Ultrasound-Assisted Maillard Conjugation of Yeast Protein Hydrolysate with Polysaccharides for Encapsulating the Anthocyanins from Aronia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Spent Yeast Protein Hydrolysate (SYH)
2.3. Preparation of Spent Yeast Hydrolysate-Based Conjugates
2.4. Characterization of the Maillard Reaction Products
2.5. Application of SYH-Based Maillard Conjugates as Carrier for Water Soluble Compounds
2.5.1. Preparation of Anthocyanins Extract from BC Pomace
2.5.2. Chromatographic Analysis of the BC Pomace Extract
2.5.3. Encapsulation of Bioactive Compounds from Aronia
2.5.4. Microcapsule Powders Characterization
2.6. Statistical Analysis
3. Results and Discussion
3.1. Conjugate Characterization
3.1.1. pH
3.1.2. Glycation Degree (GD)
3.1.3. UV-Absorbance and Browning Intensity Measurement of the Maillard Conjugates
3.1.4. Antioxidant Activity
3.2. Chromatographic Profile of Black Chokeberries Pomace
3.3. Microcapsules Characterization
3.3.1. Retention Efficiency and Encapsulation Efficiency
3.3.2. Water Activity (aw)
3.3.3. Colour Coordinates
3.3.4. In Vitro Digestibility
3.3.5. Microstructure of the Microcapsule Powders
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zeko-Pivač, A.; Habschied, K.; Kulisic, B.; Barkow, I.; Tišma, M. Valorization of spent brewer’s yeast for the production of high-value products, materials, and biofuels and environmental application. Fermentation 2023, 9, 208. [Google Scholar] [CrossRef]
- Dumitrașcu, L.; Lanciu Dorofte, A.; Grigore-Gurgu, L.; Aprodu, I. Proteases as tools for modulating the antioxidant activity and functionality of the spent brewer’s yeast proteins. Molecules 2023, 28, 3763. [Google Scholar] [CrossRef]
- Marson, G.V.; Saturno, R.P.; Comunian, T.A.; Consoli, L.; da Costa Machado, M.T.; Hubinger, M.D. Maillard conjugates from spent brewer’s yeast by-product as an innovative encapsulating material. Food Res. Int. 2020, 136, 109365. [Google Scholar] [CrossRef]
- de Souza, C.J.F.; da Silva, C.S.; Ramos, A.V.; Garcia-Rojas, E.E.; Pierucci, A.P.T.R. Yeast cells-xanthan gum coacervation for hydrosoluble bioactive encapsulation. Int. J. Biol. Macromol. 2023, 253, 127148. [Google Scholar] [CrossRef] [PubMed]
- Kurek, M.A.; Majek, M.; Onopiuk, A.; Szpicer, A.; Napiórkowska, A.; Samborska, K. Encapsulation of anthocyanins from chokeberry (Aronia melanocarpa) with plazmolyzed yeast cells of different species. Food Bioprod. Process 2023, 137, 84–92. [Google Scholar] [CrossRef]
- Dumitrașcu, L.; Borda, D.; Aprodu, I. Alternative processing options for improving the proteins functionality by Maillard conjugation. Foods 2023, 12, 3588. [Google Scholar] [CrossRef]
- Cui, H.; Zang, Z.; Jiang, Q.; Bao, Y.; Wu, Y.; Li, J.; Chen, Y.; Liu, X.; Yang, S.; Si, X.; et al. Utilization of ultrasound and glycation to improve functional properties and encapsulated efficiency of proteins in anthocyanins. Food Chem. 2023, 419, 135899. [Google Scholar] [CrossRef] [PubMed]
