Chemical Characterization and Biological Properties of Leguminous Honey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Reagents and Chemicals
2.3. Biochemical Analyses
2.3.1. Total Polyphenol Content
2.3.2. Polyphenols Profile
2.3.3. Ascorbic Acid Content
2.4. Antioxidant Activity
2.4.1. Diphenyl-1-Picrylhydrazyl (DPPH) Test
2.4.2. 2,2′Azino-Bis (3-Ethylbenzothiazoline-6-sulfonic acid) (ABTS) Test
2.5. Inhibitory Effect of the Honey against Bovine Serum Albumin Degradation
2.6. Cholinesterase Inhibitory Activities
2.7. Tyrosinase Inhibition Assay
2.8. Volatile Organic Compounds Analysis
2.8.1. Sample Preparation and HS SPME Procedure
2.8.2. Gas Chromatography–Quadrupole Mass Spectrometry Analysis (GC–qMS)
2.9. Statistical Analysis
3. Results and Discussion
3.1. Total Polyphenols and Polyphenol Profile
3.2. Vitamin C Content
3.3. Antioxidant Activity
3.4. Anti-Inflammatory Activity
3.5. Inhibitory Activity of the Legume Honeys against Cholinesterases and Tyrosinase
3.5.1. Activity of the Legume Honeys against Cholinesterases
3.5.2. Inhibitory Activity of Legume Honey against Tyrosinase
3.6. VOCs Profile of Honey
3.7. Correlation Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zammit Young, G.W.; Blundell, R. A review on the phytochemical composition and health applications of honey. Helyon 2023, 9, e12507. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.I.; Alam, N.; Moniruzzaman, M.; Sulaiman, S.A.; Gan, S.H. Phenolic acid composition and antioxidant properties of Malaysian honeys. J. Food Sci. 2011, 76, C921–C928. [Google Scholar] [CrossRef] [PubMed]
- Minden-Birkenmaier, B.A.; Cherukuri, K.; Smith, R.A.; Radic, M.Z.; Bowlin, G.L. Manuka honey modulates the inflammatory behavior of a dHL-60 neutrophil Model under the cytotoxic limit. Int. J. Biomater. 2019, 2019, 6132581. [Google Scholar] [CrossRef] [PubMed]
- Erejuwa, O.O.; Sulaiman, S.A.; AbWahab, M.S. Honey: A novel antioxidant. Molecules 2012, 17, 4400–4423. [Google Scholar] [CrossRef] [PubMed]
- Mustar, S.; Ibrahim, N. A Sweeter Pill to Swallow: A Review of Honey Bees and Honey as a Source of Probiotic and Prebiotic Products. Foods 2022, 11, 2102. [Google Scholar] [CrossRef] [PubMed]
- Fratianni, F.; Ombra, M.N.; d‘Acierno, A.; Caputo, L.; Amato, G.; De Feo, V.; Coppola, R.; Nazzaro, F. Polyphenols content and in vitro α-glycosidase activity of different Italian monofloral honeys, and their effect on selected pathogenic and probiotic bacteria. Microorganisms 2021, 9, 1694. [Google Scholar] [CrossRef] [PubMed]
- Babaei, S.; Rahimi, S.; Torshizi, M.A.; Tahmasebi, G.; Miran, S.N. Effects of propolis, royal jelly, honey and bee pollen on growth performance and immune system of Japanese quails. Vet. Res. Forum 2017, 7, 13–20. [Google Scholar]
- Bt Hj Idrus, R.; Sainik, N.Q.; Nordin, A.; Saim, A.B.; Sulaiman, N. Cardioprotective effects of honey and its constituent: An evidence-based review of laboratory studies and clinical trials. Int. J. Environ. Res. Public Health 2020, 17, 3613. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, Z.B.H.; Alfarisi, H.A.H.; Wahab, A.Y.A.; Binti Abd Fuaat, A.; Mohamad, C.A.C.; Ibrahim, M. Hypocholesterolemic and anti-inflammatory effects of trihoney in hypercholesterolemic rabbit model. Int. J. Allied Health Sci. 2019, 3, 846. [Google Scholar]
- Fadzil, M.A.; Mustar, S.; Rashed, A.A. The potential use of honey as a neuroprotective agent for the management of Neurodegenerative Diseases. Nutrients 2022, 15, 1558. [Google Scholar] [CrossRef] [PubMed]
- Rafiee Sardooi, A.; Reisi, P.; Yazdi, A. Protective effect of honey on learning and memory impairment, depression and neuro-degeneration induced by chronic unpredictable mild stress. Physiol. Pharmacol. 2021, 25, 21–35. [Google Scholar] [CrossRef]
- Martínez-Cué, C.; Rueda, N. Cellular senescence in neurodegenerative diseases. Front. Cell. Neurosci. 2020, 14, 16. [Google Scholar] [CrossRef] [PubMed]
- Monczor, M. Diagnosis and treatment of Alzheimer’s disease. Cent. Nerv. Syst. Agents Med. Chem. 2005, 5, 5–13. [Google Scholar] [CrossRef]
- Hasegawa, T. Tyrosinase-expressing neuronal cell line as in vitro model of Parkinson’s disease. Int. J. Mol. Sci. 2010, 11, 1082–1089. [Google Scholar] [CrossRef] [PubMed]
- Kempuraj, D.; Thangavel, R.; Natteru, P.A.; Selvakumar, G.P.; Saeed, D.; Zahoor, H.; Zaheer, S.; Iyer, S.S.; Zaheer, A. Neuroinflammation Induces Neurodegeneration. J. Neurol. Neurosurg. Spine 2016, 1, 1003. [Google Scholar] [PubMed]
