Opportunities and Challenges of Soy Proteins with Different Processing Applications
Abstract
:1. Introduction
2. Bioactive Compounds in Soybean Meal
3. Antinutritional Compounds in Soybean Meal
4. Different Processed Soy Products
4.1. Soy Protein Concentrate
4.2. Enzyme-Treated SBM
4.3. Fermented SBM
4.4. Application of Processed Soy Products
5. Functional Peptides in Processed Soy Products
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. FAOSTAT: Crops and Livestock Products; FAO: Rome, Italy, 2021. [Google Scholar]
- Kim, S.W.; Less, J.F.; Wang, L.; Yan, T.; Kiron, V.; Kaushik, S.J.; Lei, X.G. Meeting Global Feed Protein Demand: Challenge, Opportunity, and Strategy. Annu. Rev. Anim. Biosci. 2019, 7, 221–243. [Google Scholar] [CrossRef] [PubMed]
- Yoon, I.; Oh, S.-H.; Kim, S.W. Sustainable Animal Agriculture in the United States and the Implication in Korea. J. Anim. Sci. Technol. 2024, 66, 279. [Google Scholar] [CrossRef]
- Chardigny, J.M.; Walrand, S. Plant Protein for Food: Opportunities and Bottlenecks. OCL 2016, 23, 4. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Ankers, P. Towards Sustainable Animal Diets: A Survey-Based Study. Anim. Feed. Sci. Technol. 2014, 198, 309–322. [Google Scholar] [CrossRef]
- Ruiz, N.; Parsons, C.M.; Stein, H.H.; Coon, C.N.; Eys, J.; Miles, R.D. A Review: 100 Years of Soybean Meal; ADM: Chicago, IL, USA, 2020. [Google Scholar]
- USDA Foreign Agricultural Service. Available online: https://fas.usda.gov/data/commodities/soybean-meal (accessed on 1 January 2024).
- Food and Fuel. Available online: https://nebraskasoybeans.org/learn/uses-for-soybeans/profile/food-fuel (accessed on 1 January 2024).
- Willis, S. The Use of Soybean Meal and Full Fat Soybean Meal by the Animal Feed Industry. In Proceedings of the 12th Australian Soybean Conference, Soy Australia, Bundaberg, Australia, 2–6 February 2003. [Google Scholar]
- Petruccelli, S.; Anon, M.C. Soy Protein Isolate Components and Their Interactions. J. Agric. Food Chem. 1995, 43, 1762–1767. [Google Scholar] [CrossRef]
- Thrane, M.; Paulsen, P.V.; Orcutt, M.W.; Krieger, T.M. Soy Protein. In Sustainable Protein Sources; Elsevier: Amsterdam, The Netherlands, 2017; pp. 23–45. [Google Scholar]
- NRC Nutrient Requirements of Swine, 11th Rev. ed.; National Academies Press: Washington, DC, USA, 2012; ISBN 978-0-309-22423-9.
- García-Rebollar, P.; Cámara, L.; Lázaro, R.P.; Dapoza, C.; Pérez-Maldonado, R.; Mateos, G.G. Influence of the Origin of the Beans on the Chemical Composition and Nutritive Value of Commercial Soybean Meals. Anim. Feed Sci. Technol. 2016, 221, 245–261. [Google Scholar] [CrossRef]
- Nishinari, K.; Fang, Y.; Guo, S.; Phillips, G.O. Soy Proteins: A Review on Composition, Aggregation and Emulsification. Food Hydrocoll. 2014, 39, 301–318. [Google Scholar] [CrossRef]
- Badley, R.A.; Atkinson, D.; Hauser, H.; Oldani, D.; Green, J.P.; Stubbs, J.M. The Structure, Physical and Chemical Properties of the Soy Bean Protein Glycinin. Biochim. Biophys. Acta—Protein Struct. 1975, 412, 214–228. [Google Scholar] [CrossRef]
- Peng, I.C.; Quass, D.W.; Dayton, W.R.; Allen, C.E. The Physicochemical and Functional Properties of Soybean 11S Globulin—A Review. Cereal Chem. 1984, 61, 480–490. [Google Scholar]
- Hong, K.J.; Lee, C.H.; Sung, W.K. Aspergillus Oryzae GB-107 Fermentation Improves Nutritional Quality of Food Soybeans and Feed Soybean Meals. J. Med. Food 2004, 7, 430–435. [Google Scholar] [CrossRef]
- Mukherjee, R.; Chakraborty, R.; Dutta, A. Role of Fermentation in Improving Nutritional Quality of Soybean Meal—A Review. Asian-Australas. J. Anim. Sci. 2015, 29, 1523–1529. [Google Scholar] [CrossRef] [PubMed]
- Karr-Lilienthal, L.K.; Kadzere, C.T.; Grieshop, C.M.; Fahey, G.C. Chemical and Nutritional Properties of Soybean Carbohydrates as Related to Nonruminants: A Review. Livest. Prod. Sci. 2005, 97, 1–12. [Google Scholar] [CrossRef]
- Choct, M.; Dersjant-Li, Y.; McLeish, J.; Peisker, M. Soy Oligosaccharides and Soluble Non-Starch Polysaccharides: A Review of Digestion, Nutritive and Anti-Nutritive Effects in Pigs and Poultry. Asian-Australas. J. Anim. Sci. 2010, 23, 1386–1398. [Google Scholar] [CrossRef]
- Kao, T.-H.; Chen, B.-H. Functional Components in Soybean Cake and Their Effects on Antioxidant Activity. J. Agric. Food Chem. 2006, 54, 7544–7555. [Google Scholar] [CrossRef]
- Wang, B.F.; Wang, J.S.; Lu, J.F.; Kao, T.H.; Chen, B.H. Antiproliferation Effect and Mechanism of Prostate Cancer Cell Lines as Affected by Isoflavones from Soybean Cake. J. Agric. Food Chem. 2009, 57, 2221–2232. [Google Scholar] [CrossRef]
- Smith, B.N.; Dilger, R.N. Immunomodulatory Potential of Dietary Soybean-Derived Isoflavones and Saponins in Pigs. J. Anim. Sci. 2018, 96, 1288–1304. [Google Scholar] [CrossRef] [PubMed]
- Georgetti, S.R.; Casagrande, R.; Souza, C.R.F.; Oliveira, W.P.; Fonseca, M.J.V. Spray Drying of the Soybean Extract: Effects on Chemical Properties and Antioxidant Activity. LWT—Food Sci. Technol. 2008, 41, 1521–1527. [Google Scholar] [CrossRef]