- Siddiquy, M.; Ghamry, M.; Golshany, H.; Yang, C.; Al-Maqtari, Q.A.; Al-Ansi, W.; Easdani, M.; Zhang, L. Structural and functional characterization of mung bean protein-peach gum conjugate through the Maillard reaction as a novel encapsulation agent. Prog. Org. Coat. 2024, 188, 108201. [Google Scholar] [CrossRef]
- Zhou, J.; Wei, L.; Wang, Z.; Din, Z.; Lv, X.; Gui, Y.; Xie, F.; Cai, J. Improving the performance of dextran–whey protein isolation microcapsules for the encapsulation of selenium-enriched peptide by Maillard reaction. LWT 2024, 191, 115645. [Google Scholar] [CrossRef]
- Jang, Y.; Koh, E. Characterisation and storage stability of aronia anthocyanins encapsulated with combinations of maltodextrin with carboxymethyl cellulose, gum Arabic, and xanthan gum. Food Chem. 2023, 405, 135002. [Google Scholar] [CrossRef]
- Fu, J.J.; Fu, D.W.; Zhang, G.Y.; Zhang, Z.H.; Xu, X.B.; Song, L. Fabrication of glycated yeast cell protein via Maillard reaction for delivery of curcumin: Improved environmental stability, antioxidant activity, and bioaccessibility. J. Sci. Food Agric. 2023, 103, 2544–2553. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Werner, M.; Winterhalter, P.; Esatbeyoglu, T. Phenolic composition, radical scavenging activity and an approach for authentication of Aronia melanocarpa berries, juice, and pomace. J. Food Sci. 2019, 84, 1791–1798. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zheng, Y.; Sun, Q.; Wang, J.; Zheng, B.; Guo, Z. Structural characteristics and emulsifying properties of myofibrillar protein-dextran conjugates induced by ultrasound Maillard reaction. Ultrason. Sonochem. 2021, 72, 105458. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Yin, H.; Yan, J.; Niu, X.; Qi, B.; Liu, J. Structure and acid-induced gelation properties of soy protein isolate–maltodextrin glycation conjugates with ultrasonic pretreatment. Food Hydrocolloid 2021, 112, 106278. [Google Scholar] [CrossRef]
- Abdelhedi, O.; Mora, L.; Jemil, I.; Jridi, M.; Toldrá, F.; Nasri, M.; Nasri, R. Effect of ultrasound pretreatment and Maillard reaction on structure and antioxidant properties of ultrafiltrated smooth-hound viscera proteins-sucrose conjugates. Food Chem. 2017, 230, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Dumitrașcu, L.; Lanciu, A.; Aprodu, I. A preliminary study on using ultrasounds for the valorization of spent brewer’s yeast. Ann. Univ. Dunarea Jos Galati. Fascicle VI Food Technol. 2022, 46, 141–153. [Google Scholar] [CrossRef]
- Dumitraşcu, L.; Stănciuc, N.; Borda, D.; Neagu, C.; Enachi, E.; Barbu, V.; Aprodu, I. Microencapsulation of bioactive compounds from cornelian cherry fruits using different biopolymers with soy proteins. Food Biosci. 2021, 41, 101032. [Google Scholar] [CrossRef]
