Antioxidants and Mechanistic Insights for Managing Dry Age-Related Macular Degeneration
Abstract
:1. Introduction
2. Age-Related Macular Degeneration (AMD)
2.1. AMD Affects Central Photopic Vision Due to Progressive Macular Degeneration
2.2. Classification of AMD
2.3. Drusen Are the Hallmark for AMD
2.4. Etiology of AMD
2.5. Disruption of Retinal Integrity in AMD
2.6. Retinal Pigment Epithelium: The Primary Site of AMD Pathology
3. Mechanistic Insights of Pathogenesis in AMD
3.1. Oxidative Stress Induced by Free Radicals Is the Principal Factor for Pathogenesis in AMD
3.2. Implications of Compromised Cellular Antioxidant System on Pathogenesis of AMD
3.3. Oxidative Stress and Mitochondrial Dysfunction Are Implicated in the Progression of Aging and Neurodegeneration
3.4. Oxidative Stress Triggers Endoplasmic Reticulum Stress Leading to Apoptosis
3.5. Bisretinoids Are the Primary Constituents of RPE Lipofuscin
3.5.1. Biogenesis of Bisretinoids Initiates within POS
3.5.2. Bisretinoid Accumulation in RPE Lysosome Is Implicated in AMD
3.6. Bisretinoid-Derived Protein Adduct and Dysregulated Autophagy Induce Retinal Degeneration in AMD
3.6.1. Lysosomes Are the Site of Enzymatic Degradation of RPE Phagocytosis Cargo
3.6.2. Dysregulated Autophagy and Perturbed Proteasome Machinery Is Involved in AMD Pathogenesis
3.6.3. Protein Adducts with Bisretinoid Degradation Products Precipitate AMD Pathogenesis
3.7. Crosstalk between ROS Generation and Expression of Pro-Inflammatory Markers
4. Antioxidants in Management of Dry AMD: Fortifying the Fortress for Protection from Macular Degeneration
4.1. Classification of Antioxidants
4.2. Mechanism of Action of Antioxidants against Free Radicals
4.3. Cellular Defense Mechanism against Oxidative Stress: NFE2L2 and REV-ERBα Signaling
4.4. Harmful or Unintended Consequences of Antioxidant Supplementation
5. Exploring the Therapeutic Potential of Antioxidants: Insights from Preclinical and Clinical Studies
5.1. Clinical Studies of Dietary Supplements, Nutrients, and Antioxidants
5.2. Antioxidant Compounds from Natural Sources
5.3. Plant Extracts
5.4. Endogenous Substances
5.5. Formulations
5.6. Synthetic Compounds
6. Gene Therapy for Regulation of Antioxidant Gene Expression
7. Conclusions and Future Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rahal, A.; Kumar, A.; Singh, V.; Yadav, B.; Tiwari, R.; Chakraborty, S.; Dhama, K. Oxidative stress, prooxidants, and antioxidants: The interplay. Biomed Res. Int. 2014, 2014, 761264. [Google Scholar] [CrossRef]
- Chen, X.; Guo, C.; Kong, J. Oxidative stress in neurodegenerative diseases. Neural Regen. Res. 2012, 7, 376. [Google Scholar] [PubMed]
- Tezel, G. Multifactorial pathogenic processes of retinal ganglion cell degeneration in glaucoma towards multi-target strategies for broader treatment effects. Cells 2021, 10, 1372. [Google Scholar] [CrossRef] [PubMed]
- Nita, M.; Grzybowski, A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid. Med. Cell. Longev. 2016, 2016, 3164734. [Google Scholar] [CrossRef]
- Khorrami-Nejad, M.; Sarabandi, A.; Akbari, M.-R.; Askarizadeh, F. The impact of visual impairment on quality of life. Med. Hypothesis Discov. Innov. Ophthalmol. 2016, 5, 96. [Google Scholar] [PubMed]
- Nowak, J.Z. Age-related macular degeneration (AMD): Pathogenesis and therapy. Pharmacol. Rep. 2006, 58, 353. [Google Scholar] [PubMed]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef]
- Jadeja, R.N.; Martin, P.M. Oxidative stress and inflammation in retinal degeneration. Antioxidants 2021, 10, 790. [Google Scholar] [CrossRef]
- Andre, C.M.; Larondelle, Y.; Evers, D. Dietary antioxidants and oxidative stress from a human and plant perspective: A review. Curr. Nutr. Food Sci. 2010, 6, 2–12. [Google Scholar] [CrossRef]
- Tan, B.L.; Norhaizan, M.E.; Liew, W.-P.-P.; Sulaiman Rahman, H. Antioxidant and oxidative stress: A mutual interplay in age-related diseases. Front. Pharmacol. 2018, 9, 1162. [Google Scholar] [CrossRef]
- Kunwar, A.; Priyadarsini, K. Free radicals, oxidative stress and importance of antioxidants in human health. J. Med. Allied Sci. 2011, 1, 53–60. [Google Scholar]
- Van Leeuwen, R.; Boekhoorn, S.; Vingerling, J.R.; Witteman, J.C.; Klaver, C.C.; Hofman, A.; de Jong, P.T. Dietary intake of antioxidants and risk of age-related macular degeneration. JAMA 2005, 294, 3101–3107. [Google Scholar] [CrossRef]
- Dziedziak, J.; Kasarełło, K.; Cudnoch-Jędrzejewska, A. Dietary antioxidants in age-related macular degeneration and glaucoma. Antioxidants 2021, 10, 1743. [Google Scholar] [CrossRef]
- Arslan, S.; Kadayifçilar, S.; Samur, G. The potential role of dietary antioxidant capacity in preventing age-related macular degeneration. J. Am. Coll. Nutr. 2019, 38, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Chin, E.K.; Almeida, D. Antioxidants for the treatment of retinal disease: Summary of recent evidence. Clin. Ophthalmol. 2021, 15, 1621–1628. [Google Scholar] [CrossRef]
- Commissioning Guidance: Age-related Macular Degeneration Services. The Royal College of Ophthalmologists. 2021. Available online: https://www.rcophth.ac.uk/wp-content/uploads/2021/08/AD-Commissioning-Guidance-Full-June-2021.pdf (accessed on 22 April 2024).
- Jonas, J.B.; Weber, P.; Nagaoka, N.; Ohno-Matsui, K. Temporal vascular arcade width and angle in high axial myopia. Retina 2018, 38, 1839–1847. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarieh, M.; Sacu, S.; Wedrich, A. The role of the carotenoids, lutein and zeaxanthin, in protecting against age-related macular degeneration: A review based on controversial evidence. Nutr. J. 2003, 2, 20. [Google Scholar] [CrossRef] [PubMed]
- Bodis-Wollner, I. Foveal vision is impaired in Parkinson’s disease. Park. Relat. Disord. 2013, 19, 1–14. [Google Scholar] [CrossRef]
- Khandhadia, S.; Lotery, A. Oxidation and age-related macular degeneration: Insights from molecular biology. Exp. Rev. Mol. Med. 2010, 12, e34. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.T.; Nguyen, D.V.; Ngoc, N.P.; Hoang, T.H.; Huong, T.T.; Thang, T.C. Impacts of retina-related zones on quality perception of omnidirectional image. IEEE Access 2019, 7, 166997–167009. [Google Scholar] [CrossRef]
- Hogg, R.; Chakravarthy, U. Visual function and dysfunction in early and late age-related maculopathy. Prog. Retin. Eye Res. 2006, 25, 249–276. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.; Cano, M.; Ebrahimi, K.; Wang, L.; Handa, J.T. The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Prog. Retin. Eye Res. 2017, 60, 201–218. [Google Scholar] [CrossRef] [PubMed]
- Stahl, A. The diagnosis and treatment of age-related macular degeneration. Dtsch. Arztebl. Int. 2020, 117, 513. [Google Scholar] [CrossRef]
- Bhutto, I.; Lutty, G. Understanding age-related macular degeneration (AMD): Relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex. Mol. Asp. Med. 2012, 33, 295–317. [Google Scholar] [CrossRef] [PubMed]
- Metelitsina, T.I.; Grunwald, J.E.; DuPont, J.C.; Ying, G.-S.; Brucker, A.J.; Dunaief, J.L. Foveolar choroidal circulation and choroidal neovascularization in age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2008, 49, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, Z. Recent developments in the treatment of wet age-related macular degeneration. Curr. Med. Sci. 2020, 40, 851–857. [Google Scholar] [CrossRef] [PubMed]
- Buschini, E.; Fea, A.M.; Lavia, C.A.; Nassisi, M.; Pignata, G.; Zola, M.; Grignolo, F.M. Recent developments in the management of dry age-related macular degeneration. Clin. Ophthalmol. 2015, 9, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Heier, J.S.; Lad, E.M.; Holz, F.G.; Rosenfeld, P.J.; Guymer, R.H.; Boyer, D.; Grossi, F.; Baumal, C.R.; Korobelnik, J.-F.; Slakter, J.S. Pegcetacoplan for the treatment of geographic atrophy secondary to age-related macular degeneration (OAKS and DERBY): Two multicentre, randomised, double-masked, sham-controlled, phase 3 trials. Lancet 2023, 402, 1434–1448. [Google Scholar] [CrossRef]
- Liao, D.S.; Grossi, F.V.; El Mehdi, D.; Gerber, M.R.; Brown, D.M.; Heier, J.S.; Wykoff, C.C.; Singerman, L.J.; Abraham, P.; Grassmann, F.; et al. Complement C3 inhibitor pegcetacoplan for geographic atrophy secondary to age-related macular degeneration: A randomized phase 2 trial. Ophthalmology 2020, 127, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Crabb, J.W. The proteomics of drusen. Cold Spring Harb. Perspect. Biol. 2014, 4, a017194. [Google Scholar] [CrossRef]
- Curcio, C.A.; Johnson, M. Structure, function, and pathology of Bruch’s membrane. Retina 2013, 1, 466–481. [Google Scholar]
- Zhang, X.; Sivaprasad, S. Drusen and pachydrusen: The definition, pathogenesis, and clinical significance. Eye 2021, 35, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.V.; Leitner, W.P.; Staples, M.K.; Anderson, D.H. Complement activation and inflammatory processes in Drusen formation and age related macular degeneration. Exp. Eye Res. 2001, 73, 887–896. [Google Scholar] [CrossRef]
- Anderson, D.H.; Mullins, R.F.; Hageman, G.S.; Johnson, L.V. A role for local inflammation in the formation of drusen in the aging eye. Am. J. Opthalmol. 2002, 134, 411–431. [Google Scholar] [CrossRef] [PubMed]
- Hageman, G.S.; Mullins, R.F. Molecular composition of drusen as related to substructural phenotype. Mol. Vis. 1999, 5, 10562652. [Google Scholar]
- Zhou, J.; Jang, Y.P.; Kim, S.R.; Sparrow, J.R. Complement activation by photooxidation products of A2E, a lipofuscin constituent of the retinal pigment epithelium. Proc. Natl. Acad. Sci. USA 2006, 103, 16182–16187. [Google Scholar] [CrossRef]
- Knickelbein, J.E.; Chan, C.-C.; Sen, H.N.; Ferris, F.L.; Nussenblatt, R.B. Inflammatory mechanisms of age-related macular degeneration. Int. Ophthalmol. Clin. 2015, 55, 63. [Google Scholar] [CrossRef]
- Abdelsalam, A.; Del Priore, L.; Zarbin, M.A. Drusen in age-related macular degeneration: Pathogenesis, natural course, and laser photocoagulation-induced regression. Surv. Ophthalmol. 1999, 44, 1–29. [Google Scholar] [CrossRef]
- Rudolf, M.; Clark, M.E.; Chimento, M.F.; Li, C.M.; Medeiros, N.E.; Curcio, C.A. Prevalence and morphology of druse types in the macula and periphery of eyes with age-related maculopathy. Investig. Ophthalmol. Vis. Sci. 2008, 49, 1200–1209. [Google Scholar] [CrossRef]
- Roquet, W.; Roudot-Thoraval, F.; Coscas, G.; Soubrane, G. Clinical features of drusenoid pigment epithelial detachment in age related macular degeneration. Br. J. Ophthalmol. 2004, 88, 638–642. [Google Scholar] [CrossRef]
- Luhmann, U.F.; Robbie, S.; Munro, P.M.; Barker, S.E.; Duran, Y.; Luong, V.; Fitzke, F.W.; Bainbridge, J.W.; Ali, R.R.; MacLaren, R.E. The drusenlike phenotype in aging Ccl2-knockout mice is caused by an accelerated accumulation of swollen autofluorescent subretinal macrophages. Investig. Ophthalmol. Vis. Sci. 2009, 50, 5934–5943. [Google Scholar] [CrossRef]
- Tuo, J.; Bojanowski, C.M.; Zhou, M.; Shen, D.; Ross, R.J.; Rosenberg, K.I.; Cameron, D.J.; Yin, C.; Kowalak, J.A.; Zhuang, Z.; et al. Murine ccl2/cx3cr1 deficiency results in retinal lesions mimicking human age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2007, 48, 3827–3836. [Google Scholar] [CrossRef]
- Spaide, R.F.; Ooto, S.; Curcio, C.A. Subretinal drusenoid deposits AKA pseudodrusen. Surv. Ophthalmol. 2018, 63, 782–815. [Google Scholar] [CrossRef]
- Schmitz-Valckenberg, S. The Journey of “Geographic Atrophy” through Past, Present, and Future. Ophthalmologica 2017, 237, 11–20. [Google Scholar] [CrossRef]
- Somasundaran, S.; Constable, I.J.; Mellough, C.B.; Carvalho, L.S. Retinal pigment epithelium and age-related macular degeneration: A review of major disease mechanisms. J. Clin. Exp. Ophthalmol. 2020, 48, 1043–1056. [Google Scholar] [CrossRef]
- Plafker, S.M.; O’Mealey, G.B.; Szweda, L.I. Mechanisms for countering oxidative stress and damage in retinal pigment epithelium. Int. Rev. Cell Mol. Biol. 2012, 298, 135–177. [Google Scholar]
- Chen, Y.; Bedell, M.; Zhang, K. Age-related macular degeneration: Genetic and environmental factors of disease. Mol. Interv. 2010, 10, 271–281. [Google Scholar] [CrossRef]
- Age-Related Macular Degeneration Guidelines for Management. The Royal College of Ophthalmologists. 2009. Available online: https://www.amedeolucente.it/pdf/age-related_macular_degeneration.pdf (accessed on 22 April 2024).
- Agrón, E.; Mares, J.; Clemons, T.E.; Swaroop, A.; Chew, E.Y.; Keenan, T.D.L. Dietary nutrient intake and progression to late age-related macular degeneration in the age-related eye disease studies 1 and 2. Ophthalmology 2021, 128, 425–442. [Google Scholar] [CrossRef] [PubMed]
- 2019 Clinical Practice Guide for the Diagnosis, Treatment and Management of Age-Related Macular Degeneration. Optometry Australia. Available online: https://www.optometry.org.au/wp-content/uploads/Professional_support/Practice_notes/AMD-Clinical-Practice-Guide-2019_final_designed_v5.pdf (accessed on 22 April 2024).