- Dunsford, B.R.; Knabe, D.A.; Haensly, W.E. Effect of Dietary Soybean Meal on the Microscopic Anatomy of the Small Intestine in the Early-Weaned Pig. J. Anim. Sci. 1989, 67, 1855–1863. [Google Scholar] [CrossRef] [PubMed]
- Li, D.F.; Nelssen, J.L.; Reddy, P.G.; Blecha, F.; Hancock, J.D.; Allee, G.L.; Goodband, R.D.; Klemm, R.D. Transient Hypersensitivity to Soybean Meal in the Early-Weaned Pig. J. Anim. Sci. 1990, 68, 1790. [Google Scholar] [CrossRef]
- Deng, Z.; Duarte, M.E.; Jang, K.B.; Kim, S.W. Soy Protein Concentrate Replacing Animal Protein Supplements and Its Impacts on Intestinal Immune Status, Intestinal Oxidative Stress Status, Nutrient Digestibility, Mucosa-Associated Microbiota, and Growth Performance of Nursery Pigs. J. Anim. Sci. 2022, 100, skac255. [Google Scholar] [CrossRef]
- Deng, Z.; Duarte, M.E.; Kim, S.W. Efficacy of Soy Protein Concentrate Replacing Animal Protein Supplements in Mucosa-Associated Microbiota, Intestinal Health, and Growth Performance of Nursery Pigs. Anim. Nutr. 2023, 14, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Duarte, M.E.; Kim, S.Y.; Hwang, Y.; Kim, S.W. Comparative Effects of Soy Protein Concentrate, Enzyme-Treated Soybean Meal, and Fermented Soybean Meal Replacing Animal Protein Supplements in Feeds on Growth Performance and Intestinal Health of Nursery Pigs. J. Anim. Sci. Biotechnol. 2023, 14, 89. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Hou, G.F.; Song, Z.H.; Zhao, J.F.; Fan, Z.Y.; Hou, D.-X.; He, X. Nutritional Value of Enzyme-Treated Soybean Meal, Concentrated Degossypolized Cottonseed Protein, Dried Porcine Solubles and Fish Meal for 10- to -20 Kg Pigs. Anim. Feed Sci. Technol. 2019, 252, 23–33. [Google Scholar] [CrossRef]
- Kim, S.W.; van Heugten, E.; Ji, F.; Lee, C.H.; Mateo, R.D. Fermented Soybean Meal as a Vegetable Protein Source for Nursery Pigs: I. Effects on Growth Performance of Nursery Pigs. J. Anim. Sci. 2010, 88, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Peisker, M. Manufacturing of Soy Protein Concentrate for Animal Nutrition. Feed. Manuf. Mediterr. Reg. Improv. Saf. Feed. Food 2001, 54, 103–107. [Google Scholar]
- Kim, S.W.; Knabe, D.A.; Hong, K.J.; Easter, R.A. Use of Carbohydrases in Corn-Soybean Meal-Based Nursery Diets. J. Anim. Sci. 2003, 81, 2496–2504. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Systematic Analysis of the Content of 502 Polyphenols in 452 Foods and Beverages: An Application of the Phenol-Explorer Database. J. Agric. Food Chem. 2010, 58, 4959–4969. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, A.; Hanley, B.; Lamuela-Raventos, R.M. Isoflavones, Lignans and Stilbenes—Origins, Metabolism and Potential Importance to Human Health. J. Sci. Food Agric. 2000, 80, 1044–1062. [Google Scholar] [CrossRef]
- Vitale, D.C.; Piazza, C.; Melilli, B.; Drago, F.; Salomone, S. Isoflavones: Estrogenic Activity, Biological Effect and Bioavailability. Eur. J. Drug Metab. Pharmacokinet. 2013, 38, 15–25. [Google Scholar] [CrossRef]
- Kuiper, G.G.J.M.; Lemmen, J.G.; Carlsson, B.; Corton, J.C.; Safe, S.H.; van der Saag, P.T.; van der Burg, B.; Gustafsson, J.-Å. Interaction of Estrogenic Chemicals and Phytoestrogens with Estrogen Receptor β. Endocrinology 1998, 139, 4252–4263. [Google Scholar] [CrossRef]
- Kampa, M.; Nifli, A.-P.; Notas, G.; Castanas, E. Polyphenols and Cancer Cell Growth. In Reviews of Physiology, Biochemistry and Pharmacology; Springer: Berlin, Heidelberg, 2007; pp. 79–113. [Google Scholar]
- Rice, S.; Mason, H.D.; Whitehead, S.A. Phytoestrogens and Their Low Dose Combinations Inhibit MRNA Expression and Activity of Aromatase in Human Granulosa-Luteal Cells. J. Steroid Biochem. Mol. Biol. 2006, 101, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Dahlman-Wright, K.; Cavailles, V.; Fuqua, S.A.; Jordan, V.C.; Katzenellenbogen, J.A.; Korach, K.S.; Maggi, A.; Muramatsu, M.; Parker, M.G.; Gustafsson, J.-Å. International Union of Pharmacology. LXIV. Estrogen Receptors. Pharmacol. Rev. 2006, 58, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Kuiper, G.G.J.M.; Carlsson, B.; Grandien, K.; Enmark, E.; Häggblad, J.; Nilsson, S.; Gustafsson, J.-A. Comparison of the Ligand Binding Specificity and Transcript Tissue Distribution of Estrogen Receptors α and β. Endocrinology 1997, 138, 863–870. [Google Scholar] [CrossRef] [PubMed]
- Day, A.J.; DuPont, M.S.; Ridley, S.; Rhodes, M.; Rhodes, M.J.; Morgan, M.R.; Williamson, G. Deglycosylation of Flavonoid and Isoflavonoid Glycosides by Human Small Intestine and Liver Β-glucosidase Activity. FEBS Lett. 1998, 436, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, A.; Brown, J.E.; Hawdon, A.; Faughnan, M.S.; King, L.J.; Millward, J.; Zimmer-Nechemias, L.; Wolfe, B.; Setchell, K.D. Factors Affecting the Bioavailability of Soy Isoflavones in Humans after Ingestion of Physiologically Relevant Levels from Different Soy Foods. J. Nutr. 2006, 136, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-C.; Nair, M.G.; Nitiss, J.L. Metabolites of Daidzein and Genistein and Their Biological Activities. J. Nat. Prod. 1995, 58, 1901–1905. [Google Scholar] [CrossRef] [PubMed]