- Salim, S. Oxidative stress and the central nervous system. J. Pharmacol. Exp. Ther. 2017, 360, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Mohd Sairazi, N.S.; Sirajudeen, K.N.S. Natural products and their bio-active compounds: Neuroprotective potentials against neurodegenerative diseases. Evid. Based Complement. Altern. Med. 2020, 2020, 6565396. [Google Scholar] [CrossRef] [PubMed]
- Mijanur Rahman, M.; Gan, S.H.; Khalil, M.I. Neurological effects of honey: Current and future prospects. Evid. Based Complement. Altern. Med. 2014, 2014, 958721. [Google Scholar] [CrossRef] [PubMed]
- Spencer, J.P.E.; Vafeiadou, K.; Williams, R.J.; Vauzour, D. Neuroinflammation: Modulation by flavonoids and mechanisms of action. Mol. Aspects Med. 2012, 33, 83–97. [Google Scholar] [CrossRef] [PubMed]
- Hossen, M.S.; Ali, M.Y.; Jahurul, M.H.A.; Abdel-Daim, M.M.; Gan, S.H.; Khalil, M.I. Beneficial roles of honey polyphenols against some human degenerative diseases: A review. Pharmacol. Rep. 2017, 69, 1194–1205. [Google Scholar] [CrossRef] [PubMed]
- Ramassamy, C. Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: A review of their intracellular targets. Eur. J. Pharmacol. 2006, 545, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Rodica, M.; Mihaiela, C. Neuroprotection induced by honey compounds. In Natural Molecules in Neuroprotection and Neurotoxicity; Academic Press: Cambridge, MA, USA, 2023; pp. 1563–1586. [Google Scholar] [CrossRef]
- Bobis, O.; Asma, S.T.; Acaroz, U.; Shah, S.R.A.; Arslan-Acaroz, D.; Kolayli, S.; Nayik, G.A. Honey. In Honey Bees, Beekeeping and Bee Products, 1st ed.; Wachkoo, A.A., Nayik, G.A., Uddin, J., Mohammad Javed Ansari, M.J., Eds.; CRC Press: Boca Raton, FL, USA, 2024; pp. 69–87. [Google Scholar] [CrossRef]
- Rodríguez-Flores, M.S.; Falcão, S.I.; Escuredo, O.; Seijo, M.C.; Vilas-Boas, M. Description of the volatile fraction of Erica honey from the northwest of the Iberian Peninsula. Food Chem. 2021, 336, 127758. [Google Scholar] [CrossRef] [PubMed]
- Karabagias, I.K.; Karabagias, V.K.; Nayik, G.A.; Gatzias, I.; Badeka, A.V. A targeted chemometric evaluation of the volatile compounds of Quercus ilex honey in relation to its provenance. LWT 2022, 154, 112588. [Google Scholar] [CrossRef]
- Pattamayutanon, P.; Angeli, S.; Thakeow, P.; Abraham, J.; Disayathanoowat, T.; Chantawannakul, P. Volatile organic compounds of Thai honeys produced from several floral sources by different honey bee species. PLoS ONE 2017, 12, e0172099. [Google Scholar] [CrossRef] [PubMed]
- Manyi-Loh, C.E.; Ndip, R.N.; Clarke, A.M. Volatile compounds in honey: A review on their involvement in aroma, botanical origin determination and potential biomedical activities. Int. J. Mol. Sci. 2011, 12, 9514–9532. [Google Scholar] [CrossRef] [PubMed]
- Margaoan, R.; Topal, E.; Balkanska, R.; Yücel, B.; Oravecz, T.; Cornea-Cipcigan, M.; Vodnar, D.C. Monofloral honey as a potential source of natural antioxidants, minerals, and medicine. Antioxidants 2021, 10, 1023. [Google Scholar] [CrossRef] [PubMed]
- Fratianni, F.; De Giulio, B.; d’Acierno, A.; Amato, G.; De Feo, V.; Coppola, R.; Nazzaro, F. In Vitro Prebiotic Effects and Antibacterial Activity of Five Leguminous Honeys. Foods 2023, 12, 3338. [Google Scholar] [CrossRef] [PubMed]
- Fratianni, F.; Coppola, R.; Nazzaro, F. Phenolic composition and antimicrobial and antiquorum sensing activity of an ethanolic extract of peels from the apple cultivar Annurca. J. Med. Food 2011, 14, 957–963. [Google Scholar] [CrossRef] [PubMed]
- Klein, B.P.; Perry, A.K. Ascorbic-acid and vitamin-A activity in selected vegetables from different geographical areas of the United States. J. Food Sci. 1982, 47, 941–945. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Fratianni, F.; d‘Acierno, A.; Ombra, M.N.; Amato, G.; De Feo, V.; Ayala-Zavala, J.F.; Coppola, R.; Nazzaro, F. Fatty acid composition, antioxidant, and in vitro anti-inflammatory activity of five cold-pressed prunus seed oils. Front. Nutr. 2021, 8, 775751. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherston, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Fratianni, F.; Amato, G.; Ombra, M.N.; De Feo, V.; Coppola, R.; Nazzaro, F. In vitro prospective healthy and nutritional benefits of different Citrus monofloral honeys. Sci. Rep. 2023, 13, 1088. [Google Scholar] [CrossRef] [PubMed]
- Baroni, M.V.; Nores, M.L.; Díaz, M.d.P.; Chiabrando, G.A.; Fassano, J.P.; Costa, C.; Wunderlin, D.A. Determination of volatile organic compound patterns characteristic of five unifloral honey by solid-phase microextraction-gas chromatography-mass spectrometry coupled to chemometrics. J. Agric. Food Chem. 2006, 54, 7235–7241. [Google Scholar] [CrossRef] [PubMed]