- Flaxel, C.J.; Adelman, R.A.; Bailey, S.T.; Fawzi, A.; Lim, J.I.; Vemulakonda, G.A.; Ying, G.S. Age-Related Macular Degeneration Preferred Practice Pattern. Ophthalmology 2019, 127, 1–65. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.G.; May, A.; Dinh, B.; Lin, V.; Su, F.; Tran, C.; Adivikolanu, H.; Ehlen, R.; Che, B.; Wang, Z.H.; et al. The interplay of oxidative stress and ARMS2-HTRA1 genetic risk in neovascular AMD. Vessel Plus 2021, 5, 4. [Google Scholar] [CrossRef]
- Sawitzke, J.; Im, K.M.; Kostiha, B.; Dean, M.; Gold, B. Association assessment of copy number polymorphism and risk of age-related macular degeneration. Ophthalmology 2011, 118, 2442–2446. [Google Scholar] [CrossRef] [PubMed]
- Borras, C.; Canonica, J.; Jorieux, S.; Abache, T.; El Sanharawi, M.; Klein, C.; Delaunay, K.; Jonet, L.; Salvodelli, M.; Naud, M.C.; et al. CFH exerts anti-oxidant effects on retinal pigment epithelial cells independently from protecting against membrane attack complex. Sci. Rep. 2019, 9, 13873. [Google Scholar] [CrossRef]
- Fletcher, E.L.; Jobling, A.I.; Greferath, U.; Mills, S.A.; Waugh, M.; Ho, T.; de Iongh, R.U.; Phipps, J.A.; Vessey, K.A. Studying age-related macular degeneration using animal models. Optom. Vis. Sci. 2014, 91, 878–886. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.; Jiang, S.; Gericke, A. Age-related macular degeneration: Role of oxidative stress and blood vessels. Int. J. Mol. Sci. 2021, 22, 1296. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, D.; Sander, C.L.; Tworak, A.; Gao, F.; Xu, Q.; Skowronska-Krawczyk, D. Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life. Prog. Retin. Eye Res. 2022, 89, 101037. [Google Scholar] [CrossRef] [PubMed]
- Saccà, S.C.; Cutolo, C.A.; Ferrari, D.; Corazza, P.; Traverso, C.E. The eye, oxidative damage and polyunsaturated fatty acids. Nutrients 2018, 10, 668. [Google Scholar] [CrossRef] [PubMed]
- Rapp, L.M.; Maple, S.S.; Choi, J.H. Lutein and zeaxanthin concentrations in rod outer segment membranes from perifoveal and peripheral human retina. Investig. Ophthalmol. Vis. Sci. 2000, 41, 1200–1209. [Google Scholar]
- Shahidi, F.; Zhong, Y. Lipid oxidation and improving the oxidative stability. Chem. Soc. Rev. 2010, 39, 4067–4079. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Xu, L.; Porter, N.A. Free radical lipid peroxidation: Mechanisms and analysis. Chem. Rev. 2011, 111, 5944–5972. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, D.; Hu, J.; Liu, G.; Chen, J.; Sun, L.; Jiang, Z.; Zhang, X.; Chen, Q.; Ji, B. Visible light-induced lipid peroxidation of unsaturated fatty acids in the retina and the inhibitory effects of blueberry polyphenols. J. Agric. Food Chem. 2015, 63, 9295–9305. [Google Scholar] [CrossRef]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef] [PubMed]
- Micera, A.; Balzamino, B.O.; Di Zazzo, A.; Dinice, L.; Bonini, S.; Coassin, M. Biomarkers of neurodegeneration and precision therapy in retinal disease. Front. Pharmacol. 2021, 11, 601647. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Meer, S.G.; Miyagi, M.; Rayborn, M.E.; Hollyfield, J.G.; Crabb, J.W.; Salomon, R.G. Carboxyethylpyrrole protein adducts and autoantibodies, biomarkers for age-related macular degeneration. J. Biol. Chem. 2003, 278, 42027–42035. [Google Scholar] [CrossRef] [PubMed]
- Kaemmerer, E.; Schutt, F.; Krohne, T.U.; Holz, F.G.; Kopitz, J. Effects of lipid peroxidation-related protein modifications on RPE lysosomal functions and POS phagocytosis. Investig. Ophthalmol. Vis. Sci. 2007, 48, 1342–1347. [Google Scholar] [CrossRef] [PubMed]
- Ye, F.; Kaneko, H.; Hayashi, Y.; Takayama, K.; Hwang, S.J.; Nishizawa, Y.; Kimoto, R.; Nagasaka, Y.; Tsunekawa, T.; Matsuura, T.; et al. Malondialdehyde induces autophagy dysfunction and VEGF secretion in the retinal pigment epithelium in age-related macular degeneration. Free. Radic. Biol. Med. 2016, 94, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.L.; Chen, H.; Wang, J.; Xia, T.; Sun, H.; Yuan, C.H.; Liu, S.L.; Chen, J.B. 4-HNE induces apoptosis of human retinal pigment epithelial cells by modifying HSP70. Curr. Med. Sci. 2019, 39, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Hollyfield, J.G.; Bonilha, V.L.; Rayborn, M.E.; Yang, X.; Shadrach, K.G.; Lu, L.; Ufret, R.L.; Salomon, R.G.; Perez, V.L. Oxidative damage-induced inflammation initiates age-related macular degeneration. Nat. Med. 2008, 14, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, M.D.; Iyer, M.; Nair, A.P.; Venkatesan, D.; Mathavan, S.; Eruppakotte, N.; Kizhakkillach, S.; kumar Chandran, M.; Roy, A.; Gopalakrishnan, A.V. Oxidative stress and mitochondrial transfer: A new dimension towards ocular diseases. Genes Dis. 2022, 9, 610–637. [Google Scholar] [CrossRef]
- Fuhrmann, S.; Zou, C.; Levine, E.M. Retinal pigment epithelium development, plasticity, and tissue homeostasis. Exp. Eye Res. 2014, 123, 141–150. [Google Scholar] [CrossRef]
- Lakkaraju, A.; Umapathy, A.; Tan, L.X.; Daniele, L.; Philp, N.J.; Boesze-Battaglia, K.; Williams, D.S. The cell biology of the retinal pigment epithelium. Prog. Retin. Eye Res. 2020, 78, 100846. [Google Scholar] [CrossRef]
- Liang, F.-Q.; Godley, B.F. Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells: A possible mechanism for RPE aging and age-related macular degeneration. Exp. Eye Res. 2003, 76, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Booij, J.C.; Baas, D.C.; Beisekeeva, J.; Gorgels, T.G.; Bergen, A.A. The dynamic nature of Bruch’s membrane. Prog. Retin. Eye Res. 2010, 29, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Bhutto, I.A.; McLeod, D.S.; Hasegawa, T.; Kim, S.Y.; Merges, C.; Tong, P.; Lutty, G.A. Pigment epithelium-derived factor (PEDF) and vascular endothelial growth factor (VEGF) in aged human choroid and eyes with age-related macular degeneration. Exp. Eye Res. 2006, 82, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Mazzoni, F.; Safa, H.; Finnemann, S.C. Understanding photoreceptor outer segment phagocytosis: Use and utility of RPE cells in culture. Exp. Eye Res. 2014, 126, 51–60. [Google Scholar] [CrossRef]
- Sharma, R.; Bose, D.; Maminishkis, A.; Bharti, K. Retinal pigment epithelium replacement therapy for age-related macular degeneration: Are we there yet? Annu. Rev. Pharmacol. Toxicol. 2020, 60, 553–572. [Google Scholar] [CrossRef] [PubMed]
- García-Onrubia, L.; Valentín-Bravo, F.J.; Coco-Martin, R.M.; González-Sarmiento, R.; Pastor, J.C.; Usategui-Martín, R.; Pastor-Idoate, S. Matrix metalloproteinases in age-related macular degeneration (AMD). Int. J. Mol. Sci. 2020, 21, 5934. [Google Scholar] [CrossRef]
- Sadiq, I.Z. Free radicals and oxidative stress: Signaling mechanisms, redox basis for human diseases, and cell cycle regulation. Curr. Mol. Med. 2023, 23, 13–35. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Sedgwick, A.C.; Sun, X.; Bull, S.D.; He, X.-P.; James, T.D. Reaction-based fluorescent probes for the detection and imaging of reactive oxygen, nitrogen, and sulfur species. Acc. Chem. Res. 2019, 52, 2582–2597. [Google Scholar] [CrossRef] [PubMed]
- Ifeanyi, O.E. A review on free radicals and antioxidants. Int. J. Curr. Res. Med. Sci. 2018, 4, 123–133. [Google Scholar]
- Sauer, H.; Wartenberg, M.; Hescheler, J. Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell. Physiol. Biochem. 2001, 11, 173–186. [Google Scholar] [CrossRef]
- Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. WAO J. 2012, 5, 9–19. [Google Scholar] [CrossRef]
- Su, L.J.; Zhang, J.H.; Gomez, H.; Murugan, R.; Hong, X.; Xu, D.; Jiang, F.; Peng, Z.Y. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid. Med. Cell. Longev. 2019, 2019, 5080843. [Google Scholar] [CrossRef]
- Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef] [PubMed]
- Ray, P.D.; Huang, B.W.; Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 2012, 24, 981–990. [Google Scholar] [CrossRef]
- Du, G.; Jiang, J.; Henning, N.J.; Safaee, N.; Koide, E.; Nowak, R.P.; Donovan, K.A.; Yoon, H.; You, I.; Yue, H.; et al. Exploring the target scope of KEAP1 E3 ligase-based PROTACs. Cell. Chem. Biol. 2022, 29, 1470–1481.e31. [Google Scholar] [CrossRef] [PubMed]
- Cai, N.; Dai, S.D.; Liu, N.N.; Liu, L.M.; Zhao, N.; Chen, L. PI3K/AKT/mTOR signaling pathway inhibitors in proliferation of retinal pigment epithelial cells. Int. J. Ophthalmol. 2012, 5, 675–680. [Google Scholar] [PubMed]
- Yu, H.; Lin, L.; Zhang, Z.; Zhang, H.; Hu, H. Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study. Signal Transduct. Target. Ther. 2020, 5, 209. [Google Scholar] [CrossRef]
- Abu Shelbayeh, O.; Arroum, T.; Morris, S.; Busch, K.B. PGC-1α Is a master regulator of mitochondrial lifecycle and ROS stress response. Antioxidants 2023, 12, 1075. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.M.; Groot, A.J.; van der Groep, P.; Sersansie, R.; Vooijs, M.; van Diest, P.J.; Van Noorden, C.J.; Schlingemann, R.O.; Klaassen, I. Active HIF-1 in the normal human retina. J. Histochem. Cytochem. 2010, 58, 247–254. [Google Scholar] [CrossRef]
- O’Shea, J.J.; Schwartz, D.M.; Villarino, A.V.; Gadina, M.; McInnes, I.B.; Laurence, A. The JAK-STAT pathway: Impact on human disease and therapeutic intervention. Annu. Rev. Med. 2015, 66, 311–328. [Google Scholar] [CrossRef]
- Kong, F.; You, H.; Zheng, K.; Tang, R.; Zheng, C. The crosstalk between pattern-recognition receptor signaling and calcium signaling. Int. J. Biol. Macromol. 2021, 192, 745–756. [Google Scholar] [CrossRef] [PubMed]
- Poljšak, B.; Dahmane, R. Free radicals and extrinsic skin aging. Dermatol. Res. Pract. 2012, 2012, 135206. [Google Scholar] [CrossRef]
- Kim, G.H.; Kim, J.E.; Rhie, S.J.; Yoon, S. The role of oxidative stress in neurodegenerative diseases. Exp. Neurobiol. 2015, 24, 325. [Google Scholar] [CrossRef]
- Ung, L.; Pattamatta, U.; Carnt, N.; Wilkinson-Berka, J.L.; Liew, G.; White, A.J. Oxidative stress and reactive oxygen species: A review of their role in ocular disease. Clin. Sci. 2017, 131, 2865–2883. [Google Scholar] [CrossRef] [PubMed]
- Nebbioso, M.; Franzone, F.; Lambiase, A.; Bonfiglio, V.; Limoli, P.G.; Artico, M.; Taurone, S.; Vingolo, E.M.; Greco, A.; Polimeni, A. Oxidative stress implication in retinal diseases—A review. Antioxidants 2022, 11, 1790. [Google Scholar] [CrossRef] [PubMed]
- Devasagayam, T.P.; Tilak, J.C.; Boloor, K.K.; Sane, K.S.; Ghaskadbi, S.S.; Lele, R.D. Free radicals and antioxidants in human health: Current status and future prospects. J. Assoc. Physicians India 2004, 52, 794–804. [Google Scholar] [PubMed]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef]
- Mirończuk-Chodakowska, I.; Witkowska, A.M.; Zujko, M.E. Endogenous non-enzymatic antioxidants in the human body. Adv. Med. Sci. 2018, 63, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Zafrilla, P.; Losada, M.; Perez, A.; Caravaca, G.; Mulero, J. Biomarkers of oxidative stress in patients with wet age related macular degeneration. J. Nutr. Health Aging 2013, 17, 219–222. [Google Scholar] [CrossRef]
- Miao, L.; St Clair, D.K. Regulation of superoxide dismutase genes: Implications in disease. Free. Radic. Biol. Med. 2009, 47, 344–356. [Google Scholar] [CrossRef]
- Imamura, Y.; Noda, S.; Hashizume, K.; Shinoda, K.; Yamaguchi, M.; Uchiyama, S.; Shimizu, T.; Mizushima, Y.; Shirasawa, T.; Tsubota, K. Drusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: A model of age-related macular degeneration. Proc. Natl. Acad. Sci. USA 2006, 103, 11282–11287. [Google Scholar] [CrossRef] [PubMed]
- Kushwah, N.; Bora, K.; Maurya, M.; Pavlovich, M.C.; Chen, J. Oxidative stress and antioxidants in age-related macular degeneration. Antioxidants 2023, 12, 1379. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.E.; DeWeerd, A.J.; Ildefonso, C.J.; Lewin, A.S.; Ash, J.D. Mitochondrial oxidative stress in the retinal pigment epithelium (RPE) led to metabolic dysfunction in both the RPE and retinal photoreceptors. Redox Biol. 2019, 24, 101201. [Google Scholar] [CrossRef] [PubMed]
- Anand, A.; Sharma, N.K.; Gupta, A.; Prabhakar, S.; Sharma, S.K.; Singh, R. Superoxide dismutase1 levels in North Indian population with age-related macular degeneration. Oxid. Med. Cell. Longev. 2013, 2013, 365046. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Dong, Y.; Yang, H.; Pan, X.; Fan, R.; Zhai, L. Serum superoxide dismutase and malondialdehyde levels in a group of Chinese patients with age-related macular degeneration. Aging. Clin. Exp. Res. 2011, 23, 264–267. [Google Scholar] [CrossRef] [PubMed]
- Rex, T.S.; Tsui, I.; Hahn, P.; Maguire, A.M.; Duan, D.; Bennett, J.; Dunaief, J.L. Adenovirus-mediated delivery of catalase to retinal pigment epithelial cells protects neighboring photoreceptors from photo-oxidative stress. Hum. Gene Ther. 2004, 15, 960–967. [Google Scholar] [CrossRef]