- Newbold, R.R.; Jefferson, W.N.; Padilla-Banks, E. Prenatal Exposure to Bisphenol A at Environmentally Relevant Doses Adversely Affects the Murine Female Reproductive Tract Later in Life. Environ. Health Perspect. 2009, 117, 879–885. [Google Scholar] [CrossRef] [PubMed]
- Newbold, R.R.; Padilla-Banks, E.; Snyder, R.J.; Jefferson, W.N. Perinatal Exposure to Environmental Estrogens and the Development of Obesity. Mol. Nutr. Food Res. 2007, 51, 912–917. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.-H. Impact of Genistein on Maturation of Mouse Oocytes, Fertilization, and Fetal Development. Reprod. Toxicol. 2009, 28, 52–58. [Google Scholar] [CrossRef]
- Goval, J.; Van Cauwenberge, A.; Alexandre, H. Respective Roles of Protein Tyrosine Kinases and Protein Kinases C in the Upregulation of Β-catenin Distribution, and Compaction in Mouse Preimplantation Embryos: A Pharmacological Approach. Biol. Cell 2000, 92, 513–526. [Google Scholar] [CrossRef]
- Farmer, C.; Robertson, P.; Xiao, C.W.; Rehfeldt, C.; Kalbe, C. Exogenous Genistein in Late Gestation: Effects on Fetal Development and Sow and Piglet Performance. Animal 2016, 10, 1423–1430. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Popovich, D. Chemical and Biological Characterization of Oleanane Triterpenoids from Soy. Molecules 2009, 14, 2959–2975. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Kang, J. Phytochemicals in Soy and Their Health Effects. In Phytochemicals—Bioactivities and Impact on Health; InTech: London, UK, 2011. [Google Scholar]
- Kang, J.; Badger, T.M.; Ronis, M.J.J.; Wu, X. Non-Isoflavone Phytochemicals in Soy and Their Health Effects. J. Agric. Food Chem. 2010, 58, 8119–8133. [Google Scholar] [CrossRef] [PubMed]
- Gestetner, B.; Birk, Y.; Tencer, Y. Soybean Saponins. Fate of Ingested Soybean Saponins and the Physiological Aspect of Their Hemolytic Activity. J. Agric. Food Chem. 1968, 16, 1031–1035. [Google Scholar] [CrossRef]
- Hu, J. Characterization of Soyasaponin Metabolism by Human Gut Microorganisms and Bioavailability in Humans; Iowa State University: Ames, IA, USA, 2003; ISBN 0496337238. [Google Scholar]
- Brown, G.C.; Neher, J.J. Microglial Phagocytosis of Live Neurons. Nat. Rev. Neurosci. 2014, 15, 209–216. [Google Scholar] [CrossRef] [PubMed]
- García-Lafuente, A.; Guillamón, E.; Villares, A.; Rostagno, M.A.; Martínez, J.A. Flavonoids as Anti-Inflammatory Agents: Implications in Cancer and Cardiovascular Disease. Inflamm. Res. 2009, 58, 537–552. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine; Oxford University Press: Oxford, MS, USA, 2015; ISBN 0198717482. [Google Scholar]
- Lee, I.-T.; Yang, C.-M. Role of NADPH Oxidase/ROS in pro-Inflammatory Mediators-Induced Airway and Pulmonary Diseases. Biochem. Pharmacol. 2012, 84, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Ishii, T.; Itoh, K.; Takahashi, S.; Sato, H.; Yanagawa, T.; Katoh, Y.; Bannai, S.; Yamamoto, M. Transcription Factor Nrf2 Coordinately Regulates a Group of Oxidative Stress-Inducible Genes in Macrophages. J. Biol. Chem. 2000, 275, 16023–16029. [Google Scholar] [CrossRef]
- Itoh, K.; Mimura, J.; Yamamoto, M. Discovery of the Negative Regulator of Nrf2, Keap1: A Historical Overview. Antioxid. Redox Signal. 2010, 13, 1665–1678. [Google Scholar] [CrossRef]
- Kaspar, J.W.; Jaiswal, A.K. Antioxidant-Induced Phosphorylation of Tyrosine 486 Leads to Rapid Nuclear Export of Bach1 That Allows Nrf2 to Bind to the Antioxidant Response Element and Activate Defensive Gene Expression. J. Biol. Chem. 2010, 285, 153–162. [Google Scholar] [CrossRef]
- Yu, J.; Bi, X.; Yu, B.; Chen, D. Isoflavones: Anti-Inflammatory Benefit and Possible Caveats. Nutrients 2016, 8, 361. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J.; Karin, M. Nuclear Factor-ΚB—A Pivotal Transcription Factor in Chronic Inflammatory Diseases. N. Engl. J. Med. 1997, 336, 1066–1071. [Google Scholar] [CrossRef]
- Dharmappa, K.K.; Mohamed, R.; Shivaprasad, H.V.; Vishwanath, B.S. Genistein, a Potent Inhibitor of Secretory Phospholipase A2: A New Insight in down Regulation of Inflammation. Inflammopharmacology 2010, 18, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Vera, R.; Galisteo, M.; Villar, I.C.; Sánchez, M.; Zarzuelo, A.; Pérez-Vizcaíno, F.; Duarte, J. Soy Isoflavones Improve Endothelial Function in Spontaneously Hypertensive Rats in an Estrogen-Independent Manner: Role of Nitric-Oxide Synthase, Superoxide, and Cyclooxygenase Metabolites. J. Pharmacol. Exp. Ther. 2005, 314, 1300–1309. [Google Scholar] [CrossRef]
- Mahesha, H.G.; Singh, S.A.; Rao, A.G.A. Inhibition of Lipoxygenase by Soy Isoflavones: Evidence of Isoflavones as Redox Inhibitors. Arch. Biochem. Biophys. 2007, 461, 176–185. [Google Scholar] [CrossRef]
- Sheu, F.; Lai, H.H.; Yen, G.C. Suppression Effect of Soy Isoflavones on Nitric Oxide Production in RAW 264.7 Macrophages. J. Agric. Food Chem. 2001, 49, 1767–1772. [Google Scholar] [CrossRef]