- Baranowska-Wójcik, E.; Szwajgier, D.; Winiarska-Mieczan, A. Honey as the potential natural source of cholinesterase inhibitors in Alzheimer’s disease. Plant Foods Hum. Nutr. 2020, 75, 30–32. [Google Scholar] [CrossRef] [PubMed]
- Othman, Z.; Zakaria, R.; Hussain, N.H.; Hassan, A.; Shafin, N.; Ahmad, A.H. Potential Role of Honey in Learning and Memory. Med. Sci. 2015, 3, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Ranneh, Y.; Akim, A.M.; Hamid, H.A.; Khazaai, H.; Fadel, A.; Zakaria, Z.A.; Albujja, M.; Abu Bakar, M.F. Honey and its nutritional and anti-inflammatory value. BMC Complement. Med. Ther. 2021, 21, 30. [Google Scholar] [CrossRef]
- Szwajgier, D.; Baranowska-Wójcik, E.; Winiarska-Mieczan, A.; Gajowniczek-Ałasa, D. Honeys as possible sources of cholinesterase inhibitors. Nutrients 2022, 14, 2969. [Google Scholar] [CrossRef] [PubMed]
- Weston-Green, K.; Clunas, H.; Jimenez Naranjo, C. A Review of the Potential Use of Pinene and Linalool as Terpene-Based Medicines for Brain Health: Discovering Novel Therapeutics in the Flavours and Fragrances of Cannabis. Front. Psychiatry 2021, 12, 583211. [Google Scholar] [CrossRef] [PubMed]
- Pauliuc, D.; Dranca, F.; Oroian, M. Antioxidant Activity, Total Phenolic Content, Individual Phenolics and Physicochemical Parameters Suitability for Romanian Honey Authentication. Foods 2020, 9, 306. [Google Scholar] [CrossRef] [PubMed]
- Pelachim Lianda, R.L.; D’Oliveria Sant’Ana, L.; Echevarria, A.; Castro, R.N. Antioxidant activity and phenolic composition of Brazilian honey and their extracts. J. Braz. Chem. Soc. 2012, 23, 618–627. [Google Scholar] [CrossRef]
- Otmani, A.; Amessis-Ouchemoukh, N.; Birinci, C.; Yahiaoui, S.; Kolayli, S.; Rodríguez-Flores, M.S.; Escuredo, O.; Seijo, M.C.; Ouchemoukh, S. Phenolic compounds and antioxidant and antibacterial activities of Algerian honeys. Food Biosci. 2021, 42, 101070. [Google Scholar] [CrossRef]
- Shakoori, Z.; Salaseh, E.; Mehrabian, A.R.; Tehrani, D.M.; Dardashti, N.F.; Salmanpour, F. The amount of antioxidants in honey has a strong relationship with the plants selected by honey bees. Sci. Rep. 2024, 14, 351. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Sulaiman, S.A.; Azlan, S.A.; Gan, S.H. Two-Year Variations of Phenolics, Flavonoids and Antioxidant Contents in Acacia Honey. Molecules 2013, 18, 14694–14710. [Google Scholar] [CrossRef] [PubMed]
- Oddo, L.P.; Heard, T.A.; Rodriguez-Malaver, A.; Perez, R.A.; Fernandez Muino, M.; Sancho, M.T.; Sesta, G.; Lusco, L.; Vit, P. Composition and antioxidant activity of Trigona carbonaria honey from Australia. J. Med. Food 2008, 11, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Malaver, A.J.; Rasmussen, C.; Gutiérrez, M.G.; Gil, F.; Nieves, B.; Vit, P. Properties of honey from ten species of Peruvian stingless bees. Nat. Prod. Commun. 2009, 4, 1221–1226. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Jiang, Y.; Singanusong, R.; Datta, N.; Raymont, K. Phenolic acids in Australian Melaleuca, Guioa, Lophostemon, Banksia and Helianthus honeys and their potential for floral authentication. Food Res. Int. 2005, 38, 651–658. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; An, C.Y.; Rao, P.V.; Hawlader, M.N.I.; Mohd Azlan, S.A.B.; Sulaiman, S.A.; Hua Gan, S. Identification of Phenolic Acids and Flavonoids in Monofloral Honey from Bangladesh by High Performance Liquid Chromatography: Determination of Antioxidant Capacity. BioMed Res. Int. 2014, 2014, 737490. [Google Scholar] [CrossRef] [PubMed]
- Pichichero, E.; Canuti, L.; Canini, A. Characterisation of the phenolic and flavonoid fractions and antioxidant power of Italian honeys of different botanical origin. J. Sci. Food Agric. 2009, 89, 609–616. [Google Scholar] [CrossRef]
- Matkovits, A.; Nagy, K.; Fodor, M.; Jókai, Z. Analysis of polyphenolic components of Hungarian acacia (Robinia pseudoacacia) honey; method development, statistical evaluation. J. Food Compos. Anal. 2023, 120, 105336. [Google Scholar] [CrossRef]
- Kara, Y.; Şahin, H.; Kolaylı, S. Geographical Fingerprint of Astragalus (Astragalus microcephalus Willd.) Honey Supplied from Erzincan Region of Turkey. U. Arı. D.-U. Bee. J. 2020, 20, 123–131. [Google Scholar] [CrossRef]
- Da Silva, I.A.A.; Da Silva, T.M.S.; Camara, C.A.; Queiroz, N.; Magnani, M.; De Novais, J.S.; Soledade, L.E.B.; Lima, E.D.O.; De Souza, A.L.; De Souza, A.G. Phenolic profile, antioxidant activity and palynological analysis of stingless bee honey from Amazonas, Northern Brazil. Food Chem. 2013, 141, 3552–3558. [Google Scholar] [CrossRef] [PubMed]