- Tokarz, P.; Kaarniranta, K.; Blasiak, J. Role of antioxidant enzymes and small molecular weight antioxidants in the pathogenesis of age-related macular degeneration (AMD). Biogerontology 2013, 14, 461–482. [Google Scholar] [CrossRef] [PubMed]
- Wong-Riley, M. Energy metabolism of the visual system. Eye Brain 2010, 2, 99–116. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarty, R.P.; Chandel, N.S. Mitochondria as signaling organelles control mammalian stem cell fate. Cell Stem Cell 2021, 28, 394–408. [Google Scholar] [CrossRef]
- Acuña-Castroviejo, D.; Martín, M.; Macías, M.; Escames, G.; León, J.; Khaldy, H.; Reiter, R.J. Melatonin, mitochondria, and cellular bioenergetics. J. Pineal Res. 2001, 30, 65–74. [Google Scholar] [CrossRef]
- Garcia, I.; Jones, E.; Ramos, M.; Innis-Whitehouse, W.; Gilkerson, R. The little big genome: The organization of mitochondrial DNA. Front. Biosci. (Landmark Ed.) 2017, 22, 710. [Google Scholar]
- Er, R.; Aydın, B.; Şekeroğlu, V.; Atlı Şekeroğlu, Z. Protective effect of Argan oil on mitochondrial function and oxidative stress against acrylamide-induced liver and kidney injury in rats. Biomarkers 2020, 25, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 2014, 94, 909–950. [Google Scholar] [CrossRef]
- Guo, C.; Sun, L.; Chen, X.; Zhang, D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen. Res. 2013, 8, 2003. [Google Scholar] [PubMed]
- Lee, H.-C.; Wei, Y.-H. Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging. Exp. Biol. Med. 2007, 232, 592–606. [Google Scholar]
- Kong, M.; Guo, L.; Xu, W.; He, C.; Jia, X.; Zhao, Z.; Gu, Z. Aging-associated accumulation of mitochondrial DNA mutations in tumor origin. J. Life. Med. 2022, 1, 149–167. [Google Scholar] [CrossRef]
- Rottenberg, H. The reduction in the mitochondrial membrane potential in aging: The role of the mitochondrial permeability transition Pore. Int. J. Mol. Sci. 2023, 24, 12295. [Google Scholar] [CrossRef]
- Narendra, D.; Walker, J.E.; Youle, R. Mitochondrial quality control mediated by PINK1 and Parkin: Links to parkinsonism. Cold Spring Harb. Perspect. Biol. 2012, 4, a011338. [Google Scholar] [CrossRef]
- Barodia, S.K.; Creed, R.B.; Goldberg, M.S. Parkin and PINK1 functions in oxidative stress and neurodegeneration. Brain Res. Bull. 2017, 133, 51–59. [Google Scholar] [CrossRef]
- Tong, Y.; Zhang, Z.; Wang, S. Role of mitochondria in retinal pigment epithelial aging and degeneration. Front. Aging 2022, 3, 926627. [Google Scholar] [CrossRef]
- Karimi, P.; Gheisari, A.; Gasparini, S.J.; Baharvand, H.; Shekari, F.; Satarian, L.; Ader, M. Crocetin prevents RPE cells from oxidative stress through protection of cellular metabolic function and activation of ERK1/2. Int. J. Mol. Sci. 2020, 21, 2949. [Google Scholar] [CrossRef]
- Kaarniranta, K.; Uusitalo, H.; Blasiak, J.; Felszeghy, S.; Kannan, R.; Kauppinen, A.; Salminen, A.; Sinha, D.; Ferrington, D. Mechanisms of mitochondrial dysfunction and their impact on age-related macular degeneration. Prog. Retin. Eye Res. 2020, 79, 100858. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, X.; Ding, X.; Wang, F.; Geng, X. Telomere and its role in the aging pathways: Telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology 2019, 20, 1–16. [Google Scholar] [CrossRef]
- Davalli, P.; Mitic, T.; Caporali, A.; Lauriola, A.; D’Arca, D. ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid. Med. Cell Longev. 2016, 2016, 3565127. [Google Scholar] [CrossRef]
- Almeida, C.; Amaral, M.D. A central role of the endoplasmic reticulum in the cell emerges from its functional contact sites with multiple organelles. Cell Mol. Life. Sci. 2020, 77, 4729–4745. [Google Scholar] [CrossRef]
- Faitova, J.; Krekac, D.; Hrstka, R.; Vojtesek, B. Endoplasmic reticulum stress and apoptosis. Cell Mol. Biol. Lett. 2006, 11, 488–505. [Google Scholar] [CrossRef]
- Almanza, A.; Carlesso, A.; Chintha, C.; Creedican, S.; Doultsinos, D.; Leuzzi, B.; Luís, A.; McCarthy, N.; Montibeller, L.; More, S.; et al. Endoplasmic reticulum stress signalling—From basic mechanisms to clinical applications. FEBS J. 2019, 286, 241–278. [Google Scholar] [CrossRef]
- Malhotra, J.D.; Kaufman, R.J. Endoplasmic reticulum stress and oxidative stress: A vicious cycle or a double-edged sword? Antioxid. Redox Signal. 2007, 9, 2277–2293. [Google Scholar] [CrossRef]
- Araki, K.; Nagata, K. Protein folding and quality control in the ER. Cold Spring Harb. Perspect. Biol. 2011, 3, a007526. [Google Scholar] [CrossRef]
- Read, A.; Schröder, M. The unfolded protein response: An overview. Biology 2021, 10, 384. [Google Scholar] [CrossRef]
- Chakrabarti, A.; Chen, A.W.; Varner, J.D. A review of the mammalian unfolded protein response. Biotechnol. Bioeng. 2011, 108, 2777–2793. [Google Scholar] [CrossRef]
- Zeeshan, H.M.A.; Lee, G.H.; Kim, H.-R.; Chae, H.-J. Endoplasmic reticulum stress and associated ROS. Int. J. Mol. Sci. 2016, 17, 327. [Google Scholar] [CrossRef]
- Ong, G.; Logue, S.E. Unfolding the Interactions between Endoplasmic Reticulum Stress and Oxidative Stress. Antioxidants 2023, 12, 981. [Google Scholar] [CrossRef]
- Yang, X.; Zhuang, J.; Song, W.; Shen, W.; Wu, W.; Shen, H.; Han, S. Mitochondria-associated endoplasmic reticulum membrane: Overview and inextricable link with cancer. J. Cel. Mol. Med. 2023, 27, 906–919. [Google Scholar] [CrossRef]
- Bertero, E.; Maack, C. Calcium signaling and reactive oxygen species in mitochondria. Circ. Res. 2018, 122, 1460–1478. [Google Scholar] [CrossRef]
- Salminen, A.; Kauppinen, A.; Hyttinen, J.M.; Toropainen, E.; Kaarniranta, K. Endoplasmic reticulum stress in age-related macular degeneration: Trigger for neovascularization. Mol. Med. 2010, 16, 535–542. [Google Scholar] [CrossRef]
- Kim, S.M.; Lee, H.M.; Hwang, K.A.; Choi, K.C. Benzo(a)pyrene induced cell cycle arrest and apoptosis in human choriocarcinoma cancer cells through reactive oxygen species-induced endoplasmic reticulum-stress pathway. Food Chem. Toxicol. 2017, 107, 339–348. [Google Scholar] [CrossRef]
- Chan, C.M.; Huang, D.Y.; Huang, Y.P.; Hsu, S.H.; Kang, L.Y.; Shen, C.M.; Lin, W.W. Methylglyoxal induces cell death through endoplasmic reticulum stress-associated ROS production and mitochondrial dysfunction. J. Cell. Mol. Med. 2016, 20, 1749–1760. [Google Scholar] [CrossRef]
- Bilbao-Malavé, V.; González-Zamora, J.; de la Puente, M.; Recalde, S.; Fernandez-Robredo, P.; Hernandez, M.; Layana, A.G.; Saenz de Viteri, M. Mitochondrial dysfunction and endoplasmic reticulum stress in age-related macular degeneration, role in pathophysiology, and possible new therapeutic strategies. Antioxidants 2021, 10, 1170. [Google Scholar] [CrossRef]
- Petrukhin, K. New therapeutic targets in atrophic age-related macular degeneration. Expert Opin. Ther. Targets 2007, 11, 625–639. [Google Scholar] [CrossRef]
- Sparrow, J.R.; Gregory-Roberts, E.; Yamamoto, K.; Blonska, A.; Ghosh, S.K.; Ueda, K.; Zhou, J. The bisretinoids of retinal pigment epithelium. Prog. Retin. Eye Res. 2012, 31, 121–135. [Google Scholar] [CrossRef]
- Kim, H.J.; Montenegro, D.; Zhao, J.; Sparrow, J.R. Bisretinoids of the retina: Photo-oxidation, iron-catalyzed oxidation, and disease consequences. Antioxidants 2021, 10, 1382. [Google Scholar] [CrossRef]
- Intartaglia, D.; Giamundo, G.; Conte, I. Autophagy in the retinal pigment epithelium: A new vision and future challenges. FEBS J. 2022, 289, 7199–7212. [Google Scholar] [CrossRef]
- Kim, H.J.; Sparrow, J.R. Novel bisretinoids of human retina are lyso alkyl ether glycerophosphoethanolamine-bearing A2PE species. J. Lipid. Res. 2018, 59, 1620–1629. [Google Scholar] [CrossRef]
- Tsin, A.; Betts-Obregon, B.; Grigsby, J. Visual cycle proteins: Structure, function, and roles in human retinal disease. J. Biol. Chem. 2018, 293, 13016–13021. [Google Scholar] [CrossRef]
- Kim, H.J.; Sparrow, J.R. Bisretinoid phospholipid and vitamin A aldehyde: Shining a light. J. Lipid. Res. 2021, 62, 100042. [Google Scholar] [CrossRef]
- Krohne, T.U.; Stratmann, N.K.; Kopitz, J.; Holz, F.G. Effects of lipid peroxidation products on lipofuscinogenesis and autophagy in human retinal pigment epithelial cells. Exp. Eye Res. 2010, 90, 465–471. [Google Scholar] [CrossRef]
- Yakovleva, M.; Dontsov, A.; Trofimova, N.; Sakina, N.; Kononikhin, A.; Aybush, A.; Gulin, A.; Feldman, T.; Ostrovsky, M. Lipofuscin granule bisretinoid oxidation in the human retinal pigment epithelium forms cytotoxic carbonyls. Int. J. Mol. Sci. 2021, 23, 222. [Google Scholar] [CrossRef]
- Garcia-Garcia, J.; Usategui-Martin, R.; Sanabria, M.R.; Fernandez-Perez, E.; Telleria, J.J.; Coco-Martin, R.M. Pathophysiology of age-related macular degeneration: Implications for treatment. Ophthalmic Res. 2022, 65, 615–636. [Google Scholar] [CrossRef]
- Sparrow, J.R. Bisretinoids of RPE lipofuscin: Trigger for complement activation in age-related macular degeneration. Adv. Exp. Med. Biol. 2010, 703, 63–74. [Google Scholar] [CrossRef]
- Zhou, J.; Kim, S.R.; Westlund, B.S.; Sparrow, J.R. Complement activation by bisretinoid constituents of RPE lipofuscin. Investig. Ophthalmol. Vis. Sci. 2009, 50, 1392–1399. [Google Scholar] [CrossRef] [PubMed]
- Sparrow, J.R.; Duncker, T. Fundus autofluorescence and RPE lipofuscin in age-related macular degeneration. J. Clin. Med. 2014, 3, 1302–1321. [Google Scholar] [CrossRef] [PubMed]
- Parmar, V.M.; Parmar, T.; Arai, E.; Perusek, L.; Maeda, A. A2E-associated cell death and inflammation in retinal pigmented epithelial cells from human induced pluripotent stem cells. Stem Cell Res. 2018, 27, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Feng, Y.; Han, P.; Wang, F.; Luo, X.; Liang, J.; Sun, X.; Ye, J.; Lu, Y.; Sun, X. Photosensitization of A2E triggers telomere dysfunction and accelerates retinal pigment epithelium senescence. Cell Death. Dis. 2018, 9, 178. [Google Scholar] [CrossRef] [PubMed]
- Sparrow, J.R.; Cai, B.; Jang, Y.P.; Zhou, J.; Nakanishi, K. A2E, a fluorophore of RPE lipofuscin, can destabilize membrane. In Retinal Degenerative Diseases; Springer: Berlin/Heidelberg, Germany, 2006; pp. 63–68. [Google Scholar]
- Sparrow, J.R.; Cai, B. Blue light–induced apoptosis of A2E-containing RPE: Involvement of caspase-3 and protection by Bcl-2. Investig. Ophthalmol. Vis. Sci. 2001, 42, 1356–1362. [Google Scholar]
- Kaur, G.; Tan, L.X.; Rathnasamy, G.; La Cunza, N.; Germer, C.J.; Toops, K.A.; Fernandes, M.; Blenkinsop, T.A.; Lakkaraju, A. Aberrant early endosome biogenesis mediates complement activation in the retinal pigment epithelium in models of macular degeneration. Proc. Natl. Acad. Sci. USA 2018, 115, 9014–9019. [Google Scholar] [CrossRef] [PubMed]
- Cox, T.M.; Cachón-González, M.B. The cellular pathology of lysosomal diseases. J. Pathol. 2012, 226, 241–254. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Meng, B.; Xu, H.; Mao, Z. The emerging roles of vacuolar-type ATPase-dependent Lysosomal acidification in neurodegenerative diseases. Transl. Neurodegener. 2020, 9, 17. [Google Scholar] [CrossRef]
- Appelqvist, H.; Wäster, P.; Kågedal, K.; Öllinger, K. The lysosome: From waste bag to potential therapeutic target. J. Mol. Cell. Biol. 2013, 5, 214–226. [Google Scholar] [CrossRef]
- Keeling, E.; Lotery, A.J.; Tumbarello, D.A.; Ratnayaka, J.A. Impaired cargo clearance in the retinal pigment epithelium (RPE) underlies irreversible blinding diseases. Cells 2018, 7, 16. [Google Scholar] [CrossRef]
- Sinha, D.; Valapala, M.; Shang, P.; Hose, S.; Grebe, R.; Lutty, G.A.; Zigler, J.S., Jr.; Kaarniranta, K.; Handa, J.T. Lysosomes: Regulators of autophagy in the retinal pigmented epithelium. Exp. Eye Res. 2016, 144, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Wiktor, A.; Sarna, M.; Wnuk, D.; Sarna, T. Lipofuscin-mediated photodynamic stress induces adverse changes in nanomechanical properties of retinal pigment epithelium cells. Sci. Rep. 2018, 8, 17929. [Google Scholar] [CrossRef]
- Szweda, P.A.; Camouse, M.; Lundberg, K.C.; Oberley, T.D.; Szweda, L.I. Aging, lipofuscin formation, and free radical-mediated inhibition of cellular proteolytic systems. Ageing Res. Rev. 2003, 2, 383–405. [Google Scholar] [CrossRef]
- Terman, A.; Kurz, T. Lysosomal iron, iron chelation, and cell death. Antioxid. Redox Signal. 2013, 18, 888–898. [Google Scholar] [CrossRef]
- Ueda, K.; Kim, H.J.; Zhao, J.; Song, Y.; Dunaief, J.L.; Sparrow, J.R. Iron promotes oxidative cell death caused by bisretinoids of retina. Proc. Natl. Acad. Sci. USA 2018, 115, 4963–4968. [Google Scholar] [CrossRef]