- Kang, J.-H.; Sung, M.-K.; Kawada, T.; Yoo, H.; Kim, Y.-K.; Kim, J.-S.; Yu, R. Soybean Saponins Suppress the Release of Proinflammatory Mediators by LPS-Stimulated Peritoneal Macrophages. Cancer Lett. 2005, 230, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.-A.; Park, Y.-J.; Joh, E.-H.; Kim, D.-H. Soyasaponin Ab Ameliorates Colitis by Inhibiting the Binding of Lipopolysaccharide (LPS) to Toll-like Receptor (TLR)4 on Macrophages. J. Agric. Food Chem. 2011, 59, 13165–13172. [Google Scholar] [CrossRef]
- Liener, I.E. Implications of Antinutritional Components in Soybean Foods. Crit. Rev. Food Sci. Nutr. 1994, 34, 31–67. [Google Scholar] [CrossRef]
- Cordle, C.T. Soy Protein Allergy: Incidence and Relative Severity. J. Nutr. 2004, 134, 1213S–1219S. [Google Scholar] [CrossRef]
- Taliercio, E.; Loveless, T.M.; Turano, M.J.; Kim, S.W. Identification of Epitopes of the β Subunit of Soybean β-Conglycinin That Are Antigenic in Pigs, Dogs, Rabbits and Fish. J. Sci. Food Agric. 2014, 94, 2289–2294. [Google Scholar] [CrossRef] [PubMed]
- Taliercio, E.; Kim, S.W. Epitopes from Two Soybean Glycinin Subunits Are Antigenic in Pigs. J. Sci. Food Agric. 2013, 93, 2927–2932. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, T.; Kohno, M.; Saito, T.; Fukui, K.; Takamatsu, K.; Yamamoto, T.; Hashimoto, Y.; Hirotsuka, M.; Kito, M. Reduction by Phytate-Reduced Soybean β-Conglycinin of Plasma Triglyceride Level of Young and Adult Rats. Biosci. Biotechnol. Biochem. 2001, 65, 1071–1075. [Google Scholar] [CrossRef]
- Sun, P.; Li, D.; Dong, B.; Qiao, S.; Ma, X. Effects of Soybean Glycinin on Performance and Immune Function in Early Weaned Pigs. Arch. Anim. Nutr. 2008, 62, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Zhan, Z.; Guo, P.; Piao, X.; Li, D. Soybean β-Conglycinin-Induced Gut Hypersensitivity Reaction in a Piglet Model. Arch. Anim. Nutr. 2009, 63, 188–202. [Google Scholar] [CrossRef]
- Peng, C.; Cao, C.; He, M.; Shu, Y.; Tang, X.; Wang, Y.; Zhang, Y.; Xia, X.; Li, Y.; Wu, J. Soybean Glycinin- and β-Conglycinin-Induced Intestinal Damage in Piglets via the P38/JNK/NF-ΚB Signaling Pathway. J. Agric. Food Chem. 2018, 66, 9534–9541. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, H.T. MAPK Signal Pathways in the Regulation of Cell Proliferation in Mammalian Cells. Cell Res. 2002, 12, 9–18. [Google Scholar] [CrossRef]
- Roux, P.P.; Blenis, J. ERK and P38 MAPK-Activated Protein Kinases: A Family of Protein Kinases with Diverse Biological Functions. Microbiol. Mol. Biol. Rev. 2004, 68, 320–344. [Google Scholar] [CrossRef]
- Huang, G.; Shi, L.Z.; Chi, H. Regulation of JNK and P38 MAPK in the Immune System: Signal Integration, Propagation and Termination. Cytokine 2009, 48, 161–169. [Google Scholar] [CrossRef]
- Khan, N.; Syed, D.N.; Pal, H.C.; Mukhtar, H.; Afaq, F. Pomegranate Fruit Extract Inhibits UVB-Induced Inflammation and Proliferation by Modulating NF-ΚB and MAPK Signaling Pathways in Mouse Skin. Photochem. Photobiol. 2012, 88, 1126–1134. [Google Scholar] [CrossRef]
- Hayden, M.S.; Ghosh, S. Shared Principles in NF-ΚB Signaling. Cell 2008, 132, 344–362. [Google Scholar] [CrossRef] [PubMed]
- Antoniou, T.; Marquardt, R.R.; Cansfield, P.E. Isolation, Partial Characterization, and Antinutritional Activity of a Factor (Pentosans) in Rye Grain. J. Agric. Food Chem. 1981, 29, 1240–1247. [Google Scholar] [CrossRef] [PubMed]
- Choct, M.; Annison, G. Anti-Nutritive Activity of Wheat Pentosans in Broiler Diets. Br. Poult. Sci. 1990, 31, 811–821. [Google Scholar] [CrossRef] [PubMed]
- Angkanaporn, K.; Choct, M.; Bryden, W.L.; Annison, E.F.; Annison, G. Effects of Wheat Pentosans on Endogenous Amino Acid Losses in Chickens. J. Sci. Food Agric. 1994, 66, 399–404. [Google Scholar] [CrossRef]
- Pluske, J.R.; Durmic, Z.; Pethick, D.W.; Mullan, B.P.; Hampson, D.J. Confirmation of the Role of Rapidly Fermentable Carbohydrates in the Expression of Swine Dysentery in Pigs after Experimental Infection. J. Nutr. 1998, 128, 1737–1744. [Google Scholar] [CrossRef] [PubMed]
- Veldman, A.; Veen, W.A.G.; Barug, D.; Van Paridon, P.A. Effect of A-galactosides and A-galactosidase in Feed on Ileal Piglet Digestive Physiology. J. Anim. Physiol. Anim. Nutr. 1993, 69, 57–65. [Google Scholar] [CrossRef]
- Zhang, L.; Li, D.; Qiao, S.; Wang, J.; Bai, L.; Wang, Z.; Han, I.K. The Effect of Soybean Galactooligosaccharides on Nutrient and Energy Digestibility and Digesta Transit Time in Weanling Piglets. Asian-Australas. J. Anim. Sci. 2001, 14, 1598–1604. [Google Scholar] [CrossRef]
- Shivakumar, M.; Verma, K.; Talukdar, A.; Srivastava, N.; Lal, S.K.; Sapra, R.L.; Singh, K.P. Genetic Variability and Effect of Heat Treatment on Trypsin Inhibitor Content in Soybean [Glycine Max (L.) Merrill.]. Legum. Res.—An Int. J. 2015, 38, 60. [Google Scholar] [CrossRef]
- Anderson-Hafermann, J.C.; Zhang, Y.; Parsons, C.M.; Hymowitz, T. Effect of Heating on Nutritional Quality of Conventional and Kunitz Trypsin Inhibitor-Free Soybeans. Poult. Sci. 1992, 71, 1700–1709. [Google Scholar] [CrossRef]
- Friedman, M.; Brandon, D.L. Nutritional and Health Benefits of Soy Proteins. J. Agric. Food Chem. 2001, 49, 1069–1086. [Google Scholar] [CrossRef]