- Waheed, M.; Hussain, M.B.; Javed, A.; Mushtaq, Z.; Hassan, S.; Shariati, M.A.; Khan, M.U.; Majeed, M.; Nigam, M.; Mishra, A.P.; et al. Honey and cancer: A mechanistic review. Clin. Nutr. 2019, 38, 2499–2503. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Othman, N.H. Review of the medicinal effects of tualang honey and a comparison with manuka honey. Malays. J. Med. Sci. 2013, 20, 6–13. [Google Scholar]
- Oroian, M.; Ropciuc, S. Honey authentication based on physicochemical parameters and phenolic compounds. Comput. Electron. Agric. 2017, 138, 148–156. [Google Scholar] [CrossRef]
- Khalil, M.I.; Sulaiman, S.A. The potential role of honey and its polyphenols in preventing heart disease: A review. Afr. J. Tradit. Complement. Altern. Med. 2010, 7, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Talebi, M.; Talebi, M.; Farkhondeh, T.; Samarghandian, S. Molecular mechanism-based therapeutic properties of honey. Biomed. Pharmacother. 2020, 130, 110590. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; You, P.; Luo, Y.; Yang, M.; Liu, Y. Galangin induces apoptosis in MCF-7 human breast cancer cells through mitochondrial pathway and phosphatidylinositol 3-Kinase/Akt inhibition, Pharmacology 2018, 102, 58–66. [Google Scholar] [CrossRef]
- Apriceno, A.; Bucci, R.; Girelli, A.M.; Marini, F.; Quattrocchi, L. 5-Hydroxymethyl furfural determination in Italian kinds of honey by fast near-infra red spectroscopy. Microchem. J. 2018, 143, 140–144. [Google Scholar] [CrossRef]
- Shapla, U.M.; Solayman, M.; Alam, N.; Khalil, M.I.; Gan, S.H. 5-Hydroxymethylfurfural (HMF) levels in honey and other food products: Effects on bees and human health. Chem. Cent. J. 2018, 12, 35. [Google Scholar] [CrossRef]
- Markowicz, D.B.; Monaro, E.; Siguemoto, E.; Séfora, M.; Valdez, B. Maillard reaction products in processed foods: Pros and cons. In Food Industrial Processes-Methods and Equipment, 1st ed.; Valdez, B., Ed.; InTech: Rijeka, Croatia, 2012; pp. 281–300. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission. Revised Codex Standard for Honey; Codex Stan 12; Codex Alimentarius Commission: Rome, Italy, 1982. [Google Scholar]
- Jæger, D.; O’Leary, M.C.; Weinstein, P.; Møller, B.L.; Semple, S.J. Phytochemistry and bioactivity of Acacia sensu stricto (Fabaceae: Mimosoideae). Phytochem. Rev. 2019, 18, 129–172. [Google Scholar] [CrossRef]
- Li, W.; Zhang, L.; Xu, Q.; Yang, W.; Zhao, J.; Ren, Y.; Yu, Z.; Ma, L. Taxifolin Alleviates DSS-Induced Ulcerative Colitis by Acting on Gut Microbiome to Produce Butyric Acid. Nutrients 2021, 14, 1069. [Google Scholar] [CrossRef] [PubMed]
- Gong, S.; Zheng, J.; Zhang, J.; Wang, Y.; Xie, Z.; Wang, Y.; Han, J. Taxifolin ameliorates lipopolysaccharide-induced intestinal epithelial barrier dysfunction via attenuating NF-kappa B/MLCK pathway in a Caco-2 cell monolayer model. Food Res. Int. 2022, 158, 111502. [Google Scholar] [CrossRef] [PubMed]
- Sultana, S.; Foster, K.; Lim, L.Y.; Hammer, K.; Locher, C. A Review of the Phytochemistry and Bioactivity of Clover Honeys (Trifolium spp.). Foods 2021, 11, 1901. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Sun, F.; Xu, R.; Cui, M.; Liu, Y.; Xie, Q.; Guo, L.; Kong, C.; Li, X.; Guo, X.; et al. Chemical composition and anti-inflammatory activities of Castanopsis honey. Food Funct. 2023, 14, 250. [Google Scholar] [CrossRef] [PubMed]
- Rusko, J.; Vainovska, P.; Vilne, B.; Bartkevics, V. Phenolic profiles of raw mono- and polyfloral honey from Latvia. J. Food Comput. Analys. 2021, 98, 103813. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, P.; Lou, L.; Wang, Y. Perspectives Regarding the Role of Biochanin A in Humans. Front. Pharmacol. 2019, 10, 469371. [Google Scholar] [CrossRef] [PubMed]
- Mathi, P.; Musunuru, N.; Adurthi, U.; Botlagunt, M. Comparative in vitro and in silico characterization of anticancer compounds piceatannol, biochanin-a, and resveratrol on breast cancer cells. Pharmacogn. Mag. 2019, 15, 410–418. [Google Scholar] [CrossRef]
- Spilioti, E.; Jaakkola, M.; Tolonen, T.; Lipponen, M.; Virtanen, V.; Chinou, I.; Kassi, E.; Karabournioti, S.; Moutsatsou, P. Phenolic Acid Composition, Antiatherogenic and Anticancer Potential of Honeys Derived from Various Regions in Greece. PLoS ONE 2014, 9, e94860. [Google Scholar] [CrossRef]
- Ramanauskiene, K.; Stelmakiene, A.; Briedis, V.; Ivanauskas, L.; Jakštas, V. The quantitative analysis of biologically active compounds in Lithuanian honey. Food Chem. 2012, 132, 1544–1548. [Google Scholar] [CrossRef]