- Melidou, M.; Riganakos, K.; Galaris, D. Protection against nuclear DNA damage offered by flavonoids in cells exposed to hydrogen peroxide: The role of iron chelation. Free Radic. Biol. Med. 2005, 39, 1591–1600. [Google Scholar] [CrossRef]
- Charkoudian, L.K.; Dentchev, T.; Lukinova, N.; Wolkow, N.; Dunaief, J.L.; Franz, K.J. Iron prochelator BSIH protects retinal pigment epithelial cells against cell death induced by hydrogen peroxide. J. Inorg. Biochem. 2008, 102, 2130–2135. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, M.; Kurz, T. Attenuation of iron-binding proteins in ARPE-19 cells reduces their resistance to oxidative stress. Acta Ophthalmol. 2016, 94, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Ren, X.; Hait, W.N.; Yang, J.-M. Therapeutic targeting of autophagy in disease: Biology and pharmacology. Pharmacol. Rev. 2013, 65, 1162–1197. [Google Scholar] [CrossRef]
- Wang, S.; Li, H.; Yuan, M.; Fan, H.; Cai, Z. Role of AMPK in autophagy. Front. Physiol. 2022, 13, 2479. [Google Scholar] [CrossRef]
- Bednarczyk, M.; Zmarzły, N.; Grabarek, B.; Mazurek, U.; Muc-Wierzgoń, M. Genes involved in the regulation of different types of autophagy and their participation in cancer pathogenesis. Oncotarget 2018, 9, 34413–34428. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.V.; Mills, J.; Lapierre, L.R. Selective autophagy receptor p62/SQSTM1, a pivotal player in stress and aging. Front. Cell Dev. Biol. 2022, 10, 793328. [Google Scholar] [CrossRef] [PubMed]
- Golestaneh, N.; Chu, Y.; Xiao, Y.Y.; Stoleru, G.L.; Theos, A.C. Dysfunctional autophagy in RPE, a contributing factor in age-related macular degeneration. Cell Death. Dis. 2017, 8, e2537. [Google Scholar] [CrossRef] [PubMed]
- Fisher, C.R.; Shaaeli, A.A.; Ebeling, M.C.; Montezuma, S.R.; Ferrington, D.A. Investigating mitochondrial fission, fusion, and autophagy in retinal pigment epithelium from donors with age-related macular degeneration. Sci. Rep. 2022, 12, 21725. [Google Scholar] [CrossRef]
- Mitter, S.K.; Song, C.; Qi, X.; Mao, H.; Rao, H.; Akin, D.; Lewin, A.; Grant, M.; Dunn, W., Jr.; Ding, J.; et al. Dysregulated autophagy in the RPE is associated with increased susceptibility to oxidative stress and AMD. Autophagy 2014, 10, 1989–2005. [Google Scholar] [CrossRef] [PubMed]
- Ferrington, D.A.; Sinha, D.; Kaarniranta, K. Defects in retinal pigment epithelial cell proteolysis and the pathology associated with age-related macular degeneration. Prog. Retin. Eye Res. 2016, 51, 69–89. [Google Scholar] [CrossRef] [PubMed]
- Kaarniranta, K.; Sinha, D.; Blasiak, J.; Kauppinen, A.; Veréb, Z.; Salminen, A.; Boulton, M.E.; Petrovski, G. Autophagy and heterophagy dysregulation leads to retinal pigment epithelium dysfunction and development of age-related macular degeneration. Autophagy 2013, 9, 973–984. [Google Scholar] [CrossRef] [PubMed]
- Radu, R.A.; Mata, N.L.; Bagla, A.; Travis, G.H. Light exposure stimulates formation of A2E oxiranes in a mouse model of Stargardt’s macular degeneration. Proc. Natl. Acad. Sci. USA 2004, 101, 5928–5933. [Google Scholar] [CrossRef]
- Kim, S.R.; Jang, Y.P.; Sparrow, J.R. Photooxidation of RPE lipofuscin bisretinoids enhances fluorescence intensity. Vis. Res. 2010, 50, 729–736. [Google Scholar] [CrossRef]
- Thornalley, P.J. Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems-role in ageing and disease. Drug. Metabol. Drug. Interact. 2008, 23, 125–150. [Google Scholar] [CrossRef]
- Ng, K.-P.; Gugiu, B.; Renganathan, K.; Davies, M.W.; Gu, X.; Crabb, J.S.; Kim, S.R.; Różanowska, M.B.; Bonilha, V.L.; Rayborn, M.E. Retinal pigment epithelium lipofuscin proteomics. Mol. Cell Proteom. 2008, 7, 1397–1405. [Google Scholar] [CrossRef]
- Rowan, S.; Bejarano, E.; Taylor, A. Mechanistic targeting of advanced glycation end-products in age-related diseases. Biochim. Biophys. Acta Mol. Basis. Dis. 2018, 1864, 3631–3643. [Google Scholar] [CrossRef]
- Sparvero, L.J.; Asafu-Adjei, D.; Kang, R.; Tang, D.; Amin, N.; Im, J.; Rutledge, R.; Lin, B.; Amoscato, A.A.; Zeh, H.J. RAGE (Receptor for Advanced Glycation Endproducts), RAGE ligands, and their role in cancer and inflammation. J. Transl. Med. 2009, 7, 17. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, M.R.; Chaudhary, S.; Sharma, Y.; Singh, T.A.; Mishra, A.K.; Sharma, S.; Mehdi, M.M. Aging, oxidative stress and degenerative diseases: Mechanisms, complications and emerging therapeutic strategies. Biogerontology 2023, 24, 609–662. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Núñez, G. The NLRP3 inflammasome: Activation and regulation. Trends Biochem. Sci. 2023, 48, 331–344. [Google Scholar] [CrossRef]
- Fernandes, A.F.; Zhou, J.; Zhang, X.; Bian, Q.; Sparrow, J.; Taylor, A.; Pereira, P.; Shang, F. Oxidative inactivation of the proteasome in retinal pigment epithelial cells. A potential link between oxidative stress and up-regulation of interleukin-8. J. Biol. Chem. 2008, 283, 20745–20753. [Google Scholar] [CrossRef]
- Kaur, G.; Singh, N.K. The role of inflammation in retinal neurodegeneration and degenerative diseases. Int. J. Mol. Sci. 2021, 23, 386. [Google Scholar] [CrossRef]
- Maran, J.J.; Mugisho, O.O. NLRP3 inflammasome plays a vital role in the pathogenesis of age-related diseases in the eye and brain. Neural Regen. Res. 2024, 19, 1425–1426. [Google Scholar] [CrossRef] [PubMed]
- Mugisho, O.O.; Green, C.R.; Zhang, J.; Acosta, M.L.; Rupenthal, I.D. Connexin43 hemichannels: A potential drug target for the treatment of diabetic retinopathy. Drug. Discov. Today 2019, 24, 1627–1636. [Google Scholar] [CrossRef]
- Celkova, L.; Doyle, S.L.; Campbell, M. NLRP3 inflammasome and pathobiology in AMD. J. Clin. Med. 2015, 4, 172–192. [Google Scholar] [CrossRef]
- Chaudhary, P.; Janmeda, P.; Docea, A.O.; Yeskaliyeva, B.; Abdull Razis, A.F.; Modu, B.; Calina, D.; Sharifi-Rad, J. Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Front. Chem. 2023, 11, 1158198. [Google Scholar] [CrossRef]
- Riveros, M.E.; Ávila, A.; Schruers, K.; Ezquer, F. Antioxidant biomolecules and their potential for the treatment of difficult-to-treat depression and conventional treatment-resistant depression. Antioxidants 2022, 11, 540. [Google Scholar] [CrossRef]
- Lü, J.M.; Lin, P.H.; Yao, Q.; Chen, C. Chemical and molecular mechanisms of antioxidants: Experimental approaches and model systems. J. Cell. Mol. Med. 2010, 14, 840–860. [Google Scholar] [CrossRef] [PubMed]
- Gourgouli, D.M.; Gourgouli, I.; Spai, S.; Gourgouli, K.; Tzorovili, E.; Skouroliakou, M.; Papakonstantinou, D.; Moschos, M.M. Effect of the mediterranean diet on progression of dry form of age-related macular degeneration. In Vivo 2023, 37, 1809–1815. [Google Scholar] [CrossRef]
- Girgis, S.; Lee, L.R. Treatment of dry age-related macular degeneration: A review. Clin. Exp. Ophthalmol. 2023, 51, 835–852. [Google Scholar] [CrossRef]
- Lambros, M.L.; Plafker, S.M. Oxidative stress and the Nrf2 anti-oxidant transcription factor in age-related macular degeneration. Adv. Exp. Med. Biol. 2016, 854, 67–72. [Google Scholar] [CrossRef]
- Veleri, S.; Lazar, C.H.; Chang, B.; Sieving, P.A.; Banin, E.; Swaroop, A. Biology and therapy of inherited retinal degenerative disease: Insights from mouse models. Dis. Models Mech. 2015, 8, 109–129. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Liu, C.H.; Wang, Z.; Fu, Z.; Britton, W.R.; Blomfield, A.K.; Kamenecka, T.M.; Dunaief, J.L.; Solt, L.A.; Chen, J. REV-ERBα regulates age-related and oxidative stress-induced degeneration in retinal pigment epithelium via NRF2. Redox Biol. 2022, 51, 102261. [Google Scholar] [CrossRef]
- Li, W.; Khor, T.O.; Xu, C.; Shen, G.; Jeong, W.S.; Yu, S.; Kong, A.N. Activation of Nrf2-antioxidant signaling attenuates NFkappaB-inflammatory response and elicits apoptosis. Biochem. Pharmacol. 2008, 76, 1485–1489. [Google Scholar] [CrossRef] [PubMed]
- Bellezza, I.; Giambanco, I.; Minelli, A.; Donato, R. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim. Biophys. Acta Mol. Cell Res. 2018, 1865, 721–733. [Google Scholar] [CrossRef]
- Nakagami, Y. Nrf2 Is an attractive therapeutic target for retinal diseases. Oxid. Med. Cell Longev. 2016, 2016, 7469326. [Google Scholar] [CrossRef] [PubMed]
- Sotler, R.; Poljšak, B.; Dahmane, R.; Jukić, T.; Pavan Jukić, D.; Rotim, C.; Trebše, P.; Starc, A. Prooxidant activities of antioxidants and their impact on health. Acta Clin. Croat. 2019, 58, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, J.; Na, X.; Zhao, A. Association between β-carotene supplementation and risk of cancer: A meta-analysis of randomized controlled trials. Nutr. Rev. 2023, 81, 1118–1130. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, Y.; Na, X.; Zhao, A. β-Carotene supplementation and risk of cardiovascular disease: A systematic review and meta-analysis of randomized controlled trials. Nutrients 2022, 14, 1284. [Google Scholar] [CrossRef] [PubMed]
- Sackett, C.S.; Schenning, S. The age-related eye disease study: The results of the clinical trial. Insight 2002, 27, 5–7. [Google Scholar] [PubMed]
- Chew, E.Y.; Clemons, T.E.; Agrón, E.; Domalpally, A.; Keenan, T.D.L.; Vitale, S.; Weber, C.; Smith, D.C.; Christen, W. Long-term outcomes of adding lutein/zeaxanthin and ω-3 fatty acids to the AREDS supplements on age-related macular degeneration progression: AREDS2 report 28. JAMA Ophthalmol. 2022, 140, 692–698. [Google Scholar] [CrossRef] [PubMed]
- Arnold, C.; Winter, L.; Fröhlich, K.; Jentsch, S.; Dawczynski, J.; Jahreis, G.; Böhm, V. Macular xanthophylls and ω-3 long-chain polyunsaturated fatty acids in age-related macular degeneration: A randomized trial. JAMA Ophthalmol. 2013, 131, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Chua, B.; Flood, V.; Rochtchina, E.; Wang, J.J.; Smith, W.; Mitchell, P. Dietary fatty acids and the 5-year incidence of age-related maculopathy. Arch. Ophthalmol. 2006, 124, 981–986. [Google Scholar] [CrossRef] [PubMed]
- Seddon, J.M.; George, S.; Rosner, B. Cigarette smoking, fish consumption, omega-3 fatty acid intake, and associations with age-related macular degeneration: The US Twin Study of Age-Related Macular Degeneration. Arch. Ophthalmol. 2006, 124, 995–1001. [Google Scholar] [CrossRef]
- Ho, L.; van Leeuwen, R.; Witteman, J.C.; van Duijn, C.M.; Uitterlinden, A.G.; Hofman, A.; de Jong, P.T.; Vingerling, J.R.; Klaver, C.C. Reducing the genetic risk of age-related macular degeneration with dietary antioxidants, zinc, and ω-3 fatty acids: The Rotterdam study. Arch. Ophthalmol. 2011, 129, 758–766. [Google Scholar] [CrossRef]
- Rexrode, K.M.; Lee, I.M.; Cook, N.R.; Hennekens, C.H.; Buring, J.E. Baseline characteristics of participants in the Women’s Health Study. J. Women’s Health Gend. Based Med. 2000, 9, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Schnebelen-Berthier, C.; Acar, N.; Simon, E.; Thabuis, C.; Bourdillon, A.; Mathiaud, A.; Dauchet, L.; Delcourt, C.; Benlian, P.; Crochet, M.; et al. The ALGOVUE clinical trial: Effects of the daily consumption of eggs enriched with lutein and docosahexaenoic acid on plasma composition and macular pigment optical density. Nutrients 2021, 13, 3347. [Google Scholar] [CrossRef] [PubMed]
- Zanón-Moreno, V.; Domingo Pedrol, J.C.; Sanz-González, S.M.; Raga-Cervera, J.; Salazar-Corral, J.; Pinazo-Durán, M.D. Feasibility study of a docosahexaenoic acid-optimized nutraceutical formulation on the macular levels of lutein in a healthy mediterranean population. Ophthalmic Res. 2021, 64, 1068–1076. [Google Scholar] [CrossRef] [PubMed]
- Feher, J.; Kovacs, B.; Kovacs, I.; Schveoller, M.; Papale, A.; Balacco Gabrieli, C. Improvement of visual functions and fundus alterations in early age-related macular degeneration treated with a combination of acetyl-L-carnitine, n-3 fatty acids, and coenzyme Q10. Ophthalmologica 2005, 219, 154–166. [Google Scholar] [CrossRef] [PubMed]
- Piccardi, M.; Marangoni, D.; Minnella, A.M.; Savastano, M.C.; Valentini, P.; Ambrosio, L.; Capoluongo, E.; Maccarone, R.; Bisti, S.; Falsini, B. A longitudinal follow-up study of saffron supplementation in early age-related macular degeneration: Sustained benefits to central retinal function. Evid. Based Complement. Altern. Med. 2012, 2012, 429124. [Google Scholar] [CrossRef]
- Broadhead, G.K.; Grigg, J.R.; McCluskey, P.; Hong, T.; Schlub, T.E.; Chang, A.A. Saffron therapy for the treatment of mild/moderate age-related macular degeneration: A randomised clinical trial. Graefes. Arch. Clin. Exp. Ophthalmol. 2019, 257, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Erie, J.C.; Good, J.A.; Butz, J.A.; Pulido, J.S. Reduced zinc and copper in the retinal pigment epithelium and choroid in age-related macular degeneration. Am. J. Ophthalmol. 2009, 147, 276–282.e1. [Google Scholar] [CrossRef] [PubMed]