- Machado, F.P.P.; Queiróz, J.H.; Oliveira, M.G.A.; Piovesan, N.D.; Peluzio, M.C.G.; Costa, N.M.B.; Moreira, M.A. Effects of Heating on Protein Quality of Soybean Flour Devoid of Kunitz Inhibitor and Lectin. Food Chem. 2008, 107, 649–655. [Google Scholar] [CrossRef]
- Wolfswinkel, T.L. The Effects of Feeding Fermented Soybean Meal in Calf Starter on Growth and Performance of Dairy Calves; Iowa State University, Digital Repository: Ames, IA, USA, 2009. [Google Scholar]
- Penha, C.B.; Falcão, H.G.; Ida, E.I.; Speranza, P.; Kurozawa, L.E. Enzymatic Pretreatment in the Extraction Process of Soybean to Improve Protein and Isoflavone Recovery and to Favor Aglycone Formation. Food Res. Int. 2020, 137, 109624. [Google Scholar] [CrossRef] [PubMed]
- Cervantes-Pahm, S.K.; Stein, H.H. Effect of Dietary Soybean Oil and Soybean Protein Concentration on the Concentration of Digestible Amino Acids in Soybean Products Fed to Growing Pigs. J. Anim. Sci. 2008, 86, 1841–1849. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Li, D.; Li, Z.-L.; Kang, L.-N.; Jiang, Y.-Y.; Liu, X.-Y.; Chi, Y.-P.; Li, Y.-Q.; Wang, J.-H. Effects of Bacillus Fermentation on the Protein Microstructure and Anti-Nutritional Factors of Soybean Meal. Lett. Appl. Microbiol. 2017, 65, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Cervantes-Pahm, S.K.; Stein, H.H. Ileal Digestibility of Amino Acids in Conventional, Fermented, and Enzyme-Treated Soybean Meal and in Soy Protein Isolate, Fish Meal, and Casein Fed to Weanling Pigs1. J. Anim. Sci. 2010, 88, 2674–2683. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Shang, Q.; Hu, J.; Liu, H.; Brøkner, C.; Piao, X. Effects of Replacing Soybean Meal, Soy Protein Concentrate, Fermented Soybean Meal or Fish Meal with Enzyme-Treated Soybean Meal on Growth Performance, Nutrient Digestibility, Antioxidant Capacity, Immunity and Intestinal Morphology in Weaned Pigs. Livest. Sci. 2019, 225, 39–46. [Google Scholar] [CrossRef]
- Campbell, M.F.; Kraut, C.W.; Yackel, W.C.; Yang, H.S.; Altschul, A.M.; Wilcke, H.L. Soy Protein Concentrate. In New Protein Foods Seed Storage Proteins; Elsevier Science: Amsterdam, Netherlands, 1985; Volume 5. [Google Scholar]
- Wang, H.; Johnson, L.A.; Wang, T. Preparation of Soy Protein Concentrate and Isolate from Extruded-Expelled Soybean Meals. J. Am. Oil Chem. Soc. 2004, 81, 713–717. [Google Scholar] [CrossRef]
- Mustakas, C.; Kirk, L.D.; Griffin, E.L. Flash Desolventizing Defatted Soybean Meals Washed with Aqueous Alcohols to Yield a High-Protein Product. J. Am. Oil Chem. Soc. 1962, 39, 222–226. [Google Scholar] [CrossRef]
- Meyer, E.W. Oilseed Protein Concentrates and Isolates. J. Am. Oil Chem. Soc. 1971, 48, 484–488. [Google Scholar] [CrossRef]
- Jiang, H.Q.; Gong, L.M.; Ma, Y.X.; He, Y.H.; Li, D.F.; Zhai, H.X. Effect of Stachyose Supplementation on Growth Performance, Nutrient Digestibility and Caecal Fermentation Characteristics in Broilers. Br. Poult. Sci. 2006, 47, 516–522. [Google Scholar] [CrossRef]
- Zhou, S.F.; Sun, Z.W.; Ma, L.Z.; Yu, J.Y.; Ma, C.S.; Ru, Y.J. Effect of Feeding Enzymolytic Soybean Meal on Performance, Digestion and Immunity of Weaned Pigs. Asian-Australas. J. Anim. Sci. 2010, 24, 103–109. [Google Scholar] [CrossRef]
- Franck, P.; Moneret Vautrin, D.A.; Dousset, B.; Kanny, G.; Nabet, P.; Guénard-Bilbaut, L.; Parisot, L. The Allergenicity of Soybean-Based Products Is Modified by Food Technologies. Int. Arch. Allergy Immunol. 2002, 128, 212–219. [Google Scholar] [CrossRef]
- Lee, H.W.; Keum, E.H.; Lee, S.J.; Sung, D.E.; Chung, D.H.; Lee, S.I.; Oh, S. Allergenicity of Proteolytic Hydrolysates of the Soybean 11S Globulin. J. Food Sci. 2007, 72, C168–C172. [Google Scholar] [CrossRef]
- Tsumura, K.; Kugimiya, W.; Bando, N.; Hiemori, M.; Ogawa, T. Preparation of Hypoallergenic Soybean Protein with Processing Functionality by Selective Enzymatic Hydrolysis. Food Sci. Technol. Res. 1999, 5, 171–175. [Google Scholar] [CrossRef]
- Wang, Z.; Li, L.; Yuan, D.; Zhao, X.; Cui, S.; Hu, J.; Wang, J. Reduction of the Allergenic Protein in Soybean Meal by Enzymatic Hydrolysis. Food Agric. Immunol. 2014, 25, 301–310. [Google Scholar] [CrossRef]
- Zhao, Y.; Qin, G.X.; Sun, Z.W.; Zhang, B.; Wang, T. Stability and Immunoreactivity of Glycinin and β-Conglycinin to Hydrolysis In Vitro. Food Agric. Immunol. 2010, 21, 253–263. [Google Scholar] [CrossRef]
- Steggerda, F.R. Gastrointestinal Gas Following Food Consumption. Ann. N. Y. Acad. Sci. 1968, 150, 57–66. [Google Scholar] [CrossRef]
- Dey, P.M.; Pridham, J.B. Biochemistry of A-galactosidases. Adv. Enzymol. Relat. Areas Mol. Biol. 1972, 36, 91–130. [Google Scholar] [PubMed]
- Guimarães, V.M.; de Rezende, S.T.; Moreira, M.A.; de Barros, E.G.; Felix, C.R. Characterization of α-Galactosidases from Germinating Soybean Seed and Their Use for Hydrolysis of Oligosaccharides. Phytochemistry 2001, 58, 67–73. [Google Scholar] [CrossRef]
- de Fátima Viana, S.; Guimarães, V.M.; de Almeida e Oliveira, M.G.; Costa, N.M.B.; de Barros, E.G.; Moreira, M.A.; de Rezende, S.T. Hydrolysis of Oligosaccharides in Soybean Flour by Soybean α-Galactosidase. Food Chem. 2005, 93, 665–670. [Google Scholar] [CrossRef]