- Dumitraşcu, L.; Enachi, E.; Stănciuc, N.; Aprodu, I. Optimization of ultrasound assisted extraction of phenolic compounds from cornelian cherry fruits using response surface methodology. CyTA-J. Food 2019, 17, 814–823. [Google Scholar] [CrossRef]
- Mulcahy, E.M.; Mulvihill, D.M.; O’Mahony, J.A. Physicochemical properties of whey protein conjugated with starch hydrolysis products of different dextrose equivalent values. Int. Dairy. J. 2016, 53, 20–28. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Liu, L.; Wang, L.; Bora, A.F.M.; Du, L. Covalent conjugation of whey protein isolate hydrolysates and galactose through Maillard reaction to improve the functional properties and antioxidant activity. Int. Dairy. J. 2020, 102, 104584. [Google Scholar] [CrossRef]
- Chen, W.; Ma, X.; Wang, W.; Lv, R.; Guo, M.; Ding, T.; Ye, X.; Miao, S.; Liu, D. Preparation of modified whey protein isolate with gum acacia by ultrasound maillard reaction. Food Hydrocolloid 2019, 95, 298–307. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, Y.; Ma, C.; McClements, D.J.; Liu, F.; Liu, X. Pea protein isolate-inulin conjugates prepared by pH-shift treatment and ultrasonic-enhanced glycosylation: Structural and functional properties. Food Chem. 2022, 384, 132511. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Feng, S.; Guo, Y.; Li, Z.; Chen, L.; Handa, A.; Zhang, Y. The rheological characteristics of soy protein isolate-glucose conjugate gel during simulated gastrointestinal digestion. Food Struct. 2021, 29, 100210. [Google Scholar] [CrossRef]
- Liu, L.; Li, X.; Du, L.; Zhang, X.; Yang, W.; Zhang, H. Effect of ultrasound assisted heating on structure and antioxidant activity of whey protein peptide grafted with galactose. LWT Food Sci. Technol. 2019, 109, 130–136. [Google Scholar] [CrossRef]
- Zhao, C.B.; Zhou, L.Y.; Liu, J.Y.; Zhang, Y.; Chen, Y.; Wu, F. Effect of ultrasonic pretreatment on physicochemical characteristics and rheological properties of soy protein/sugar Maillard reaction products. J. Food Sci. Tech. 2016, 53, 2342–2351. [Google Scholar] [CrossRef] [PubMed]
- Nooshkam, M.; Madadlou, A. Maillard conjugation of lactulose with potentially bioactive peptides. Food Chem. 2016, 192, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.Y.; Liu, W.; Zhou, Y.J.; Ren, H.; Li, M.Y.; Liu, Y. Effects of ultrasonic treatment on Maillard reaction and product characteristics of enzymatic hydrolysate derived from mussel meat. J. Food Process Eng. 2019, 42, e13206. [Google Scholar] [CrossRef]
- Zielińska, A.; Siudem, P.; Paradowska, K.; Gralec, M.; Kaźmierski, S.; Wawer, I. Aronia melanocarpa fruits as a rich dietary source of chlorogenic acids and anthocyanins: 1H-NMR, HPLC-DAD, and chemometric studies. Molecules 2020, 25, 3234. [Google Scholar] [CrossRef] [PubMed]
- Worsztynowicz, P.; Napierała, M.; Białas, W.; Grajek, W.; Olkowicz, M. Pancreatic α-amylase and lipase inhibitory activity of polyphenolic compounds present in the extract of black chokeberry (Aronia melanocarpa L.). Process Biochem. 2014, 49, 1457–1463. [Google Scholar] [CrossRef]