- Can, Z.; Yildiz, O.; Sahin, H.; Akyuz Turumtay, E.; Silici, S.; Kolayli, S. An investigation of Turkish honeys: Their physico-chemical properties, antioxidant capacities and phenolic profiles. Food Chem. 2015, 180, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Dobrinas, S.; Matei, N.; Soceanu, A.; Birghila, S.; Popescu, V. Estimation of vitamin C and Cd, Cu, Pb content in honey and propolis. Sci. Study Res. 2006, 7, 729–734. [Google Scholar]
- Alshammari, G.M.; Ahmed, M.A.; Alsulami, T.; Hakeem, M.J.; Ibraheem, M.A.; Al-Nouri, M.D. Phenolic Compounds, Antioxidant Activity, Ascorbic Acid, and Sugars in Honey from Ingenious Hail Province of Saudi Arabia. Appl. Sci. 2022, 12, 8334. [Google Scholar] [CrossRef]
- Bouddine, T.; Laaroussi, H.; Bakour, M.; Guirrou, I.; Khallouki, F.; Mazouz, H.; Hajjaj, H.; Hajji, L. Organic Honey from the Middle Atlas of Morocco: Physicochemical Parameters, Antioxidant Properties, Pollen Spectra, and Sugar Profiles. Foods 2021, 11, 3362. [Google Scholar] [CrossRef] [PubMed]
- Kishore, R.K.; Halim, A.S.; Syazana, M.S.N.; Sirajudeen, K.N.S. Tualang honey has higher phenolic content and greater radical scavenging activity compared with other honey sources. Nutr. Res. 2011, 31, 322–325. [Google Scholar] [CrossRef] [PubMed]
- Chua, L.S.; Rahaman, N.L.A.; Adnan, A.; Tan, E.T.T. Antioxidant activity of three honey samples in relation with their biochemical components. J. Analyt. Meth. Chem. 2013, 2013, 313798. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, E.M.; Elsharkawy, E.R. Physico-chemical properties, antioxidant, and antimicrobial activity of five varieties of honey from Saudi Arabia. Asia Pac. J. Mol. Biol. Biotechnol. 2021, 29, 27–34. [Google Scholar] [CrossRef]
- Gül, A.; Pehlivan, T. Antioxidant activities of some monofloral honey types produced across Turkey. Saudi J. Biol. Sci. 2018, 25, 1056–1065. [Google Scholar] [CrossRef] [PubMed]
- Habib, H.M.; Kheadr, E.; Ibrahim, W.H. Inhibitory effects of honey from arid land on some enzymes and protein damage. Food Chem. 2021, 364, 130415. [Google Scholar] [CrossRef]
- Zaidi, H.; Ouchemoukh, S.; Amessis-Ouchemoukh, N.; Debbache, N.; Pacheco, R.; Serralheiro, M.L.; Araujo, M.E. Biological properties of phenolic compound extracts in selected Algerian honeys—The inhibition of acetylcholinesterase and α-glucosidase activities. Eur. J. Integr. Med. 2018, 25, 77–84. [Google Scholar] [CrossRef]
- Roohinejad, S.; Omidizadeh, A.; Mirhosseini, H.; Rasti, B.; Saari, N.; Mustafa, S.; Yusof, R.M.; Hussin, A.S.M.; Hamid, A.; Abd, M.Y.A. Effect of hypocholesterolemic properties of brown rice varieties containing different gamma aminobutyric acid (GABA) levels on Sprague-Dawley male rats. Int. J. Food Agric. Environ. 2009, 7, 197–203. [Google Scholar]
- Chen, K.H.; Reese, E.A.; Kim, H.W.; Rapoport, S.I.; Rao, J.S. Disturbed neurotransmitter transporter expression in Alzheimer’s disease brain. J. Alzheimers Dis. 2011, 26, 755–766. [Google Scholar] [CrossRef] [PubMed]
- Loizzo, M.R.; Bonesi, M.; Pugliese, A.; Menichini, F.; Tundis, R. Chemical composition and bioactivity of dried fruits and honey of Ficus carica cultivars Dottato, San Francesco and Citrullara. J. Sci. Food Agric. 2014, 94, 2179–2186. [Google Scholar] [CrossRef] [PubMed]
- Aliyu Muhammad, A.; Odunola, O.A.; Gbadegesin, M.A.; Sallau, A.B.; Ndidi, U.S.; Ibrahim, M.A. Inhibitory Effects of Sodium Arsenite and Aca-cia Honey on Acetylcholinesterase in Rats. Int. J. Alzheimers Dis. 2015, 2015, 903603. [Google Scholar] [CrossRef]
- Aumeeruddy-Elalfi, Z.; Gurib-Fakim, A.; Mahomoodally, M.F. Kinetic studies of tyrosinase inhibitory activity of 19 essential oils extracted from endemic and exotic medicinal plants. S. Afr. J. Bot. 2016, 103, 89–94. [Google Scholar] [CrossRef]
- Jantakee, K.; Tragoolpua, Y. Activities of different kinds of Thai honey on pathogenic bacteria causing skin diseases, tyrosinase enzyme and generating free radicals. Biol. Res. 2015, 48, 4. [Google Scholar] [CrossRef] [PubMed]
- Jerković, I.; Kuś, P.M. Terpenes in honey: Occurrence, origin and their role as chemical biomarkers. RSC Adv. 2014, 4, 31710–31728. [Google Scholar] [CrossRef]
- Yildiz, O.; Gurkan, H.; Sahingil, D.; Degirmenci, A.; Er Kemal, M.; Kolayli, S.; Hayaloglu, A.A. Floral authentication of some monofloral honeys based on volatile composition and physicochemical parameters. Eur. Food Res. Technol. 2022, 248, 2145–2155. [Google Scholar] [CrossRef]