- Feng, J.; Liu, X.; Xu, Z.R.; Lu, Y.P.; Liu, Y.Y. The Effect of Aspergillus Oryzae Fermented Soybean Meal on Growth Performance, Digestibility of Dietary Components and Activities of Intestinal Enzymes in Weaned Piglets. Anim. Feed Sci. Technol. 2007, 134, 295–303. [Google Scholar] [CrossRef]
- Mathivanan, R.; Selvaraj, P.; Nanjappan, K. Feeding of Fermented Soybean Meal on Broiler Performance. Int. J. Poult. Sci. 2006, 5, 868–872. [Google Scholar]
- Roh, S.-G.; Carroll, J.A.; Kim, S.W. Effects of Fermented Soybean Meal on Innate Immunity-Related Gene Expressions in Nursery Pigs Acutely Challenged with Lipopolysaccharides. Anim. Sci. J. 2015, 86, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, A.; Hirabayasi, M.; Matsui, T.; Yano, H.; Yano, F.; Kikishima, T.; Takebe, M.; Hayakawa, K. A Note on the Removal of Phytate in Soybean Meal Using Aspergillus Usami. Asian-Australas. J. Anim. Sci. 1995, 8, 135–138. [Google Scholar] [CrossRef]
- Frias, J.; Song, Y.S.; Martínez-Villaluenga, C.; De Mejia, E.G.; Vidal-Valverde, C. Immunoreactivity and Amino Acid Content of Fermented Soybean Products. J. Agric. Food Chem. 2008, 56, 99–105. [Google Scholar] [CrossRef]
- Han, B.Z.; Rombouts, F.M.; Nout, M.J.R. A Chinese Fermented Soybean Food. Int. J. Food Microbiol. 2001, 65, 1–10. [Google Scholar] [CrossRef]
- Amadou, I.; Amza, T.; Foh, M.; Le, M. Influence of Lactobacillus Plantarum Lp6 Fermentation on the Functional Properties of Soybean Protein Meal. Emir. J. Food Agric. 2010, 22, 456. [Google Scholar] [CrossRef]
- Opazo, R.; Ortúzar, F.; Navarrete, P.; Espejo, R.; Romero, J. Reduction of Soybean Meal Non-Starch Polysaccharides and α-Galactosides by Solid-State Fermentation Using Cellulolytic Bacteria Obtained from Different Environments. PLoS ONE 2012, 7, e44783. [Google Scholar] [CrossRef] [PubMed]
- Teng, D.; Gao, M.; Yang, Y.; Liu, B.; Tian, Z.; Wang, J. Bio-Modification of Soybean Meal with Bacillus subtilis or Aspergillus oryzae. Biocatal. Agric. Biotechnol. 2012, 1, 32–38. [Google Scholar] [CrossRef]
- Erdman, J.W.; Badger, T.M.; Lampe, J.W.; Setchell, K.D.R.; Messina, M. Not All Soy Products Are Created Equal: Caution Needed in Interpretation of Research Results. J. Nutr. 2004, 134, 1229S–1233S. [Google Scholar] [CrossRef]
- Barreto, N.M.B.; Sandôra, D.; Braz, B.F.; Santelli, R.E.; de Oliveira Silva, F.; Monteiro, M.; Perrone, D. Biscuits Prepared with Enzymatically-Processed Soybean Meal Are Rich in Isoflavone Aglycones, Sensorially Well-Accepted and Stable during Storage for Six Months. Molecules 2022, 27, 7975. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, G.; Hennig, U.; Kalbe, C.; Rehfeldt, C.; Ren, M.Q.; Moors, S.; Degen, G.H. Growth Performance, Carcass Characteristics and Bioavailability of Isoflavones in Pigs Fed Soy Bean Based Diets. Arch. Anim. Nutr. 2004, 58, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Pyo, Y.-H.; Lee, T.-C.; Lee, Y.-C. Effect of Lactic Acid Fermentation on Enrichment of Antioxidant Properties and Bioactive Isoflavones in Soybean. J. Food Sci. 2006, 70, S215–S220. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.T.; Wang, H.L.; Li, D.F.; Piao, X.S.; Lu, W.Q. Optimization of Processing Conditions for Solid-State Fermented Soybean Meal and Its Effects on Growth Performance and Nutrient Digestibility of Weanling Pigs. Livest. Sci. 2014, 170, 91–99. [Google Scholar] [CrossRef]
- Yuan, L.; Chang, J.; Yin, Q.; Lu, M.; Di, Y.; Wang, P.; Wang, Z.; Wang, E.; Lu, F. Fermented Soybean Meal Improves the Growth Performance, Nutrient Digestibility, and Microbial Flora in Piglets. Anim. Nutr. 2017, 3, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Lenehan, N.A.; DeRouchey, J.M.; Goodband, R.D.; Tokach, M.D.; Dritz, S.S.; Nelssen, J.L.; Groesbeck, C.N.; Lawrence, K.R. Evaluation of Soy Protein Concentrates in Nursery Pig Diets. J. Anim. Sci. 2007, 85, 3013–3021. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.X.; Kim, Y.G.; Lohakare, J.D.; Yun, J.H.; Lee, J.K.; Kwon, M.S.; Park, J.I.; Choi, J.Y.; Chae, B.J. Comparative Efficacy of Different Soy Protein Sources on Growth Performance, Nutrient Digestibility and Intestinal Morphology in Weaned Pigs. Asian-Australas. J. Anim. Sci. 2007, 20, 775–783. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Yi, J.Q.; Piao, X.S.; Li, P.F.; Zeng, Z.K.; Wang, D.; Liu, L.; Wang, G.Q.; Han, X. The Metabolizable Energy Value, Standardized Ileal Digestibility of Amino Acids in Soybean Meal, Soy Protein Concentrate and Fermented Soybean Meal, and the Application of These Products in Early-Weaned Piglets. Asian-Australas. J. Anim. Sci. 2013, 26, 691–699. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, P.; Saldaña, B.; Cámara, L.; Mateos, G.G. Influence of Soybean Protein Source on Growth Performance and Nutrient Digestibility of Piglets from 21 to 57 Days of Age. Anim. Feed Sci. Technol. 2016, 222, 75–86. [Google Scholar] [CrossRef]
- Ruckman, L.A.; Petry, A.L.; Gould, S.A.; Kerr, B.J.; Patience, J.F. The Effects of Enzymatically Treated Soybean Meal on Growth Performance and Intestinal Structure, Barrier Integrity, Inflammation, Oxidative Status, and Volatile Fatty Acid Production of Nursery Pigs. Transl. Anim. Sci. 2020, 4, txaa170. [Google Scholar] [CrossRef]