- Sahraeian, S.; Rashidinejad, A.; Golmakani, M.T. Recent advances in the conjugation approaches for enhancing the bioavailability of polyphenols. Food Hydrocoll. 2024, 146, 109221. [Google Scholar] [CrossRef]
- Phongphisutthinant, R.; Wiriyacharee, P.; Boonyapranai, K.; Ounjaijean, S.; Taya, S.; Pitchakarn, P.; Pathomrungsiyounggul, P.; Utarat, P.; Wongwatcharayothin, W.; Somjai, C.; et al. Effect of Conventional Humid–Dry Heating through the Maillard Reaction on Chemical Changes and Enhancement of In Vitro Bioactivities from Soy Protein Isolate Hydrolysate–Yeast Cell Extract Conjugates. Foods 2024, 13, 380. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Shang, S.; Qi, M.; Xiang, Y.; Wang, L.; Wang, X.; Lin, T.; Hao, D.; Chen, J.; Liu, J.; et al. Yeast glucan particles: An express train for oral targeted drug delivery systems. Int. J. Biol. Macromol. 2023, 253, 127131. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Voilley, A.; Tran, T.T.T.; Waché, Y. Microencapsulation of Hibiscus sabdariffa L. Calyx Anthocyanins with Yeast Hulls. Plant Food Hum. Nutr. 2022, 77, 83–89. [Google Scholar] [CrossRef]
- Ahmad, M.; Ashraf, B.; Gani, A.; Gani, A. Microencapsulation of saffron anthocyanins using β glucan and β cyclodextrin: Microcapsule characterization, release behaviour & antioxidant potential during in-vitro digestion. Int. J. Biol. Macromol. 2018, 109, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Phan-Thi, H.; Pham-Hoang, B.N.; Ho, P.T.; Tran, T.T.T.; Waché, Y. Encapsulation of Hibiscus sabdariffa L. anthocyanins as natural colours in yeast. Food Res. Int. 2018, 107, 275–280. [Google Scholar] [CrossRef]
- Parandi, E.; Mousavi, M.; Assadpour, E.; Kiani, H.; Jafari, S.M. Sesame protein hydrolysate-gum Arabic Maillard conjugates for loading natural anthocyanins: Characterization, in vitro gastrointestinal digestion and storage stability. Food Hydrocolloid 2024, 148, 109490. [Google Scholar] [CrossRef]
- Velez-Erazo, E.M.; Saturno, R.P.; Marson, G.V.; Hubinger, M.D. Spent brewer’s yeast proteins and cell debris as innovative emulsifiers and carrier materials for edible oil microencapsulation. Food Res. Int. 2021, 140, 109853. [Google Scholar] [CrossRef]
- Akbarbaglu, Z.; Jafari, S.M.; Sarabandi, K.; Mohammadi, M.; Heshmati, M.K.; Pezeshki, A. Influence of spray drying encapsulation on the retention of antioxidant properties and microstructure of flaxseed protein hydrolysates. Colloid. Surface B 2019, 178, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Ćujić-Nikolić, N.; Stanisavljević, N.; Šavikin, K.; Kalušević, A.; Nedović, V.; Samardžić, J.; Janković, T. Chokeberry polyphenols preservation using spray drying: Effect of encapsulation using maltodextrin and skimmed milk on their recovery following in vitro digestion. J. Microencapsul. 2019, 36, 693–703. [Google Scholar] [CrossRef]