- Petretto, G.L.; Tuberoso, C.I.G.; Fenu, M.A.; Rourke, J.P.; Belhaj, O.; Pintore, G. Antioxidant activity, color chromaticity coordinates, and chemical characterization of monofloral honeys from Morocco. Int. J. Food Prop. 2017, 20, 2016–2027. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Z.; Wang, L.; Liu, H.; Liu, H. Effect of coriander plants on human emotions, brain electrophysiology, and salivary secretion. Biology 2021, 10, 1283. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Alam, M.N.; Fatima, N.; Shahjalal, H.M.; Gan, S.H.; Khalil, M.I. Chemical composition and biological properties of aromatic compounds in honey: An overview. J. Food Biochem. 2017, 41, e12405. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, C.; Li, C.; Huang, Z.Y.; Miao, X. Pathway of 5-hydroxymethyl-2-furaldehyde formation in honey. J. Food Sci. Technol. 2019, 56, 2417–2425. [Google Scholar] [CrossRef] [PubMed]
- Karabagias, I.K.; Badeka, A.; Kontominas, M.G. A decisive strategy for monofloral honey authentication using analysis of volatile compounds and pattern recognition techniques. Microchem. J. 2020, 152, 104263. [Google Scholar] [CrossRef]
- Giannelli Barra, M.P.; Ponce-Díaz, M.C.; Venegas-Gallegos, C. Volatile compounds in honey produced in the central valley of Ñuble province, Chile. Chil. J. Agric. Res. 2010, 70, 75–84. [Google Scholar] [CrossRef]
- Ngaini, Z.; Kelabo, E.S.; Hussain, H.; Wahi, R. High therapeutic properties of honey from the borneo stingless bee, Heterotrigona itama. Int. J. Curr. Res. Rev. 2021, 13, 100–107. [Google Scholar] [CrossRef]
- Xagoraris, M.; Skouria, A.; Revelou, P.; Alissandrakis, E.; Tarantilis, P.A.; Pappas, C.S. Response Surface Methodology to Optimize the Isolation of Dominant Volatile Compounds from Monofloral Greek Thyme Honey Using SPME-GC-MS. Molecules 2020, 26, 3612. [Google Scholar] [CrossRef] [PubMed]
- Castro-Vázquez, L.; Alañon, M.E.; Gonzalez-Viñas, M.A.; Soledad Pérez-Coello, M. Changes in the volatile fractions and sensory properties of heather honey during storage under different temperatures. Eur. Food Res. Technol. 2012, 235, 185–193. [Google Scholar] [CrossRef]
- Sakika, K.A.; Saiman, M.Z.; Zamakshshari, N.H.; Ahmed, I.A.; Nasharuddin, M.N.A.; Hashim, N.M. Analysis of Antioxidant Properties and Volatile Com-pounds of Honeys from Different Botanical and Geographical Origins. Sains Malays. 2022, 51, 1111–1121. [Google Scholar] [CrossRef]
- Boutoub, O.; Manhita, A.; Dias, C.B.; Estevinho, L.M.; Paula, V.B.; Carlier, J.; Costa, M.C.; Rodrigues, B.; Raposo, S.; Aazza, S.; et al. Comparative study of the antioxidant and enzyme inhibitory activities of two types of Moroccan Euphorbia Entire Honey and their phenolic extracts. Foods 2021, 10, 1909. [Google Scholar] [CrossRef] [PubMed]
- Minocha, T.; Birla, H.; Obaid, A.; Rai, V.; Sushma, P.; Shivamallu, C.; Moustafa, M.; Al-Shehri, M.; Al-Emam, A.; Tikhonova, M.A.; et al. Flavonoids as Promising Neuroprotectants and Their Therapeutic Potential against Alzheimer’s Disease. Oxidative Med. Cell. Longev. 2022, 2022, 6038996. [Google Scholar] [CrossRef] [PubMed]
- Iftikhar, A.; Nausheen, R.; Muzaffar, H.; Naeem, M.A.; Farooq, M.; Khurshid, M.; Almatroudi, A.; Alrumaihi, F.; Allemailem, K.S.; Anwar, H. Potential Therapeutic Benefits of Honey in Neurological Disorders: The Role of Polyphenols. Molecules 2021, 27, 3297. [Google Scholar] [CrossRef] [PubMed]
- Maya, S.; Prakash, T.; Goli Daya, S. Effect of wedelolactone and gallic acid on quinolinic acid-induced neurotoxicity and impaired motor function: Significance to sporadic amyotrophic lateral sclerosis. Neurotoxicology 2018, 68, 1–12. [Google Scholar] [CrossRef]
- Navaei-Alipour, N.; Mastali, M.; Ferns, G.A.; Saberi-Karimian, M.; Ghayour-Mobarhan, M. The effects of honey on pro- and anti-inflammatory cytokines: A narrative review. Phytother. Res. 2021, 35, 3690–3701. [Google Scholar] [CrossRef]
- Nordin, A.; Saim, A.B.; Hj Idrus, R.B. Honey ameliorate negative effects in neurodegenerative diseases: An evidence based review. Sains Malays. 2021, 50, 791–801. [Google Scholar] [CrossRef]
- Shoaib, M.; Shah, I.; Ali, N.; Shah, S.W.A. In vitro acetylcholinesterase and butyrylcholinesterase inhibitory potentials of essential oil of Artemisia macrocephala. Bangladesh J. Pharmacol. 2015, 10, 87–91. [Google Scholar] [CrossRef]
- Shoaib, S.; Ansari, M.A.; Fatease, A.A.; Safhi, A.Y.; Hani, U.; Jahan, R.; Alomary, M.N.; Ansari, M.N.; Ahmed, N.; Wahab, S.; et al. Plant-Derived Bioactive Compounds in the Management of Neurodegenerative Disorders: Challenges, Future Directions and Molecular Mechanisms Involved in Neuroprotection. Pharmaceutics 2023, 15, 749. [Google Scholar] [CrossRef] [PubMed]
Indigo | Astragalus | Alfalfa | Carrob | Sainfoin | |
---|---|---|---|---|---|