- Newsome, D.A. A randomized, prospective, placebo-controlled clinical trial of a novel zinc-monocysteine compound in age-related macular degeneration. Curr. Eye Res. 2008, 33, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Chew, E.Y.; Clemons, T.E.; Agrón, E.; Sperduto, R.D.; Sangiovanni, J.P.; Kurinij, N.; Davis, M.D. Long-term effects of vitamins C and E, β-carotene, and zinc on age-related macular degeneration: AREDS report no. 35. Ophthalmology 2013, 120, 1604–1611.e4. [Google Scholar] [CrossRef]
- Ma, L.; Yan, S.F.; Huang, Y.M.; Lu, X.R.; Qian, F.; Pang, H.L.; Xu, X.R.; Zou, Z.Y.; Dong, P.C.; Xiao, X.; et al. Effect of lutein and zeaxanthin on macular pigment and visual function in patients with early age-related macular degeneration. Ophthalmology 2012, 119, 2290–2297. [Google Scholar] [CrossRef]
- Bartlett, H.E.; Eperjesi, F. Effect of lutein and antioxidant dietary supplementation on contrast sensitivity in age-related macular disease: A randomized controlled trial. Eur. J. Clin. Nutr. 2007, 61, 1121–1127. [Google Scholar] [CrossRef] [PubMed]
- Richer, S.; Stiles, W.; Statkute, L.; Pulido, J.; Frankowski, J.; Rudy, D.; Pei, K.; Tsipursky, M.; Nyland, J. Double-masked, placebo-controlled, randomized trial of lutein and antioxidant supplementation in the intervention of atrophic age-related macular degeneration: The Veterans LAST study (Lutein Antioxidant Supplementation Trial). Optometry 2004, 75, 216–230. [Google Scholar] [CrossRef] [PubMed]
- Weigert, G.; Kaya, S.; Pemp, B.; Sacu, S.; Lasta, M.; Werkmeister, R.M.; Dragostinoff, N.; Simader, C.; Garhöfer, G.; Schmidt-Erfurth, U.; et al. Effects of lutein supplementation on macular pigment optical density and visual acuity in patients with age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2011, 52, 8174–8178. [Google Scholar] [CrossRef] [PubMed]
- Souied, E.H.; Delcourt, C.; Querques, G.; Bassols, A.; Merle, B.; Zourdani, A.; Smith, T.; Benlian, P. Oral docosahexaenoic acid in the prevention of exudative age-related macular degeneration: The Nutritional AMD Treatment 2 study. Ophthalmology 2013, 120, 1619–1631. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, A.J.; Gerweck, C.; Barbato, D.; Nicolosi, R.J.; Handelman, G.J.; Curran-Celentano, J. A 12-wk egg intervention increases serum zeaxanthin and macular pigment optical density in women. J. Nutr. Biochem. 2006, 136, 2568–2573. [Google Scholar] [CrossRef]
- Kelly, E.R.; Plat, J.; Haenen, G.R.; Kijlstra, A.; Berendschot, T.T. The effect of modified eggs and an egg-yolk based beverage on serum lutein and zeaxanthin concentrations and macular pigment optical density: Results from a randomized trial. PLoS ONE 2014, 9, e92659. [Google Scholar] [CrossRef] [PubMed]
- Merle, B.M.J.; Buaud, B.; Korobelnik, J.F.; Bron, A.; Delyfer, M.N.; Rougier, M.B.; Savel, H.; Vaysse, C.; Creuzot-Garcher, C.; Delcourt, C. Plasma long-chain omega-3 polyunsaturated fatty acids and macular pigment in subjects with family history of age-related macular degeneration: The Limpia Study. Acta Ophthalmol. 2017, 95, e763–e769. [Google Scholar] [CrossRef]
- Christen, W.G.; Cook, N.R.; Manson, J.E.; Buring, J.E.; Chasman, D.I.; Lee, I.M.; Bubes, V.; Li, C.; Haubourg, M.; Schaumberg, D.A. Effect of vitamin D and ω-3 fatty acid supplementation on risk of age-related macular degeneration: An ancillary study of the VITAL randomized clinical trial. JAMA Ophthalmol. 2020, 138, 1280–1289. [Google Scholar] [CrossRef]
- Piatti, A.; Croce, A.; Mazzacane, D.; Traina, G.; Ambrosino, L.; Boni, L.; Lisi, L.; Cascella, M.C.; Grunberger, A. Effect of 2-year nutritional supplementation on progression of age-related macular degeneration. Eur. J. Ophthalmol. 2020, 30, 376–381. [Google Scholar] [CrossRef]
- Taylor, H.R.; Tikellis, G.; Robman, L.D.; McCarty, C.A.; McNeil, J.J. Vitamin E supplementation and macular degeneration: Randomised controlled trial. BMJ 2002, 325, 11. [Google Scholar] [CrossRef]
- Richer, S. Multicenter ophthalmic and nutritional age-related macular degeneration study—Part 2: Antioxidant intervention and conclusions. J. Am. Optom. Assoc. 1996, 67, 30–49. [Google Scholar]
- ReNEW: Phase 3 Study of Efficacy of Subcutaneous Elamipretide in Subjects with Dry Age-Related Macular Degeneration (Dry AMD) (ReNEW). Identifier: NCT06373731. Available online: https://clinicaltrials.gov/study/NCT06373731?term=NCT06373731&rank=1 (accessed on 22 April 2024).
- Study to Evaluate the Efficacy and Safety of Oral CT1812 in Participants with Geographic Atrophy (GA) Secondary to Dry Age-Related Macular Degeneration (AMD). Identifier: NCT05893537. Available online: https://clinicaltrials.gov/study/NCT05893537?term=NCT05893537&rank=1 (accessed on 22 April 2024).
- A Masked, Placebo-Controlled Study to Assess Iptacopan in Age-Related Macular Degeneration. Identifier: NCT05230537. Available online: https://clinicaltrials.gov/study/NCT05230537?term=NCT05230537&rank=1 (accessed on 22 April 2024).
- Zimura in Participants with GEOGRAPHIC Atrophy Secondary to Dry Age-Related Macular Degeneration. Identifier: NCT02686658. Available online: https://clinicaltrials.gov/study/NCT02686658?term=NCT02686658&rank=1 (accessed on 22 April 2024).
- A Clinical Trial Designed to Evaluate The Safety and Exploratory Efficacy of 1.0 Mg Luminate® (Alg-1001) as a Treatment for Non-Exudative Macular Degeneration. Identifier: NCT03626636. Available online: https://clinicaltrials.gov/study/NCT03626636?term=NCT03626636&rank=1 (accessed on 22 April 2024).
- Effects of Antiplatelet and Antioxidant Agents on Drusen Progression: A Pilot, Prospective Cohort Study. Identifier: NCT06165068. Available online: https://clinicaltrials.gov/study/NCT06165068?term=NCT06165068&rank=1 (accessed on 22 April 2024).
- Study to Evaluate Safety and Efficacy of EG-301 in Patients with Nonfocal Geographic Atrophy Secondary to dAMD. Identifier: NCT05170048. Available online: https://clinicaltrials.gov/study/NCT05170048?term=NCT05170048&rank=1 (accessed on 22 April 2024).
- Jaffe, G.J.; Schmitz-Valckenberg, S.; Boyer, D.; Heier, J.; Wolf-Schnurrbusch, U.; Staurenghi, G.; Schmidt-Erfurth, U.; Holz, F.G. Randomized trial to evaluate tandospirone in geographic atrophy secondary to age-related macular degeneration: The GATE study. Am. J. Ophthalmol. 2015, 160, 1226–1234. [Google Scholar] [CrossRef]
- A Study of Danicopan in Participants with Geographic Atrophy Secondary to Age-Related Macular Degeneration. Identifier: NCT05019521. Available online: https://clinicaltrials.gov/study/NCT05019521?term=NCT05019521&rank=1 (accessed on 22 April 2024).
- Kim, B.J.; Hunter, A.; Brucker, A.J.; Hahn, P.; Gehrs, K.; Patel, A.; Edwards, A.O.; Li, Y.; Khurana, R.N.; Nissim, I.; et al. Orally administered alpha lipoic acid as a treatment for geographic atrophy: A Randomized clinical trial. Ophthalmol. Retin. 2020, 4, 889–898. [Google Scholar] [CrossRef]
- Zaynab, M.; Fatima, M.; Abbas, S.; Sharif, Y.; Umair, M.; Zafar, M.H.; Bahadar, K. Role of secondary metabolites in plant defense against pathogens. Microb. Pathog. 2018, 124, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Lund, M.N. Reactions of plant polyphenols in foods: Impact of molecular structure. Trends. Food Sci. Technol. 2021, 112, 241–251. [Google Scholar] [CrossRef]
- Shao, Y.; Yu, H.; Yang, Y.; Li, M.; Hang, L.; Xu, X. A solid dispersion of quercetin shows enhanced Nrf2 activation and protective effects against oxidative injury in a mouse model of dry age-related macular degeneration. Oxid. Med. Cell. Longev. 2019, 2019, 1479571. [Google Scholar] [CrossRef]
- Salimiagdam, N.; Chwa, M.; Nesburn, A.; Kenney, M.C. Effects of quercetin in AMD cybrid Cell lines: Implications for a therapeutic role in AMD. Investig. Ophthalmol. Vis. Sci. 2022, 63, 467-A0004. [Google Scholar]
- Cao, X.; Liu, M.; Tuo, J.; Shen, D.; Chan, C.-C. The effects of quercetin in cultured human RPE cells under oxidative stress and in Ccl2/Cx3cr1 double deficient mice. Exp. Eye Res. 2010, 91, 15–25. [Google Scholar] [CrossRef]
- Kook, D.; Wolf, A.H.; Alice, L.Y.; Neubauer, A.S.; Priglinger, S.G.; Kampik, A.; Welge-Lüssen, U.C. The protective effect of quercetin against oxidative stress in the human RPE in vitro. Investig. Ophthalmol. Vis. Sci. 2008, 49, 1712–1720. [Google Scholar] [CrossRef] [PubMed]
- Hytti, M.; Piippo, N.; Salminen, A.; Honkakoski, P.; Kaarniranta, K.; Kauppinen, A. Quercetin alleviates 4-hydroxynonenal-induced cytotoxicity and inflammation in ARPE-19 cells. Exp. Eye Res. 2015, 132, 208–215. [Google Scholar] [CrossRef]
- Cheng, S.C.; Huang, W.C.; JH, S.P.; Wu, Y.H.; Cheng, C.Y. Quercetin inhibits the production of IL-1β-induced inflammatory cytokines and chemokines in ARPE-19 cells via the MAPK and NF-κB signaling pathways. Int. J. Mol. Sci. 2019, 20, 2957. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Jin, H.L.; Jang, D.S.; Jeong, K.W.; Choung, S.Y. Quercetin-3-O-α-l-arabinopyranoside protects against retinal cell death via blue light-induced damage in human RPE cells and Balb-c mice. Food Funct. 2018, 9, 2171–2183. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Kim, H.J.; Sparrow, J.R. Quercetin and cyanidin-3-glucoside protect against photooxidation and photodegradation of A2E in retinal pigment epithelial cells. Exp. Eye Res. 2017, 160, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, Y.; Yu, H.; Li, M.; Hang, L.; Xu, X. Apigenin protects mouse retina against oxidative damage by regulating the Nrf2 pathway and autophagy. Oxid. Med. Cell. Longev. 2020, 2020, 9420704. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.H.; Dong, X.W.; Yu, H.L.; Shen, W.; Lv, X.Y.; Wang, R.; Cheng, X.X.; Xiong, F.; Hu, X.L.; Wang, H. Cynaroside protects the blue light-induced retinal degeneration through alleviating apoptosis and inducing autophagy in vitro and in vivo. Phytomedicine 2021, 88, 153604. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.R.; Nakanishi, K.; Itagaki, Y.; Sparrow, J.R. Photooxidation of A2-PE, a photoreceptor outer segment fluorophore, and protection by lutein and zeaxanthin. Exp. Eye Res. 2006, 82, 828–839. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, M.; Yuki, K.; Kurihara, T.; Miyake, S.; Noda, K.; Kobayashi, S.; Ishida, S.; Tsubota, K.; Ozawa, Y. Biological role of lutein in the light-induced retinal degeneration. J. Nutr. Biochem. 2012, 23, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, D.; Zhang, Y.; Zhang, L.; Liao, Z.; Aihemaitijiang, S.; Hou, Y.; Zhan, Z.; Xie, K.; Zhang, Z. Lutein protected the retina from light induced retinal damage by inhibiting increasing oxidative stress and inflammation. J. Funct. Foods 2020, 73, 104107. [Google Scholar] [CrossRef]
- Arunkumar, R.; Gorusupudi, A.; Li, B.; Blount, J.D.; Nwagbo, U.; Kim, H.J.; Sparrow, J.R.; Bernstein, P.S. Lutein and zeaxanthin reduce A2E and iso-A2E levels and improve visual performance in Abca4(−/−)/Bco2(−/−) double knockout mice. Exp. Eye Res. 2021, 209, 108680. [Google Scholar] [CrossRef] [PubMed]
- Bian, Q.; Gao, S.; Zhou, J.; Qin, J.; Taylor, A.; Johnson, E.J.; Tang, G.; Sparrow, J.R.; Gierhart, D.; Shang, F. Lutein and zeaxanthin supplementation reduces photooxidative damage and modulates the expression of inflammation-related genes in retinal pigment epithelial cells. Free Radic. Biol. Med. 2012, 53, 1298–1307. [Google Scholar] [CrossRef]
- Sahin, K.; Gencoglu, H.; Akdemir, F.; Orhan, C.; Tuzcu, M.; Sahin, N.; Yilmaz, I.; Juturu, V. Lutein and zeaxanthin isomers may attenuate photo-oxidative retinal damage via modulation of G protein-coupled receptors and growth factors in rats. Biochem. Biophys. Res. Commun. 2019, 516, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Sahin, K.; Akdemir, F.; Orhan, C.; Tuzcu, M.; Gencoglu, H.; Sahin, N.; Ozercan, I.H.; Ali, S.; Yilmaz, I.; Juturu, V. (3R, 3’R)-zeaxanthin protects the retina from photo-oxidative damage via modulating the inflammation and visual health molecular markers. Cutan. Ocul. Toxicol. 2019, 38, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.W.; Yang, C.M.; Yang, C.H. Protective effect of astaxanthin on blue light-emitting diode-induced retinal cell damage via free radical scavenging and activation of PI3K/Akt/Nrf2 pathway in 661W cell model. Mar. Drugs 2020, 18, 387. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Guo, Z.; Wang, S.; Liu, Y.; Wei, Y. Fucoxanthin pretreatment ameliorates visible light-induced phagocytosis disruption of RPE cells under a lipid-rich environment via the Nrf2 pathway. Mar. Drugs 2021, 20, 15. [Google Scholar] [CrossRef] [PubMed]