- Long, S.; Ma, J.; Piao, X.; Li, Y.; Rasmussen, S.H.; Liu, L. Enzyme-Treated Soybean Meal Enhanced Performance via Improving Immune Response, Intestinal Morphology and Barrier Function of Nursery Pigs in Antibiotic Free Diets. Animals 2021, 11, 2600. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.H.; Min, B.J.; Chen, Y.J.; Yoo, J.S.; Wang, Q.; Kim, J.D.; Kim, I.H. Evaluation of FSP (Fermented Soy Protein) to Replace Soybean Meal in Weaned Pigs: Growth Performance, Blood Urea Nitrogen and Total Protein Concentrations in Serum and Nutrient Digestibility. Asian-Australas. J. Anim. Sci. 2007, 20, 1874–1879. [Google Scholar] [CrossRef]
- Herkelman, K.L.; Cromwell, G.L.; Stahly, T.S.; Pfeiffer, T.W.; Knabe, D.A. Apparent Digestibility of Amino Acids in Raw and Heated Conventional and Low-Trypsin-Inhibitor Soybeans for Pigs. J. Anim. Sci. 1992, 70, 818–826. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.H.; Hancock, J.D.; Jones, D.B.; Reddy, P.G. Extrusion Processing of Low-Inhibitor Soybeans Improves Growth Performance of Early-Weaned Pigs. Asian-Australas. J. Anim. Sci. 1999, 12, 1251–1257. [Google Scholar] [CrossRef]
- Jones, A.M.; Woodworth, J.C.; DeRouchey, J.M.; Fitzner, G.E.; Tokach, M.D.; Goodband, R.D.; Dritz, S.S. 331 Effects of Feeding Increasing Levels of HP 300 on Nursery Pig Performance. J. Anim. Sci. 2018, 96, 178. [Google Scholar] [CrossRef]
- Gilbert, E.R.; Wong, E.A.; Webb, K.E. BOARD-INVITED REVIEW: Peptide Absorption and Utilization: Implications for Animal Nutrition and Health. J. Anim. Sci. 2008, 86, 2135–2155. [Google Scholar] [CrossRef] [PubMed]
- Anguita, M.; Gasa, J.; Nofrarias, M.; Martín-Orúe, S.M.; Pérez, J.F. Effect of Coarse Ground Corn, Sugar Beet Pulp and Wheat Bran on the Voluntary Intake and Physicochemical Characteristics of Digesta of Growing Pigs. Livest. Sci. 2007, 107, 182–191. [Google Scholar] [CrossRef]
- Ndou, S.P.; Bakare, A.G.; Chimonyo, M. Prediction of Voluntary Feed Intake from Physicochemical Properties of Bulky Feeds in Finishing Pigs. Livest. Sci. 2013, 155, 277–284. [Google Scholar] [CrossRef]
- Ratanpaul, V.; Williams, B.A.; Black, J.L.; Gidley, M.J. Review: Effects of Fibre, Grain Starch Digestion Rate and the Ileal Brake on Voluntary Feed Intake in Pigs. Animal 2019, 13, 2745–2754. [Google Scholar] [CrossRef]
- Smiricky, M.R.; Grieshop, C.M.; Albin, D.M.; Wubben, J.E.; Gabert, V.M.; Fahey, G.C. The Influence of Soy Oligosaccharides on Apparent and True Ileal Amino Acid Digestibilities and Fecal Consistency in Growing Pigs12. J. Anim. Sci. 2002, 80, 2433–2441. [Google Scholar] [CrossRef]
- Kil, D.Y.; Piao, L.G.; Long, H.F.; Lim, J.S.; Yun, M.S.; Kong, C.S.; Ju, W.S.; Lee, H.B.; Kim, Y.Y. Effects of Organic or Inorganic Acid Supplementation on Growth Performance, Nutrient Digestibility and White Blood Cell Counts in Weanling Pigs. Asian-Australas. J. Anim. Sci. 2005, 19, 252–261. [Google Scholar] [CrossRef]
- Kim, Y.G.; Lohakare, J.D.; Yun, J.H.; Heo, S.; Chae, B.J. Effect of Feeding Levels of Microbial Fermented Soy Protein on the Growth Performance, Nutrient Digestibility and Intestinal Morphology in Weaned Piglets. Asian-Australas. J. Anim. Sci. 2007, 20, 399–404. [Google Scholar] [CrossRef]
- Kong, X.; Guo, M.; Hua, Y.; Cao, D.; Zhang, C. Enzymatic Preparation of Immunomodulating Hydrolysates from Soy Proteins. Bioresour. Technol. 2008, 99, 8873–8879. [Google Scholar] [CrossRef] [PubMed]
- Meinlschmidt, P.; Schweiggert-Weisz, U.; Eisner, P. Soy Protein Hydrolysates Fermentation: Effect of Debittering and Degradation of Major Soy Allergens. LWT—Food Sci. Technol. 2016, 71, 202–212. [Google Scholar] [CrossRef]
- Chatterjee, C.; Gleddie, S.; Xiao, C.-W. Soybean Bioactive Peptides and Their Functional Properties. Nutrients 2018, 10, 1211. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, T.; Fukui, K.; Nakamori, T.; Hashimoto, Y.; Yamamoto, T.; Takamatsu, K.; Sugano, M. Effect of Soy and Milk Whey Protein Isolates and Their Hydrolysates on Weight Reduction in Genetically Obese Mice. Biosci. Biotechnol. Biochem. 2000, 64, 2594–2600. [Google Scholar] [CrossRef] [PubMed]
- Greaves, K.A.; Wilson, M.D.; Rudel, L.L.; Williams, J.K.; Wagner, J.D. Consumption of Soy Protein Reduces Cholesterol Absorption Compared to Casein Protein Alone or Supplemented with an Isoflavone Extract or Conjugated Equine Estrogen in Ovariectomized Cynomolgus Monkeys. J. Nutr. 2000, 130, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Allison, D.B.; Gadbury, G.; Schwartz, L.G.; Murugesan, R.; Kraker, J.L.; Heshka, S.; Fontaine, K.R.; Heymsfield, S.B. A Novel Soy-Based Meal Replacement Formula for Weight Loss among Obese Individuals: A Randomized Controlled Clinical Trial. Eur. J. Clin. Nutr. 2003, 57, 514–522. [Google Scholar] [CrossRef]
- Fontaine, K.R.; Yang, D.; Gadbury, G.L.; Heshka, S.; Schwartz, L.G.; Murugesan, R.; Kraker, J.L.; Heo, M.; Heymsfield, S.B.; Allison, D.B. Results of Soy-Based Meal Replacement Formula on Weight, Anthropometry, Serum Lipids & Blood Pressure during a 40-Week Clinical Weight Loss Trial. Nutr. J. 2003, 2, 14. [Google Scholar] [CrossRef]
