biophys. J. 2018, 114, 43a. [Google Scholar] [CrossRef]
- Karagianni, C.; Bazopoulou, D. Redox Regulation in Lifespan Determination. J. Biol. Chem. 2024, 300, 105761. [Google Scholar] [CrossRef]
- Gururaja Rao, S.; Bednarczyk, P.; Towheed, A.; Shah, K.; Karekar, P.; Ponnalagu, D.; Jensen, H.N.; Addya, S.; Reyes, B.A.S.; Van Bockstaele, E.J.; et al. BKCa (Slo) Channel Regulates Mitochondrial Function and Lifespan in Drosophila Melanogaster. Cells 2019, 8, 945. [Google Scholar] [CrossRef]
- Strickland, M.; Yacoubi-Loueslati, B.; Bouhaouala-Zahar, B.; Pender, S.L.F.; Larbi, A. Relationships Between Ion Channels, Mitochondrial Functions and Inflammation in Human Aging. Front. Physiol. 2019, 10, 158. [Google Scholar] [CrossRef]
- Pain, P.; Spinelli, F.; Gherardi, G. Mitochondrial Cation Signalling in the Control of Inflammatory Processes. Int. J. Mol. Sci. 2023, 24, 16724. [Google Scholar] [CrossRef]
Channel | Effect | Reactive Species | Reference |
---|---|---|---|
mitoKATP | activation | H2S | [70] |
S-nitrosothiols | [75] | ||
nitroxyl | [76] | ||
nitrolinoleate | [76] | ||
NO | [75,76,77] | ||
diamide | [70,78] | ||
phenylarsine oxide | [70,78] | ||
O2•− * | [79] | ||
H2O2 ** | [75,76] | ||
inhibition | NADPH | [76] | |
mitoBKCa | activation of the hemin-inhibited channels | H2S | [80] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewandowska, J.; Kalenik, B.; Wrzosek, A.; Szewczyk, A. Redox Regulation of Mitochondrial Potassium Channels Activity. Antioxidants 2024, 13, 434. https://doi.org/10.3390/antiox13040434
Lewandowska J, Kalenik B, Wrzosek A, Szewczyk A. Redox Regulation of Mitochondrial Potassium Channels Activity. Antioxidants. 2024; 13(4):434. https://doi.org/10.3390/antiox13040434
Chicago/Turabian StyleLewandowska, Joanna, Barbara Kalenik, Antoni Wrzosek, and Adam Szewczyk. 2024. "Redox Regulation of Mitochondrial Potassium Channels Activity" Antioxidants 13, no. 4: 434. https://doi.org/10.3390/antiox13040434
APA StyleLewandowska, J., Kalenik, B., Wrzosek, A., & Szewczyk, A. (2024). Redox Regulation of Mitochondrial Potassium Channels Activity. Antioxidants, 13(4), 434. https://doi.org/10.3390/antiox13040434