Total polyphenols (μg GAE g−1) | 110 ± 11 | 145 ± 8 | 177 ± 9 | 291 ± 12 | 408 ± 19 |
DPPH (IC50, mg mL−1) | 47 ± 13 | 59 ± 9 | 59 ± 14 | 19 ± 2 | 6 ± 1 |
TEAC (mM TE g−1) | 2.0 ± 0.9 | 2.4 ± 0.4 | 4 ± 2 | 4.3 ± 0.5 | 10.6 ± 0.1 |
Vit C (mg/100 g) | 17 ± 1 | 1.6 ± 0.3 | 27.8 ± 0.9 | 15.1 ± 0.3 | 23.7 ± 0.9 |
Anti-inflammatory activity (IC50, mg) | 56 ± 8 | 24 ± 4 | 62 ± 2 | 35 ± 7 | 30 ± 5 |
AChE-inhibitory activity (%) | nd | 6.2 ± 0.3 | 5.0 ± 0.2 | nd | 9.1 ± 0.4 |
AChE-inhibitory activity (IC50, mg) | nd | 141 ± 13 | 180 ± 14 | nd | 112 ± 10 |
BchE-inhibitory activity (%) | 27 ± 3 | 13 ± 2 | nd | 0.5 ± 0.1 | 9 1 |
BchE-inhibitory activity(IC50, mg) | nd | nd | nd | nd | 130 ± 13 |
Tyrosinase-inhibitory activity (DOPA, IC50, mg) | 13 ± 1 | 10 ± 1 | 16 ± 2 | 11 ± 1 | 15 ± 2 |
Tyrosinase-inhibitory activity (%, using L-tyrosine) | 13 ± 1 | 41 ± 3 | 55 ± 5 | 71 ± 2 | 74 ± 2 |
Astragalus | Carob | Alfalfa | Indigo | Sainfoin | |
---|---|---|---|---|---|
μg g−1 | μg g−1 | μg g−1 | μg g−1 | μg g−1 | |
Gallic acid | 206.73 | 383.42 | 174.64 | 119.64 | 291.18 |
5-(Hydroxymethyl) Furfural | 14.29 | 7.6 | 25.01 | 13.27 | 36.52 |
Caftaric acid | 11.39 | 24.06 | |||
Chlorogenic acid | 25.18 | 16.82 | 13.4 | ||
Vanillic acid | 14.43 | ||||
Epicatechin | 18.42 | ||||
p-Coumaric acid | 7.98 | 6.36 | |||
Taxifolin | 20.52 | 14.36 | 22.23 | 13.89 | |
Rutin | 2.33 | 13.77 | |||
Galangin | 29.66 | 5.47 | 6.23 | 9.63 | 12.33 |
(+)-Abscissic acid | 3.01 | ||||
Kaempferol | 1.80 | 11.17 | 6.08 | ||
Biochanin A | 2.01 | 4.14 | 9.81 | 6.66 | 4.42 |
Metabolites | Code | Carob | Alfalfa | Sainfoin | Astragalus | Indigo | p |
---|---|---|---|---|---|---|---|
Esters | |||||||
Ethyl butanoate | E1 | nd | nd | 3.69 | nd | nd | *** |
Ethyl 3-methylbutanoate | E2 | nd | nd | 1.03 | nd | nd | *** |
Ethyl hexanoate | E3 | nd | nd | 4.34 | nd | nd | *** |
Ethyl 3-hexenoate | E4 | nd | nd | 6.76 | nd | nd | *** |
Ethyl octanoate | E5 | nd | nd | 2.65 | nd | nd | *** |
Ethyl benzoate | E6 | nd | nd | 12.75 | nd | nd | *** |
Methyl salicylate | E7 | 4.64 | nd | nd | 10.15 | nd | *** |
Ethyl phenylacetate | E8 | nd | nd | 7.32 | nd | nd | *** |
Methyl 3,5-dimethoxybenzoate | E9 | nd | nd | 1.95 | 0.09 | nd | *** |
Aldehydes | |||||||
2-Methyl- 2 butenal | Ald1 | nd | 18.93 | 6.63 | 5.15 | 4.60 | *** |
3-Methyl- 2 butenal | Ald2 | nd | 12.61 | nd | nd | nd | *** |
Octanal | Ald3 | 10.7 | nd | 5.67 | 7.11 | 3.06 | ** |
Nonanal | Ald4 | 8.65 | 14.24 | 18.80 | 18.09 | 45.47 | *** |
2-Furfural | Ald5 | nd | 79.83 | 25.21 | 27.32 | 48.16 | ** |
Benzaldehyde | Ald6 | 25.97 | 81.29 | 58.47 | 30.90 | 75.86 | * |
5-Methyl-2-furfural | Ald7 | nd | 5.35 | 0.59 | 25.11 | 20.81 | * |
Benzene acetaldehyde | Ald8 | 4.30 | 36.61 | 85.88 | 83.16 | 7.65 | * |
5-Formylfurfural | Ald9 | nd | 7.77 | 16.77 | 20.00 | 10.0 | * |
4-Methoxy benzaldehyde | Ald10 | nd | 2.04 | nd | nd | nd | *** |
3-Phenylpropenal | Ald11 | nd | 1.85 | 0.00 | 0.00 | 8.89 | *** |
5-Hydroxymethyl-2-furfural (5HMF) | Ald12 | nd | 4.75 | 4.79 | 207.96 | 154.77 | ** |
Alcohols | |||||||
3-Methyl-1-butanol | A1 | 23.38 | nd | 6.96 | nd | nd | *** |
3-Methyl- 3-buten-1-ol | A2 | nd | 21.24 | 5.86 | 3.64 | 2.48 | *** |
2-Methyl-2-buten-1-ol | A3 | nd | 7.68 | 1.17 | nd | 3.06 | *** |
trans-3-Hexen-1-ol | A4 | nd | 1.58 | nd | nd | nd | *** |
cis-3-Hexene-1-ol | A5 | nd | 35.76 | nd | nd | nd | *** |
1-Octen-3-ol | A6 | nd | 12.34 | nd | nd | nd | *** |
2-Ethyl-1-hexanol | A7 | 9.36 | 26.27 | 10.00 | 13.42 | 24.70 | * |
2-Furanmethanol | A8 | 0.88 | 12.14 | 7.96 | 50.19 | 109.67 | *** |
1 Nonanol | A9 | 7.29 | nd | nd | nd | nd | *** |
5-Methyl-2-furanmethanol | A10 | nd | nd | nd | 0.48 | 4.46 | *** |
Benzyl alcohol | A11 | 17.86 | 43.26 | 7.79 | 6.14 | 12.12 | *** |
Phenyl ethyl alcohol | A12 | 14.42 | 37.44 | 91.08 | 14.66 | 136.23 | ** |
3-Phenyl-2-propen-1-ol | A13 | nd | 0.96 | nd | nd | nd | *** |
4-Methoxy phenethyl alcohol | A14 | nd | nd | nd | 3.61 | nd | *** |
Terpenoids & Norisoprenoids | |||||||
α-Pinene | T1 | nd | 2.04 | nd | 0.51 | nd | ** |
α-Terpinene | T2 | nd | nd | nd | 1.01 | 0.84 | * |
dl-Limonene | T3 | 2.00 | 2.68 | 0.98 | 1.38 | 1.75 | * |
p-Mentha-1,5,8-triene | T4 | nd | nd | nd | nd | 1.17 | ** |
γ-Terpinene | T5 | nd | nd | nd | 0.68 | nd | * |
p-Cymene | T6 | 1.61 | 2.87 | 0.71 | 2.15 | 3.31 | * |
p-Cymenene | T7 | 3.89 | 17.12 | 2.94 | 11.10 | 52.32 | *** |
cis-Linalool oxide | T8 | 2437.05 | 135.6 | 144.41 | 71.34 | 186.29 | **** |
Nerol oxide | T9 | 57.43 | nd | 12.77 | nd | nd | *** |
trans-Linalool oxide | T10 | 387.17 | 101.98 | 94.68 | 45.52 | 74.14 | ** |