- Laabich, A.; Vissvesvaran, G.P.; Lieu, K.L.; Murata, K.; McGinn, T.E.; Manmoto, C.C.; Sinclair, J.R.; Karliga, I.; Leung, D.W.; Fawzi, A.; et al. Protective effect of crocin against blue light- and white light-mediated photoreceptor cell death in bovine and primate retinal primary cell culture. Investig. Ophthalmol. Vis. Sci. 2006, 47, 3156–3163. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.H.; Sheu, S.J.; Liu, W.; Hsu, Y.T.; He, C.X.; Wu, C.Y.; Chen, K.J.; Lee, P.Y.; Chiu, C.C.; Cheng, K.C. Retinal protective effect of curcumin metabolite hexahydrocurcumin against blue light-induced RPE damage. Phytomedicine 2023, 110, 154606. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, C.S.; Moon, M.K.; Kim, J.S. Epicatechin breaks preformed glycated serum albumin and reverses the retinal accumulation of advanced glycation end products. Eur. J. Pharmacol. 2015, 748, 108–114. [Google Scholar] [CrossRef]
- Thichanpiang, P.; Wongprasert, K. Green tea polyphenol epigallocatechin-3-gallate attenuates TNF-α-induced intercellular adhesion molecule-1 expression and monocyte adhesion to retinal pigment epithelial cells. Am. J. Chin. Med. 2015, 43, 103–119. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.; Wang, C.; Song, D.; Song, Y.; Dunaief, J.L. Intraperitoneal injection of (-)-Epigallocatechin-3-gallate protects against light-induced photoreceptor degeneration in the mouse retina. Mol. Vis. 2017, 23, 171–178. [Google Scholar]
- Alaimo, A.; Di Santo, M.C.; Domínguez Rubio, A.P.; Chaufan, G.; García Liñares, G.; Pérez, O.E. Toxic effects of A2E in human ARPE-19 cells were prevented by resveratrol: A potential nutritional bioactive for age-related macular degeneration treatment. Arch. Toxicol. 2020, 94, 553–572. [Google Scholar] [CrossRef]
- Moshtaghion, S.M.; Caballano-Infantes, E.; Plaza Reyes, Á.; Valdés-Sánchez, L.; Fernández, P.G.; de la Cerda, B.; Riga, M.S.; Álvarez-Dolado, M.; Peñalver, P.; Morales, J.C.; et al. Piceid octanoate protects retinal cells against oxidative damage by regulating the Sirtuin 1/Poly-ADP-ribose polymerase 1 axis in vitro and in rd10 mice. Antioxidants 2024, 13, 201. [Google Scholar] [CrossRef] [PubMed]
- Cia, D.; Cubizolle, A.; Crauste, C.; Jacquemot, N.; Guillou, L.; Vigor, C.; Angebault, C.; Hamel, C.P.; Vercauteren, J.; Brabet, P. Phloroglucinol protects retinal pigment epithelium and photoreceptor against all-trans-retinal-induced toxicity and inhibits A2E formation. J. Cell. Mol. Med. 2016, 20, 1651–1663. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, K.; Zhou, F.; Zhu, L. Paeoniflorin attenuates atRAL-induced oxidative stress, mitochondrial dysfunction and endoplasmic reticulum stress in retinal pigment epithelial cells via triggering Ca(2+)/CaMKII-dependent activation of AMPK. Arch. Pharm. Res. 2018, 41, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Hsu, M.L.; Huang, W.C.; Zhou, Y.R.; Hu, S.; Huang, C.H.; Wu, S.J. Oleuropein protects human retinal pigment epithelium cells from IL-1β-induced inflammation by blocking MAPK/NF-κB signaling pathways. Inflammation 2022, 45, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; Song, J.; Wang, C.; Li, Y.; Dunaief, J.L. Berberine protects against light-induced photoreceptor degeneration in the mouse retina. Exp. Eye Res. 2016, 145, 1–9. [Google Scholar] [CrossRef]
- Kim, J.; Kim, K.M.; Kim, C.-S.; Sohn, E.; Lee, Y.M.; Jo, K.; Kim, J.S. Puerarin inhibits the retinal pericyte apoptosis induced by advanced glycation end products in vitro and in vivo by inhibiting NADPH oxidase-related oxidative stress. Free Radic. Biol. Med. 2012, 53, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Han, R.; Hao, P.; Wang, L.; Liu, M.; Jin, M.; Kong, D.; Li, X. Nepetin inhibits IL-1β induced inflammation via NF-κB and MAPKs signaling pathways in ARPE-19 cells. Biomed Pharmacother. 2018, 101, 87–93. [Google Scholar] [CrossRef]
- Kim, J.; Cho, K.; Choung, S.Y. Protective effect of Prunella vulgaris var. L extract against blue light induced damages in ARPE-19 cells and mouse retina. Free Radic. Biol. Med. 2020, 152, 622–631. [Google Scholar] [CrossRef]
- Li, L.; Chen, W.; Ji, X.; Li, L.; Wang, H.; Wang, J.; Qiao, C.; Zhang, N.; Guo, Y.; Wang, H. Wolfberry water extract attenuates blue light-emitting diode damage to ARPE-19 cells and mouse retina by activating the NRF2 signaling pathway. J. Food Sci. 2023, 88, 2229–2245. [Google Scholar] [CrossRef]
- Lee, S.J.; Roh, Y.J.; Kim, J.E.; Jin, Y.J.; Song, H.J.; Seol, A.; Park, S.H.; Douangdeuane, B.; Souliya, O.; Choi, S.I.; et al. Protective effects of Dipterocarpus tuberculatus in blue light-induced macular degeneration in A2E-laden ARPE19 cells and retina of Balb/c mice. Antioxidants 2023, 12, 329. [Google Scholar] [CrossRef]
- Koraneeyakijkulchai, I.; Phumsuay, R.; Thiyajai, P.; Tuntipopipat, S.; Muangnoi, C. Anti-inflammatory activity and mechanism of sweet corn extract on IL-1β-induced inflammation in a human retinal pigment epithelial cell line (ARPE-19). Int. J. Mol. Sci. 2023, 24, 2462. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Wu, X.; Gong, Y.; Song, Y.; Qiu, Q.; Li, C. Intraperitoneal injection of Ginkgo biloba extract enhances antioxidation ability of retina and protects photoreceptors after light-induced retinal damage in rats. Curr. Eye Res. 2007, 32, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.M.; Lee, S.J.; Choung, S.Y. Protective effects of Panax ginseng berry extract on blue light-induced retinal damage in ARPE-19 cells and mouse retina. J. Ginseng. Res. 2023, 47, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Choi, Y.R.; Shim, J.; Choi, Y.S.; Kim, Y.T.; Kim, M.K.; Kim, M.J. Suppressive effect of Arctium Lappa L. leaves on retinal damage against A2E-induced ARPE-19 cells and mice. Molecules 2020, 25, 1737. [Google Scholar] [CrossRef]
- Yoon, S.M.; Lee, B.L.; Guo, Y.R.; Choung, S.Y. Preventive effect of Vaccinium uliginosum L. extract and its fractions on age-related macular degeneration and its action mechanisms. Arch. Pharm. Res. 2016, 39, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.N.M.; Shin, C.Y.; Park, S.H.; Lee, T.H.; Ryu, H.Y.; Kim, S.B.; Auh, K.; Jeong, K.W. Solanum melongena L. extract protects retinal pigment epithelial cells from blue light-induced phototoxicity in in vitro and in vivo models. Nutrients 2021, 13, 359. [Google Scholar] [CrossRef] [PubMed]
- Shin, C.Y.; Lee, M.H.; Kim, H.M.; Chung, H.C.; Kim, D.U.; Lee, J.H.; Jeong, K.W. Protective effect of Ribes nigrum extract against blue light-induced retinal degeneration in vitro and in vivo. Antioxidants 2022, 11, 832. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Kim, D.H.; Kwak, H.S.; Yu, I.S.; Um, M.Y. Protective effect of Chrysanthemum boreale flower extracts against A2E-induced retinal damage in ARPE-19 cell. Antioxidants 2022, 11, 669. [Google Scholar] [CrossRef] [PubMed]
- Park, S.I.; Lee, E.H.; Kim, S.R.; Jang, Y.P. Anti-apoptotic effects of Curcuma longa L. extract and its curcuminoids against blue light-induced cytotoxicity in A2E-laden human retinal pigment epithelial cells. J. Pharm. Pharmacol. 2017, 69, 334–340. [Google Scholar] [CrossRef]
- Maccarone, R.; Di Marco, S.; Bisti, S. Saffron supplement maintains morphology and function after exposure to damaging light in mammalian retina. Investig. Ophthalmol. Vis. Sci. 2008, 49, 1254–1261. [Google Scholar] [CrossRef]
- Cho, H.M.; Jo, Y.D.; Choung, S.Y. Protective effects of Spirulina maxima against blue light-induced retinal damages in A2E-laden ARPE-19 cells and Balb/c mice. Nutrients 2022, 14, 401. [Google Scholar] [CrossRef]
- Organisciak, D.T.; Darrow, R.M.; Rapp, C.M.; Smuts, J.P.; Armstrong, D.W.; Lang, J.C. Prevention of retinal light damage by zinc oxide combined with rosemary extract. Mol. Vis. 2013, 19, 1433–1445. [Google Scholar]
- Liu, Y.; Liu, M.; Chen, Q.; Liu, G.M.; Cao, M.J.; Sun, L.; Lu, Z.; Guo, C. Blueberry polyphenols ameliorate visible light and lipid-induced injury of retinal pigment epithelial cells. J. Agric. Food Chem. 2018, 66, 12730–12740. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Song, X.; Zhang, D.; Zhou, F.; Wang, D.; Wei, Y.; Gao, F.; Xie, L.; Jia, G.; Wu, W.; et al. Blueberry anthocyanins: Protection against ageing and light-induced damage in retinal pigment epithelial cells. Br. J. Nutr. 2012, 108, 16–27. [Google Scholar] [CrossRef]
- Tülüce, Y.; Ozkol, H.; Koyuncu, I. Photoprotective effect of flax seed oil (Linum usitatissimum L.) against ultraviolet C-induced apoptosis and oxidative stress in rats. Toxicol. Ind. Health 2012, 28, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.H.; Chiu, H.F.; Han, Y.C.; Chen, I.H.; Shen, Y.C.; Venkatakrishnan, K.; Wang, C.K. Photoprotective effects of cranberry juice and its various fractions against blue light-induced impairment in human retinal pigment epithelial cells. Pharm. Biol. 2017, 55, 571–580. [Google Scholar] [CrossRef]
- Tanaka, J.; Nakanishi, T.; Ogawa, K.; Tsuruma, K.; Shimazawa, M.; Shimoda, H.; Hara, H. Purple rice extract and anthocyanidins of the constituents protect against light-induced retinal damage in vitro and in vivo. J. Agric. Food Chem. 2011, 59, 528–536. [Google Scholar] [CrossRef]
- Owoyele, B.V.; Ayilara, O.G. Coconut oil protects against light-induced retina degeneration in male Wistar rats. Pathophysiology 2019, 26, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, K.; Kuse, Y.; Tsuruma, K.; Kobayashi, S.; Shimazawa, M.; Hara, H. Protective effects of bilberry and lingonberry extracts against blue light-emitting diode light-induced retinal photoreceptor cell damage in vitro. BMC Complement. Altern. Med. 2014, 14, 120. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, T.; Jiang, Y.; Wu, L.; Cai, X.; Sun, X.; Sun, X. Photooxidative damage in retinal pigment epithelial cells via GRP78 and the protective role of grape skin polyphenols. Food Chem. Toxicol. 2014, 74, 216–224. [Google Scholar] [CrossRef]
- Wu, M.R.; Lin, C.H.; Ho, J.D.; Hsiao, G.; Cheng, Y.W. Novel protective effects of Cistanche tubulosa extract against low-luminance blue light-induced degenerative retinopathy. Cell. Physiol. Biochem. 2018, 51, 63–79. [Google Scholar] [CrossRef] [PubMed]
- Perretti, M.; Dalli, J. Resolution pharmacology: Focus on pro-resolving annexin A1 and lipid mediators for therapeutic innovation in inflammation. Annu. Rev. Pharmacol. Toxicol. 2023, 63, 449–469. [Google Scholar] [CrossRef]
- Yu, X.; Chen, K.; Wei, N.; Zhang, Q.; Liu, J.; Mi, M. Dietary taurine reduces retinal damage produced by photochemical stress via antioxidant and anti-apoptotic mechanisms in Sprague-Dawley rats. Br. J. Nutr. 2007, 98, 711–719. [Google Scholar] [CrossRef]
- Tanito, M.; Masutani, H.; Nakamura, H.; Ohira, A.; Yodoi, J. Cytoprotective effect of thioredoxin against retinal photic injury in mice. Investig. Ophthalmol. Vis. Sci. 2002, 43, 1162–1167. [Google Scholar]
- Xie, T.; Cai, J.; Yao, Y.; Sun, C.; Yang, Q.; Wu, M.; Xu, Z.; Sun, X.; Wang, X. LXA4 protects against blue-light induced retinal degeneration in human A2E-laden RPE cells and Balb-c mice. Ann. Transl. Med. 2021, 9, 1249. [Google Scholar] [CrossRef]
- Shaban, H.; Borrás, C.; Viña, J.; Richter, C. Phosphatidylglycerol potently protects human retinal pigment epithelial cells against apoptosis induced by A2E, a compound suspected to cause age-related macula degeneration. Exp. Eye Res. 2002, 75, 99–108. [Google Scholar] [CrossRef]
- Orhan, C.; Tuzcu, M.; Gencoglu, H.; Sahin, E.; Sahin, N.; Ozercan, I.H.; Namjoshi, T.; Srivastava, V.; Morde, A.; Rai, D.; et al. Different doses of β-cryptoxanthin may secure the retina from photooxidative injury resulted from common LED sources. Oxid. Med. Cell. Longev. 2021, 2021, 6672525. [Google Scholar] [CrossRef] [PubMed]
- Kim, O.S.; Kim, J.; Kim, C.S.; Kim, N.H.; Kim, J.S. KIOM-79 prevents methyglyoxal-induced retinal pericyte apoptosis in vitro and in vivo. J. Ethnopharmacol. 2010, 129, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Vincent, M.; Simon, L.; Brabet, P.; Legrand, P.; Dorandeu, C.; Him, J.L.K.; Durand, T.; Crauste, C.; Begu, S. Formulation and evaluation of SNEDDS loaded with original lipophenol for the oral route to prevent dry AMD and Stargardt’s disease. Pharmaceutics 2022, 14, 1029. [Google Scholar] [CrossRef]
- Kim, J.; Kim, C.S.; Sohn, E.; Lee, Y.M.; Jo, K.; Kim, J.S. KIOM-79 protects AGE-induced retinal pericyte apoptosis via inhibition of NF-kappaB activation in vitro and in vivo. PLoS ONE 2012, 7, e43591. [Google Scholar] [CrossRef]