- Jang, Y.; Koh, E. Effect of encapsulation on stability of anthocyanins and chlorogenic acid isomers in aronia during in vitro digestion and their transformation in a model system. Food Chem. 2024, 434, 137443. [Google Scholar] [CrossRef]
- Fredes, C.; Osorio, M.J.; Parada, J.; Robert, P. Stability and bioaccessibility of anthocyanins from maqui (Aristotelia chilensis [Mol.] Stuntz) juice microparticles. LWT Food Sci. Technol. 2018, 91, 549–556. [Google Scholar] [CrossRef]
- Kuck, L.S.; Noreña, C.P.Z. Microencapsulation of grape (Vitis labrusca var. Bordo) skin phenolic extract using gum Arabic, polydextrose, and partially hydrolyzed guar gum as encapsulating agents. Food Chem. 2016, 194, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, C.; Chung, M.M.S.; dos Santos, C.; Mayer, C.R.M.; Moraes, I.C.F.; Branco, I.G. Microencapsulation of an anthocyanin-rich blackberry (Rubus spp.) by-product extract by freeze-drying. LWT Food Sci. Technol. 2017, 84, 256–262. [Google Scholar] [CrossRef]
- Saatchi, A.; Kiani, H.; Labbafi, M. Structural characteristics and functional properties of sesame protein concentrate–maltodextrin conjugates. J. Food Meas. Charact. 2021, 15, 457–465. [Google Scholar] [CrossRef]
- Dimopoulos, G.; Katsimichas, A.; Tsimogiannis, D.; Oreopoulou, V.; Taoukis, P. Cell permeabilization processes for improved encapsulation of oregano essential oil in yeast cells. J. Food Eng. 2021, 294, 110408. [Google Scholar] [CrossRef]
Sample Code | Carriers (g Carrier/100 g Water) | Ratio between Carriers w/w | Conjugation Assisted by US before Encapsulation |
---|---|---|---|
V1 | SYH (5) | Not applicable | No |
V2 | HCW (5) | Not applicable | No |
V3 | SYH (2.5) MD (2.5) | 1:1 | Yes |
V4 | SYH (2.5) MD (2.5) HCW (5) | 1.5:1.5:1 | Yes, SYH:MD mixture |
V5 | SYH (2.5) D (2.5) | 1:1 | Yes |
V6 | SYH (2.5) D (2.5) HCW (5) | 1.5:1.5:1 | Yes, SYH:D mixture |
Conjugate | Parameter | Conventional Heating (70 °C, 100 min) | Ultrasound Time (min) | |||
---|---|---|---|---|---|---|
0 | 5 | 13 | 23 | |||
SYH:D | pH | 6.80 ± 0.01 bA | 6.96 ± 0.02 aA | 6.66 ± 0.02 dA | 6.72 ± 0.01 cB | 6.74 ± 0.01 cA |
GD% | 30.75 ± 2.1 aA | - | 33.89 ± 0.56 aA | 22.37 ± 0.78 bA | 21.25 ± 1.94 bA | |
A284 nm | 3.04 ± 0.21 aA | 2.68 ± 0.006 bA | 2.64 ± 0.01 bcA | 2.51 ± 0,15 bA | 2.66 ± 0,03 bA | |
A420 nm | 0.148 ± 0.004 aA | 0.102 ± 0.001 bA | 0.109 ± 0.001 bA | 0.093 ± 0.001 cA | 0.102 ± 0.009 bA | |
L* | 33.35 ± 0.03 aA | 33.20 ± 0.01 bA | 32.91 ± 0.03 cA | 32.16 ± 0.06 dB | 32.12 ± 0.04 dA | |
a* | 0.21 ± 0.04 cA | 0.36 ± 0.01 bA | 0.33 ± 0.02 bA | 0.51 ± 0.04 aA | 0.58 ± 0.03 aA | |
b* | 1.42 ± 0.05 bA | −0.26 ± 0.01 dA | 1.35 ± 0.02 cA | 1.41 ± 0.01 bA | 1.71 ± 0.03 aA | |
BI% | 4.52 ± 0.16 cA | - | 4.64 ± 0.04 cA | 5.37 ± 0.08 bA | 6.47 ± 0.18 aA | |
C* | 4.12 ± 0.31 bA | 0.407 ± 0.04 dA | 3.86 ± 0.11 cA | 4.53 ± 0.07 bA | 6.52 ± 0.31 aA | |
SYH:MD | pH | 6.78 ± 0.01 cA | 6.96 ± 0.02 aA | 6.68 ± 0.01 dA | 6.86 ± 0.01 bA | 6.68 ± 0.01 dB |