- Takenaka, Y.; Utsumi, S.; Yoshikawa, M. Introduction of Enterostatin (VPDPR) and a Related Sequence into Soybean Proglycinin A 1a B 1b Subunit by Site-Directed Mutagenesis. Biosci. Biotechnol. Biochem. 2000, 64, 2731–2733. [Google Scholar] [CrossRef]
- Nishi, T.; Hara, H.; Tomita, F. Soybean β-Conglycinin Peptone Suppresses Food Intake and Gastric Emptying by Increasing Plasma Cholecystokinin Levels in Rats. J. Nutr. 2003, 133, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ding, L.; Zhu, W.; Hang, S. Soybean Protein Hydrolysate Stimulated Cholecystokinin Secretion and Inhibited Feed Intake through Calcium-Sensing Receptors and Intracellular Calcium Signalling in Pigs. Food Funct. 2021, 12, 9286–9299. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.Z.; Pluske, J.R. The Low Feed Intake in Newly-Weaned Pigs: Problems and Possible Solutions. Asian-Australas. J. Anim. Sci. 2007, 20, 440–452. [Google Scholar] [CrossRef]
- Yang, J.H.; Mau, J.L.; Ko, P.T.; Huang, L.C. Antioxidant Properties of Fermented Soybean Broth. Food Chem. 2000, 71, 249–254. [Google Scholar] [CrossRef]
- Chen, H.M.; Muramoto, K.; Yamauchi, F. Structural Analysis of Antioxidative Peptides from Soybean. Beta-Conglycinin. J. Agric. Food Chem. 1995, 43, 574–578. [Google Scholar] [CrossRef]
- Amadou, I.; Gbadamosi, O.S.; Shi, Y.; Kamara, M.T.; Jin, S. Identification of Antioxidative Peptides from Lactobacillus Plantarum Lp6 Fermented Soybean Protein Meal. Res. J. Microbiol. 2010, 5, 372–380. [Google Scholar] [CrossRef]
- Singh, B.P.; Vij, S.; Hati, S. Functional Significance of Bioactive Peptides Derived from Soybean. Peptides 2014, 54, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, N.; Maruyama, Y.; Tsuruki, T.; Okuda, E.; Yoshikawa, M.; Utsumi, S. Creation of Soybean β-Conglycinin β with Strong Phagocytosis-Stimulating Activity. Biochim. Biophys. Acta—Proteins Proteom. 2003, 1648, 99–104. [Google Scholar] [CrossRef] [PubMed]
- de Mejia, E.G.; Dia, V.P. Lunasin and Lunasin-like Peptides Inhibit Inflammation through Suppression of NF-ΚB Pathway in the Macrophage. Peptides 2009, 30, 2388–2398. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, S.; Zong, X.; Wang, C.; Shi, C.; Wang, F.; Wang, Y.; Lu, Z. Peptides Derived from Fermented Soybean Meal Suppresses Intestinal Inflammation and Enhances Epithelial Barrier Function in Piglets. Food Agric. Immunol. 2020, 31, 120–135. [Google Scholar] [CrossRef]
- Yan, H.; Jin, J.Q.; Yang, P.; Yu, B.; He, J.; Mao, X.B.; Yu, J.; Chen, D.W. Fermented Soybean Meal Increases Nutrient Digestibility via the Improvement of Intestinal Function, Anti-Oxidative Capacity and Immune Function of Weaned Pigs. Animal 2022, 16, 100557. [Google Scholar] [CrossRef] [PubMed]
Item | SBM | SPC 1 | ESBM 2 | FSBM 3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
SPC1 | SPC2 | SPC3 | ESBM1 | ESBM2 | ESBM3 | FSBM1 | FSBM2 | FSBM3 | ||
Dry matter, % | 90.9 | 93.0 | 90.6 | - | 93.5 | 91.5 | 93.4 | 91.3 | 91.3 | 90.8 |
Crude protein, % | 41.2 | 65.0 | 64.2 | - | 65 | 54.4 | 53.0 | 53.7 | 48.7 | 46.7 |
Ether extract, % | 1.53 | 1.0 | 0.1 | - | 2.5 | 1.1 | 2.2 | 0.8 | 1.8 | 1.2 |
Ash, % | 6.1 | 6.0 | - | - | 6.8 | - | 7.6 | - | 7.2 | 6.9 |
Trypsin inhibitor, TIU/mg | 1.0–8.0 | 2.0 | - | - | 1.0 | 2.1 | 0.8 | <1.0 | 0.7 | 1.9 |
Glycinin, mg/g | 149 | <0.1 | - | <0.1 | <0.1 | 5.3 | 0.3 | 26 | 12 | 20.8 |
β-Conglycinin, mg/g | 104 | <0.1 | - | 0.1 | <0.1 | <0.1 | 0.2 | 74 | 5.8 | 31.0 |
Stachyose, % | 4.51 | 2–3 | 0.86 | - | - | 0.71 | 0.13 | ND 4 | 0.04 | - |
Raffinose, % | 0.99 | 0.2–0.3 | 0.15 | - | - | 0.16 | 0.06 | ND | 0.01 | - |
Reference | [32,95,96] | [32] | [95] | [29] | [32] | [97] | [98] | [97] | [98] | [96] |
Item | SBM | SPC 1 | ESBM 2 | FSBM 3 |
---|---|---|---|---|
Essential amino acids, % | ||||
Arg | 3.45 | 4.75 | 3.95 | 3.91 |
His | 1.28 | 1.70 | 1.41 | 1.47 |
Ile | 2.14 | 2.99 | 2.48 | 2.61 |
Leu | 3.62 | 5.16 | 4.09 | 4.52 |
Lys | 2.96 | 4.09 | 3.20 | 3.27 |
Met | 0.66 | 0.87 | 0.71 | 0.82 |
Phe | 2.40 | 3.38 | 2.78 | 2.89 |
Thr | 1.86 | 2.52 | 2.13 | 2.24 |
Trp | 0.66 | 0.81 | 0.72 | 0.72 |
Val | 2.23 | 3.14 | 2.57 | 2.88 |
Isoflavones, mg/kg | 2096 | 115 | 1080 | 1277 |
Reference | [12,23] | [12,23] | [12,124] | [12,124] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Z.; Kim, S.W. Opportunities and Challenges of Soy Proteins with Different Processing Applications. Antioxidants 2024, 13, 569. https://doi.org/10.3390/antiox13050569
Deng Z, Kim SW. Opportunities and Challenges of Soy Proteins with Different Processing Applications. Antioxidants. 2024; 13(5):569. https://doi.org/10.3390/antiox13050569
Chicago/Turabian StyleDeng, Zixiao, and Sung Woo Kim. 2024. "Opportunities and Challenges of Soy Proteins with Different Processing Applications" Antioxidants 13, no. 5: 569. https://doi.org/10.3390/antiox13050569
APA StyleDeng, Z., & Kim, S. W. (2024). Opportunities and Challenges of Soy Proteins with Different Processing Applications. Antioxidants, 13(5), 569. https://doi.org/10.3390/antiox13050569