- Ni, Y.Q.; Xu, G.Z.; Hu, W.Z.; Shi, L.; Qin, Y.W.; Da, C.D. Neuroprotective effects of naloxone against light-induced photoreceptor degeneration through inhibiting retinal microglial activation. Investig. Ophthalmol. Vis. Sci. 2008, 49, 2589–2598. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Lei, B.; Lam, T.T.; Yang, F.; Sinha, D.; Tso, M.O. Neuroprotection of photoreceptors by minocycline in light-induced retinal degeneration. Investig. Ophthalmol. Vis. Sci. 2004, 45, 2753–2759. [Google Scholar] [CrossRef] [PubMed]
- Kraus, R.L.; Pasieczny, R.; Lariosa-Willingham, K.; Turner, M.S.; Jiang, A.; Trauger, J.W. Antioxidant properties of minocycline: Neuroprotection in an oxidative stress assay and direct radical-scavenging activity. J. Neurochem. 2005, 94, 819–827. [Google Scholar] [CrossRef] [PubMed]
- Mandala, A.; Armstrong, A.; Girresch, B.; Zhu, J.; Chilakala, A.; Chavalmane, S.; Chaudhary, K.; Biswas, P.; Ogilvie, J.; Gnana-Prakasam, J.P. Fenofibrate prevents iron induced activation of canonical Wnt/β-catenin and oxidative stress signaling in the retina. NPJ Aging Mech. Dis. 2020, 6, 12. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Jang, Y.P.; Chang, S.; Sparrow, J.R. OT-674 suppresses photooxidative processes initiated by an RPE lipofuscin fluorophore. Photochem. Photobiol. 2008, 84, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Biswal, M.R.; Han, P.; Zhu, P.; Wang, Z.; Li, H.; Ildefonso, C.J.; Lewin, A.S. Timing of Antioxidant Gene Therapy: Implications for Treating Dry AMD. Investig. Ophthalmol. Vis. Sci. 2017, 58, 1237–1245. [Google Scholar] [CrossRef]
- Askou, A.L. Development of gene therapy for treatment of age-related macular degeneration. Acta Ophthalmol. 2014, 92, 1–38. [Google Scholar] [CrossRef] [PubMed]
- Berkowitz, S.T.; Finn, A.P. Gene therapy for age-related macular degeneration: Potential, feasibility, and pitfalls. Curr. Opin. Ophthalmol. 2024, 35, 170–177. [Google Scholar] [CrossRef]
- Khanani, A.M.; Thomas, M.J.; Aziz, A.A.; Weng, C.Y.; Danzig, C.J.; Yiu, G.; Kiss, S.; Waheed, N.K.; Kaiser, P.K. Review of gene therapies for age-related macular degeneration. Eye 2022, 36, 303–311. [Google Scholar] [CrossRef]
Antioxidant | Population | Study Design | Study Duration | Intervention | Outcome (s) | Citation |
---|---|---|---|---|---|---|
AREDS formulation | Early, intermediate, late, and wet AMD patients (Four different groups) | Multicenter, double-blind, placebo-controlled RCT | 6.3 years (Average) | Vitamin C, E, β-carotene, and/or Zn | Decreased 25% risk of wet AMD progression | [209] |
3549 patients (different stages of AMD) | Epidemiological follow-up study of AREDS RCT | 10 years | AREDS supplement with Vitamin C, E, β-Carotene, Cu, and Zn. | Significant reduction in risk of progression to exudative AMD | [223] | |
Dietary nutrients | 4504 AREDS and 3738 (AREDS2) participants | Post hoc analysis of AREDS and AREDS2 | - | AREDS and AREDS2 | Nutrients rich in carotenoids, vitamins, and minerals decrease the risk of late AMD progression | [50] |
Lutein and Zeaxanthin | Uni- or bilateral intermediate AMD | Epidemiological follow-up study of AREDS2 RCT | 6 years | AREDS2 supplement with Lutein, zeaxanthin, Vitamin C, E, Cu, and Zn. | Lutein and zeaxanthin showed improved association in preventing AMD progression with no sign of toxicity as compared to beta-carotene | [210] |
108 patients (early AMD) | Double-blind, placebo-controlled RCT | 48 weeks | Daily supplementation with 10 mg lutein or 20 mg lutein 10 mg + 10 mg zeaxanthin or placebo | The lutein and zeaxanthin group showed a significant increase in MPOD | [224] | |
Lutein | 25 AMD patients | Double-blind, placebo-controlled RCT | 9 months | Supplement of 6 mg lutein with vitamins and minerals | The supplement has no significant difference in contrast sensitivity in people with AMD | [225] |
90 dry AMD patients | Double-blind, placebo-controlled RCT | 12 months | Daily intake of 10 mg lutein or 10 mg lutein + antioxidants, vitamins and minerals | Improved visual acuity in both groups | [226] | |
126 AMD patients (Stages 2, 3 and 4) | Double-blind, placebo-controlled RCT | 6 months | Daily intake of 20 mg lutein for 3 months then 10 mg for another 3 months | Lutein supplementation increased MPOD | [227] | |
PUFAs | Early AMD in one eye and wet AMD in another (263 patients) | Double-blind, placebo-controlled RCT | 3 years | Daily supplementation with fish oil capsule (DHA 840 mg and EPA 270 mg) | No significant difference in the incidence of CNV in the study eye compared to the placebo | [228] |
Lutein, zeaxanthin, and ω-3 fatty acids | 172 patients (dry AMD) | Double-blind, RCT | 12 months | Daily supplementation with 1 capsule | Significant improvement in plasma antioxidant capacity | [211] |
Lutein and DHA | 100 healthy participants | Multicenter, double-blind study | 3 months | Daily supplementation with lutein or lutein + DHA | MPOD is significantly higher in the lutein + DHA group | [217] |
Eggs | 24 healthy females | RCT | 12 weeks | 6 eggs per week (Egg 1 and Egg 2 with different concentrations of Lutein and Zeaxanthin per yolk) | Significantly increased MPOD in both groups | [229] |
Eggs+ lutein and DHA | 99 healthy participants | Double-blind RCT | 4 months | Daily 2 standard eggs or enriched eggs with lutein, zeaxanthin, and DHA | Significantly increased MPOD in both groups | [216] |
Eggs+ lutein or zeaxanthin | 100 healthy participants | RCT | 90 days | Daily supplementation with lutein/zeaxanthin-enriched egg or lutein-rich egg yolk | No changes in MPOD but an increase in dutein and zeaxanthin serum concentration | [230] |
Lutein+ zeaxanthin and ω-3 fatty acids | 120 participants with a family history of wet AMD | Double-blind, placebo-controlled RCT | 1 year | Daily supplementation | Significant association with macular pigment optical density (MPOD) | [231] |
ω-3 fatty acids and Vit D | 25,871 healthy participants | Nationwide, double-blind, placebo-controlled RCT | 25 Months | Vitamin D (2000 IU/day) ω-3 fatty acids (1g/day) | No impact on AMD incidence | [232] |
Caroteninoids+ ω-3 fatty acids and vitamins | 80 patients with intermediate AMD | Double-blind, placebo-controlled RCT | 2 year | Daily supplementation with 1 Tablet | Clinically prevented intermediate AMD progression | [233] |
Acetyl L-Carnitine, ω-3 fatty acids, and coenzyme Q10 | 106 early AMD patients | Double-blind, placebo-controlled RCT | 12 months | Daily supplementation with 2 capsules | Significant improvement in visual functions in treated groups | [218] |
Zinc-monocysteine (ZMC) | 74 participants with macular drusen (37 per group) | Double-blind, placebo-controlled RCT | 6 months | 25 mg ZMC twice daily supplementation | ZMC is well tolerated and improves the macular function in AMD compared to placebo | [222] |
Saffron | 100 patients with mild/moderate AMD | Double-blind, placebo-controlled, crossover RCT | 6 months | Daily supplementation with 20 mg saffron for 3 months | Improved visual function in AMD patients | [220] |
Vitamin E | 1193 participants | Placebo-controlled RCT | 4 years | Daily supplementation with Vitamin E 400 IU | No effect on the incidence of early AMD and its progression | [234] |
ARMD antioxidant capsule | 71 dry AMD patients | Double-blind, placebo-controlled RCT | 18 months | Twice daily supplementation | No improvement in the fundus appearance | [235] |
Elamipretide | Adults ≥ 55 years with dry AMD | Phase III, double-blind, placebo RCT | 96 weeks | Daily 40 mg subcutaneous injection | Evaluate safety and efficacy | [236] |
CT1812 | 246 patients with GA | Phase II, double-blind, placebo-controlled RCT | 104 weeks | 200 mg oral daily | Evaluate safety and efficacy | [237] |
Iptacopan (LNP023) | 146 patients with early/intermediate AMD in one eye and CNV in the other | Phase II, double-blind, placebo-controlled RCT | - | Oral capsules | Evaluate safety and efficacy | [238] |
Avacincaptad pegol (Zimura) | 286 participants with GA | Phase II/III, double-blind, placebo-controlled RCT | 18 months | Monthly 1–4 mg IV injection | Evaluate safety and efficacy | [239] |
Luminate (ALG-1001) | 40 participants with dry AMD with BVCA of 20/40–20/200 | Phase II, single-blind, placebo-controlled RCT | 16 weeks | 1 mg intravitreal injection | Evaluate safety and efficacy | [240] |
Antiplatelets with or without antioxidant | 174 dry AMD patients with at least 1 large drusen | Phase III, single-blind, placebo-controlled RCT | - | Aspirin 81 mg, clopidogrel 75 mg, and N-aceytl cysteine 600 mg per day | Evaluate safety and efficacy | [241] |
EG-301 | 90 intermediate AMD patients | Phase II, open-label, placebo-controlled RCT | - | 150 mg daily | Evaluate safety and efficacy | [242] |
Tandonspirone (AL-8309B | 48 patients with GA | Phase III, double-blind, placebo-controlled RCT | 36 months | 1% and 1.75% eye drops | No difference in the GA lesion growth between treatment and control | [243] |
Danicopan (ALXN2040) | 365 patients with GA | Phase II, double-blind, placebo-controlled RCT | 104 weeks | 100 mg bid 200 mg bid 400 mg qid | Dose finding study | [244] |
Alpha Lipoic acid | 68 patients with GA | Phase II, double-blind, placebo-controlled RCT | 18 months | 1200 mg oral daily | No beneficial effect on GA lesions | [245] |
Antioxidant Compound | Experimental Model | Dose | Observation | Citation |
---|---|---|---|---|
Quercetin (solid dispersion) | NFE2L2 knock-out mice (dry AMD model) | 200 mg/kg | ↓ RPE deposits and thickness of BrM ↑ levels of HO-1, HQO-1, and GCL in NFE2L2 knockout mice | [248] |
Quercetin | Cybrid ARPE-19 cells | 20 µM | ↓ ROS levels and increased cellular metabolism | [249] |
Ccl2/Cx3cr1 DKO mice | 50 µM | ↓ oxidative damage in RPE cells by suppressing pro-inflammatory mediators and intrinsic apoptotic pathway | [250] | |
Oxidative injury in ARPE-19 cells by H2O2 | 50 µM | ↓ oxidative damage, senescence, and apoptosis in RPE cells | [251] | |
4-HNE-induced cytotoxicity in ARPE-19 cells | 50 µM | preserved mitochondrial function and cell membrane integrity, ↓ expression of pro-inflammatory molecules by regulating ERK, p38 MAPK, and CREB signaling | [252] | |
IL-1β caused the generation of inflammatory mediators in ARPE-19 cells | 2.5–20 µM | ↓ secretion of IL-6, IL-8, sICAM-1, ICAM-1, and MCP-1 by inhibiting NF-κB and MAPK pathway | [253] | |
Quercetin-3-O-α-L-arabinopyranoside | Light-induced oxidative injury in A2E-laden ARPE-19 and mice primary RPE cells | 12.5–200 µM 25–100 mg/kg | ↓ inflammation and apoptosis by inhibition of AP1, NF-κB, C3, and PARP activity | [254] |
Quercetin and Cyanidin 3-glucoside | Oxidative stress in A2E-loaded ARPE-19 cells induced by light | 10–50 µM 200–500 µM (acellular assay) | ↓ ROS production, A2E photo-oxidation, methylglyoxal adduct formation, and RAGE mRNA expression ↓ release of 4-HNE when incubated with bovine rod outer segment and all-trans-retinal followed by irradiation | [255] |
Apigenin (solid dispersion) | Dry AMD mice model | 20–60 mg/kg | ↓ ROS and MDA levels due to upregulation of the NFE2L2 pathway and its downstream genes HO-1, NQO-1, and antioxidant enzymes SOD, GSH-Px | [256] |
Cynaroside | Phototoxicity in A2E-loaded ARPE-19 cells and rat retina induced by light | 10–20 µM 2–4 µg/eye | ↑ cell viability, ↓ ROS generation ↓ apoptosis by increasing Bcl2/Bax levels and decreasing caspase 3 and 9 expression induced autophagy and ↓ levels of IL-1β, IL-8, and TNFα by ↓ NLRP3 signaling ameliorated retinal morphology and thickness and ↓ retinal degeneration | [257] |
Lutein | Retinal injury in mice induced by light | 170 mg/kg | ameliorated visual impairment, a and b wave changes in ERG, and thinning of photoreceptor layer ↓ upregulation of γH2AX preventing apoptosis in the photoreceptor layer Promoted DNA repair and survival by activating eyes absent (EYA) | [259] |
Oxidative damage and retinal injury in rats induced by light | 25–100 mg/kg | ↓ oxidative stress and suppressed pro-inflammatory cytokine levels ameliorated a and b waves of electroretinogram and thinning of photoreceptor layer due to apoptosis | [260] | |
Lutein and zeaxanthin | A2-PE/A2E induced photo-oxidation in BALB/cByJ and C57BL/6J mice primary RPE cells | 100–200 µM | ↓ photo-oxidation in RPE cells by quenching singlet oxygen | [258] |
Oxidative stress in Abca4/Bco2 double knock-out mice induced by light | 2.5 mg | ↓ levels of A2E and isoA2E in RPE/choroid and increased carotenoid accumulation in the retina | [261] | |
A2E- and blue light-induced photo-oxidation in ARPE-19 cells | 10 µM | ↓ proteasomal inactivation and changes in MCP-1, CFH, and IL-8 | [262] | |