GD% | 30.05 ± 0.27 aA | - | 29.54 ± 1.62 aB | 24.04 ± 1.08 bA | 18.50 ± 0.91 cA | |
A284 nm | 2.89 ± 0.21 aA | 2.66 ± 0.02 aA | 2.51 ± 0.14 aA | 2.63 ± 0.04 aA | 2.66 ± 0.02 aA | |
A420 nm | 0.129 ± 0.004 aB | 0.101 ± 0.001 bA | 0.094 ± 0.001 cB | 0.091 ± 0.001 cA | 0.103 ± 0.01 bA | |
L* | 33.42 ± 0.02 aA | 33.25 ± 0.03 bA | 33.08 ± 0.05 cA | 32.71 ± 0.25 cdA | 32.06 ± 0.06 eA | |
a* | 0.18 ± 0.005 dA | 0.36 ± 0.02 bA | 0.24 ± 0.05 cA | 0.44 ± 0.06 aA | 0.49 ± 0.01 aB | |
b* | 0.81 ± 0.02 dB | −0.27 ± 0.01 eA | 1.27 ± 0.04 cA | 1.40 ± 0.01 bA | 1.50 ± 0.06 aB | |
BI | 2.65 ± 0.05 dB | - | 4.20 ± 0.24 cB | 5.07 ± 0.17 bB | 5.63 ± 0.17 aB | |
C* | 1.40 ± 0.06 dB | 0.41 ± 0.02 eA | 3.38 ± 0.28 cB | 4.31 ± 0.10 bB | 5.02 ± 0.38 aB |
Sample Code | RE (%) | EE (%) | aw | L* | a* | b* | ΔE |
---|---|---|---|---|---|---|---|
V1 | 61.92 ± 2.88 b | 81.22 ± 3.79 b | 0.233± 0.021 a | 49.35 ± 0.01 f | 6.65 ± 0.02 e | 2.3 ± 0.01 a | - |
V2 | 66.00 ± 2.58 a | 67.09 ± 2.26 c | 0.190± 0.001 a | 50.66 ± 0.01 e | 5.07 ± 0.02 f | 1.23 ± 0.0 b | 2.31 ± 0.01 e |
V3 | 58.25 ± 0.38 bc | 84.72 ± 2.56 a | 0.190± 0.006 a | 52.14 ± 0.00 c | 11.54 ± 0.01 b | 0.307 ± 0.005 c | 5.98 ± 0.02 b |
V4 | 64.44 ± 2.98 a | 88.72 ± 0.33 a | 0.166 ± 0.001 a | 51.1 ± 0.31 d | 8.94 ± 0.07 c | 0.145 ± 0.035 d | 3.56 ± 0.17 d |
V5 | 60.08 ± 2.79 b | 83.77 ± 2.53 a | 0.282 ± 0.004 a | 56.94 ± 0.01 a | 11.7 ± 0.02 a | −0.17 ± 0.01 f | 9.44 ± 0.01 a |
V6 | 65.25 ± 2.21 a | 80.21 ± 2.59 b | 0.271 ± 0.012 a | 53.89 ± 0.01 b | 8.58 ± 0.01 d | −0.14 ± 0.01 e | 5.51 ± 0.01 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dumitrașcu, L.; Brumă, M.; Turturică, M.; Enachi, E.; Cantaragiu Ceoromila, A.M.; Aprodu, I. Ultrasound-Assisted Maillard Conjugation of Yeast Protein Hydrolysate with Polysaccharides for Encapsulating the Anthocyanins from Aronia. Antioxidants 2024, 13, 570. https://doi.org/10.3390/antiox13050570
Dumitrașcu L, Brumă M, Turturică M, Enachi E, Cantaragiu Ceoromila AM, Aprodu I. Ultrasound-Assisted Maillard Conjugation of Yeast Protein Hydrolysate with Polysaccharides for Encapsulating the Anthocyanins from Aronia. Antioxidants. 2024; 13(5):570. https://doi.org/10.3390/antiox13050570
Chicago/Turabian StyleDumitrașcu, Loredana, Mihaela Brumă (Călin), Mihaela Turturică, Elena Enachi, Alina Mihaela Cantaragiu Ceoromila, and Iuliana Aprodu. 2024. "Ultrasound-Assisted Maillard Conjugation of Yeast Protein Hydrolysate with Polysaccharides for Encapsulating the Anthocyanins from Aronia" Antioxidants 13, no. 5: 570. https://doi.org/10.3390/antiox13050570
APA StyleDumitrașcu, L., Brumă, M., Turturică, M., Enachi, E., Cantaragiu Ceoromila, A. M., & Aprodu, I. (2024). Ultrasound-Assisted Maillard Conjugation of Yeast Protein Hydrolysate with Polysaccharides for Encapsulating the Anthocyanins from Aronia. Antioxidants, 13(5), 570. https://doi.org/10.3390/antiox13050570