Linalool | T11 | 123.81 | 10.42 | 31.19 | 38.41 | 14.56 | *** |
Lilac aldehyde | T12 | 11.55 | nd | 1.22 | 13.61 | nd | ** |
Edulan | T13 | nd | nd | 0.28 | 25.40 | nd | ** |
Hotrienol | T14 | 3047.60 | 46.40 | 1052.0 | 105.38 | 169.45 | **** |
Ketoisophorone | T15 | nd | nd | nd | 7.65 | nd | ** |
α-Terpineol | T16 | 10.29 | 8.98 | 5.96 | 9.46 | 5.74 | * |
Epoxylinalol | T17 | 90.54 | nd | 3.66 | nd | nd | *** |
β-Damascenone | T18 | 690.52 | nd | 8.46 | 5.08 | 6.56 | **** |
p-Cymen-8-ol | T19 | nd | 31.44 | nd | 2.30 | 29.47 | ** |
2,6-Dimethyl-3,7-octadien-2,6-diol | T20 | 229.97 | nd | 56.11 | 4.09 | 7.40 | *** |
Safranal | T21 | nd | nd | nd | 5.05 | 0.40 | ** |
3,7-Dimethyl-1,7-octadien-3,6-diol | T22 | 4.10 | nd | nd | nd | nd | * |
Thymol | T23 | 0.30 | 5.70 | 0.50 | 0.17 | 9.64 | * |
Carvacrol | T24 | nd | 1.80 | nd | nd | 6.66 | ** |
2,6-Dimethyl-2,7-octadiene-1,6-diol | T25 | 60.08 | nd | nd | nd | nd | *** |
trans-Isoeugenol | T26 | 4.84 | nd | nd | 1.74 | nd | * |
Furans | |||||||
3 Methyl furan | F1 | 9.56 | nd | nd | nd | nd | *** |
2-Pentylfuran | F2 | nd | nd | 6.00 | nd | nd | *** |
5-Isoprenyl-2-methyl-2-vinyl tetrahydrofuran (Herboxide) | F3 | 10.33 | 0.20 | 4.68 | 15.85 | 4.49 | ** |
Anethofuran | F4 | nd | nd | nd | 5.39 | 3.24 | ** |
2-Acetylfuran | F5 | 7.44 | 8.64 | 11.22 | 7.17 | 11.06 | * |
Acids | |||||||
Acetic acid | Ac1 | 36.59 | 28.31 | 25.88 | 76.17 | 373.77 | *** |
Formic acid | Ac2 | nd | nd | nd | 31.79 | 116.80 | *** |
Butanoic acid | Ac3 | 5.70 | 2.95 | 21.40 | 4.83 | 3.02 | *** |
3-Methylbutanoic acid | Ac4 | 34.17 | 6.5 | 17.17 | 24.50 | nd | ** |
Hexanoic acid | Ac5 | nd | nd | 13.95 | 17.44 | 5.68 | ** |
Octanoic acid | Ac6 | 29.70 | 11.63 | 16.09 | 19.80 | 17.66 | *** |
Nonanoic acid | Ac7 | 111.17 | 16.07 | 24.84 | 23.20 | 23.54 | *** |
Decanoic acid | Ac8 | nd | 2.82 | 5.10 | 11.35 | 9.11 | ** |
Benzoic acid | Ac9 | 4.05 | 5.61 | 13.24 | 16.18 | 32.38 | *** |
Dodecanoic acid | Ac10 | nd | nd | nd | 3.04 | 6.21 | *** |
Phenylacetic acid | Ac11 | 2.59 | nd | 1.37 | 3.66 | 4.74 | * |
Sulfur Compounds | |||||||
Dimethyl disulfide | S1 | 2.54 | 23.97 | 0.51 | 0.72 | 3.92 | *** |
Dimethyl trisulfide | S2 | nd | 1.46 | nd | nd | 3.89 | *** |
Ketons | |||||||
3-Hydroxy-2-butanone | K1 | 5.84 | 0.91 | nd | 0.79 | nd | *** |
2-Hydroxy-3-methyl-2-cyclopenten-1-one | K2 | nd | nd | nd | nd | 5.82 | *** |
1-(3-Hydroxy-2-furanyl) ethanone | K3 | nd | 7.49 | 0.35 | 27.25 | 20.60 | ** |
4-Hydroxy-3-methylacetophenone | K4 | nd | nd | 0.18 | 1.50 | nd | *** |
3-hydroxy-4-phenyl-2-butanone | K5 | 361.56 | nd | nd | nd | nd | *** |
Benzene Derivatives | |||||||
Toluene | B1 | 3.98 | 1.58 | 1.30 | nd | 1.05 | *** |
Benzyl nitrile | B2 | 1.35 | nd | nd | 5.71 | 2.88 | *** |
Lactones | |||||||
2(5H)-Furanone | L1 | nd | nd | nd | 2.57 | 5.25 | ** |
3-Hydroxy-4,4-dimethyldihydro-2(3H)-furanone | L2 | nd | 2.30 | 1.82 | 1.60 | 27.55 | *** |
Pyranones | |||||||
Maltol | Pyr1 | nd | nd | nd | 13.60 | 7.00 | ** |
2,3-Dihydro-3,5-dihydroxy-6-methyl-4h-pyran-4-one (DDMP) | Pyr2 | nd | 6.37 | 3.5 | 142.42 | 241.68 | *** |
5-Hydroxymaltol | Pyr3 | nd | nd | nd | 5.81 | 10.96 | ** |
Phenols | |||||||
2,6-Di-tert-butyl-4-methylphenol | Ph1 | nd | 1.88 | nd | nd | nd | *** |
2-Methoxy-4-vinylphenol | Ph2 | 5.47 | 1.84 | 1.62 | nd | 8.74 | ** |
2,4-Di-tert-butylphenol | Ph3 | 4.75 | 2.55 | 2.17 | 4.09 | 11.51 | ** |
3,4,5-Trimethylphenol | Ph4 | nd | nd | 3.06 | 6.28 | 3.89 | ** |
4-Methoxyphenol | Ph5 | nd | 0.90 | nd | nd | nd | * |
Methoxyeugenol | Ph6 | 18.79 | nd | nd | nd | nd | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fratianni, F.; Amato, G.; Ombra, M.N.; De Feo, V.; Nazzaro, F.; De Giulio, B. Chemical Characterization and Biological Properties of Leguminous Honey. Antioxidants 2024, 13, 482. https://doi.org/10.3390/antiox13040482
Fratianni F, Amato G, Ombra MN, De Feo V, Nazzaro F, De Giulio B. Chemical Characterization and Biological Properties of Leguminous Honey. Antioxidants. 2024; 13(4):482. https://doi.org/10.3390/antiox13040482
Chicago/Turabian StyleFratianni, Florinda, Giuseppe Amato, Maria Neve Ombra, Vincenzo De Feo, Filomena Nazzaro, and Beatrice De Giulio. 2024. "Chemical Characterization and Biological Properties of Leguminous Honey" Antioxidants 13, no. 4: 482. https://doi.org/10.3390/antiox13040482
APA StyleFratianni, F., Amato, G., Ombra, M. N., De Feo, V., Nazzaro, F., & De Giulio, B. (2024). Chemical Characterization and Biological Properties of Leguminous Honey. Antioxidants, 13(4), 482. https://doi.org/10.3390/antiox13040482