Oxidative damage in rat retina induced by light | 100 mg/kg | ↑ antioxidant capacity, Gnat, retinal rho, Rod-arrestin, NCAM, BDNF, NFE2L2, HO-1, GAP43, IGIF, and NGF gene expression levels ↓ levels of pro-inflammatory markers NF-κB and GFAP | [263] | |
(3R, 3’R)-zeaxanthin | Oxidative damage in rat retina induced by light | 100 mg/kg | alleviated oxidative damage by activating antioxidant enzymes ↑ gene expression of Gnat, retinal rho, Rod-arrestin, NCAM, GAP43, NFE2L2, HO-1, and downregulated gene expression of GFAP, NF-κB. ↓ MDA levels, morphological alterations, and edema in the retinal layer | [264] |
Astaxanthin | Oxidative damage in 661W photoreceptor cells induced by light | 5–50 µM | ↑ expression of phase II antioxidant enzymes and suppressed ROS production and apoptotic markers by activating PI3K/Akt and NFE2L2 signaling pathway | [265] |
Fucoxanthin | Phagocytosis disruption in ARPE-19 cells mediated by light and lipid peroxidation | 5–20 µg/mL | ↓ ROS, MDA, TNF-α, IL-1β, and IL-6 levels recovered phagocytic index via NFE2L2 pathway | [266] |
Crocin | Photoreceptor degeneration in bovine and primate primary retinal cells mediated by light | 80–160 µM | ↓ photoreceptor cell death (EC50 30 µM) ↓ number of TUNEL-positive cells | [267] |
Hexahydrocurcumin | Oxidative injury in ARPE-19 and primary mice RPE cells induced by light | 1–15 µM | ↓ oxidative and ER stress-induced damage by promoting autophagic flux | [268] |
Epicatechin | AGE-induced retinal apoptosis in diabetic rats | 50–100 mg/kg 0.01–1 µM | ↓ AGE accumulation in the retina and enhanced in vitro glycated human serum albumin breaking activity (cross-link breaking activity) ↓ number of TUNEL-positive cells | [269] |
Epigallocatechin gallate | TNF-α elicited oxidative stress in ARPE-19 cells | 10–100 µM | ↓ ROS generation, monocyte RPE adhesion, IkB degradation, ICAM-1, and phosphorylated NF-κB expression via NF-κB signaling | [270] |
Photoreceptor damage in mice retina induced by light | 50 mg/kg | Preserved photoreceptor morphology, increased amplitude of ERG waves ↑ mRNA expression of SOD2 | [271] | |
Resveratrol | Phototoxicity in A2E-laden ARPE-19 cells induced by light | 25 µM | ↓ apoptosis by preserving transepithelial resistance, cytoskeleton architecture, Preserved intracellular redox balance, and mitochondrial integrity | [272] |
Phloroglucinol | atRAL induced oxidative stress in rat primary RPE cells | 0.5–50 µg/mL | ↑ cell viability ameliorated retinal morphology ↓ A2E formation and producing chromene adduct | [274] |
Paeoniflorin | atRAL induced oxidative injury in ARPE-19 cells | 50–200 µM | ↓ ROS levels, mitochondrial dysfunction, and ER stress due to Ca2+/CaMKII-mediated AMPK activation | [275] |
Oleuropein | Inflammatory injury in ARPE-19 cells stimulated by IL-1β | 3–100 µM | ↓ secretion of IL-6, sICAM-1, and MCP-1 by blocking p38 MAPK and JNK1/2 pathways | [276] |
Berberine | Light-mediated photoreceptor damage in mice retina | 200 mg/kg | ameliorated distortion in the photoreceptor layer, ERG activity, and number of TUNEL-positive photoreceptor cells ↑ Rho, Rpe65, and mct3 mRNA expression ↓ oxidative stress by repression of oxidative stress mRNA expression, MDA, and expression of microglia/macrophages | [277] |
Puerarin | Apoptosis induced by AGE-BSA in rats and bovine retinal pericytes | 10 µM 1–10 µM | Ameliorated retinal microvasculature by ↓ ROS levels, NADPH oxidase activity, and pericyte apoptosis via suppression of Rac1, p47phox, and NF-κB. | [278] |
Nepetin | Inflammation in ARPE-19 cells mediated by IL-1β | 2.5–10 µM | ↓ secretion of IL-8, IL-6, and MCP-1 by repressing the NF-κB and MAPKs activation | [279] |
Antioxidant Extract | Experimental Model | Dose | Observation | Citation |
---|---|---|---|---|
Prunella vulgaris L. extract | Retinal damage in A2E-laden ARPE-19 cells and mice retina mediated by blue light | 100 µg/mL 100–200 mg/kg | ameliorated cell viability, A2E accumulation, ROS/MDA generation, GSH, and SOD activity due to upregulation of NFE2L2/HO-1 signaling ↓ apoptosis by inhibiting the expression of c-caspase-3 and c-PARP ↓ translocation of NF-κB and upregulation of pro-inflammatory genes IL-1β, IL-6, MCP-1, VEGFA | [280] |
Wolfberry water extract | Oxidative injury in A2E-treated ARPE-19 cells and mice retina induced by light | 0.1–1 mg/mL 470 mg/kg | ↓ ROS accumulation and apoptosis by maintaining mitochondrial membrane potential due to NFE2L2 signaling ↑ antioxidant enzyme genes and decreased MDA levels Increased amplitudes of a and b ERG waves and ONL thickness | [281] |
Dipterocarpus tuberculatus Roxb. extract | Macular degeneration induced by A2E and blue light in ARPE-19 cells and retina of mice | 50–200 µg/mL 100–200 mg/kg | ↑ cytoprotective actions by activating SOD and NFE2L2 and ↓ COX-2, iNOS, NLRP3 inflammasome, and pro-inflammatory cytokine expression depicted increase in thickness of the retina, POS, ONL, and INL in Balb/c mice | [282] |
Sweet corn extract | Inflammation in ARPE-19 cells induced by IL-1β | 1–100 µg/mL | ↓ inflammation by reducing levels of MCP-1, IL-6, IL-8, ICAM-1, and iNOS by inhibiting p65 NF-κB and MAPK signaling pathways | [283] |
Ginkgo biloba L. extract | Light-induced oxidative stress and retinal damage in Rats | 100 mg/kg | ↓ oxidative stress by increasing CAT, T-SOD, GSH-Px, and decreasing MDA levels ↓ apoptosis in photoreceptors within ONL and ameliorated ONL thickness | [284] |
Ginseng berry extract | Retinal injury in A2E-loaded ARPE-19 cells and mice mediated by light | 80 µM 50–200 mg/kg | ↓ apoptosis by decreasing the expression of ROS, caspase-3, c-PARP, and apoptotic-related factors ameliorated retinal architecture by restoring thickness of retinal layer repressing inflammation and apoptosis mediated by NF-κB, SIRT1/PGC-1α signaling | [285] |
Arctium lappa L. extract | Phototoxicity in A2E-loaded ARPE-19 cells and mice retina induced by light | 10–25 µM 100–200 mg/kg | ↓ A2E accumulation and suppressed apoptosis signaling in RPE cells. ↓ retinal damage by mitigating histological disturbances in POS, ONL, INL, and GCL. | [286] |
Vaccinium uliginosum L. extract and fractions | Phototoxicity in A2E-laden ARPE-19 cells induced by light | 12.5–100 µg/mL | ↓ intracellular A2E accumulation, photo-oxidation, and apoptosis in RPE cells | [287] |
Retinal damage in A2E-loaded ARPE-19 cells and mice retina induced by light | 100–500 µg/mL 25–100 mg/kg | ↓ intracellular A2E accumulation and photo-oxidation in RPE cells rescued ONL thickness and nuclei count of the retina in a murine model | [287] | |
Solanum melongena L. extract | Light-mediated phototoxicity in A2E-laden ARPE-19 cells and mice retina | 10–100 µg/mL 100–200 mg/kg | ↓ ROS level, A2E accumulation, and downregulated NF-κB genes (IL-1β and CXCL8) ↓ fundus damage and retinal layer degeneration in BALB/c mice | [288] |
Ribes nigrum L. extract | Macular degeneration in A2E-loaded ARPE-19 cells and mice retina mediated by light | 10–50 µg/mL 25–100 mg/kg | ↓ the accumulation of LF and ROS levels ↓ ocular lesions in mice retina and rescued the whole retina, POS, ONL, and INL thickness | [289] |
Chrysanthemum boreale M. flower extract | Oxidative injury in ARPE-19 cells laden with A2E | 5–30 µg/mL (different fractions) | ↓ intracellular A2E accumulation and increased cell viability | [290] |
Curcuma longa L. extract and fractions | Cytotoxicity in A2E-laden ARPE-19 cells induced by light | 10 µg/mL 15 µM | ↓ apoptosis by downregulation of c-Abl and p53 mRNA expression | [291] |
Crocus sativus L. extract | Retinal stress in rats induced by light | 1 mg/kg | ameliorated photoreceptor and ONL layer by preventing apoptosis | [292] |
Spirulina maxima extract | Macular degeneration mediated by A2E and light in ARPE-19 cells and mice | 100 µg/mL 50–200 mg/kg | ↓ ROS production and downregulated inflammatory gene expression and apoptosis restored ONL thickness of the whole retina, POS, ONL, and INL | [293] |
Rosemary Extract | Oxidative injury and retinal damage in rats induced by light | 1.3 mg/kg 17 mg/kg | ameliorated oxidative stress protein markers, cell viability, photoreceptor morphology, and DNA degradation ↓ formation of CEP protein adduct and suppressed loss of opsin and arrestin from cone cells | [294] |
Blueberry phenol-rich fraction | Light–lipid elicited oxidative injury in ARPE-19 cells | 10 µg/mL | ↓ intracellular ROS generation and ↑ phagocytic index ↓ SA -β-gal and VEGF expression | [295] |
Blueberry anthocyanin extract | Premature senescence in ARPE-19 cells induced by light | 0.1–10 µg/mL | ↓ oxidative damage by ↓ ROS levels, VEGF expression, and apoptosis ↓ percentage of senescent cells as depicted by β-galactosidase positive staining | [296] |
Linum usitatissimum L. oil | Oxidative injury and apoptosis in rat retina induced by light | 4 mL/kg | ↓ photoreactive retinal damage by ↓ protein carbonyl and MDA levels and increasing SOD, GSH, and GSH-Px activity | [297] |
Cranberry juice fractions | Oxidative injury in ARPE-19 cells due to light | 5–50 µg/mL | ↑ free radical scavenging activity and cell viability | [298] |
Purple rice extract | Oxidative injury in murine photoreceptor 661W cells and retina induced by light | 3–30 µg/mL 10 µg/eye | ↑ cell viability and ↓ ROS generation ↑ free radical scavenging activity | [299] |
Cocos nucifera L. oil | Oxidative stress and retinal injury in rats induced by light | 5 mL/kg | ↓ MDA levels and caspase-3 activity | [300] |
Bilberry and lingonberry extract | Oxidative injury in murine photoreceptor 661W cells induced by light | 10 µg/mL | Protected photoreceptor cell damage by ↓ ROS generation and ↓ NF-κB, p38 MAPK activation, and LC3-I to LC3-II conversion. ↓ apoptosis by ↓ caspase-3/7 activity | [301] |
Grape skin extracts | Oxidative injury in A2E-treated ARPE-19 cells | 5–25 µM | ↓ ROS and suppressed ER stress-mediated apoptosis in a dose-dependent manner | [302] |
Cistanche tubulosa (Schrenk) Hook. F. extract | Light-induced degenerative neuropathy in ARPE-19 and rat RPE cells | 50–100 µg/mL 100 mg/kg | ↓ expression of caspase-3 and number of TUNEL-positive cells ↓ phosphorylation of c-JNK, ERK 1/2, and p38 ameliorated retinal thickness | [303] |
Antioxidant Endogenous Substances | Experimental Model | Dose | Observation | Citation |
---|---|---|---|---|
Taurine | Oxidative injury in rat retina induced by light | 4 g/100 g diet (4% Taurine) | ameliorated retinal morphology, ONL thickening, and amplitude of a and b ERG waves ↓ MDA level, ↑ SOD, GSH-Px expression, and prevented photoreceptor apoptosis via AP1/NF-κB/caspase-1 mechanism | [305] |
Thioredoxin | Oxidative injury in mice retina induced by light | 5 µg | ↓ the number of TUNEL-positive nuclei and degeneration of photoreceptor cells ↑ thioredoxin expression in retinal and RPE ↓ expression of tyrosine phosphorylated and oxidized proteins in the retina | [306] |
Lipoxin A4 | A2E- and light-mediated oxidative injury in ARPE-19 cells and mice retina | 50–100 nM | ↓ ROS production and maintained the tight junctions of RPE by modulating the Keap1/NFE2L2/ARE/HO-1 pathway ↓ ONL degeneration in the retina of mice | [307] |
Phosphatidylglycerol | A2E-mediated apoptosis in human primary RPE cells | 2–50 µg/mL | ↓ apoptosis by preventing detachment of cytochrome c in mitochondria | [308] |
Antioxidant Formulation | Experimental Model | Dose | Observation | Citation |
---|---|---|---|---|
BCX oral formulation | Oxidative injury in rat retina due to light | 2–4 mg/kg | ↓ MDA levels rescued antioxidant enzyme level and retinal and ONL thickening ameliorated mitochondrial stress markers (Grp78, Grp94, ATF4, ATF6), growth factors (VEGF, GAP43), neuronal protein (GFAP, NCAM), inflammatory mediators (IL-1β, IL-6, NF-κB), apoptotic proteins (caspase-3, Bax, Bcl-2), and antioxidant HO-1 levels | [309] |
KIOM-79 | Methylglyoxal-induced apoptosis in primary retinal pericytes of rats | 10 µg/mL | ameliorated retinal microvasculature and ↓ ROS generation, oxidative DNA damage, and methylglyoxal accumulation | [310] |
AGE-induced apoptosis in rat retinal pericyte | 50 mg/kg | ameliorated retinal vasculature, suppressed NF-κB activation, and inhibited pericyte apoptosis | [312] | |
SNEDDS loaded lipophenol | Retinal degeneration in Abca4 knock-out mice induced by light | 50–100 mg/kg | ↓ photoreceptor degeneration ↑ amplitudes of a and b ERG waves ↑ INL and ONL thickness in the retina | [311] |
Synthetic Compound | Experimental Model | Dose | Observation | Citation |
---|---|---|---|---|
Naloxone | Photoreceptor degeneration in rats induced by light | 1 mg/mL | ↓ number of OX42-positive microglia and TUNEL-positive ONL in the retina ↓ expression of IL-1β and preserved amplitude of a and b ERG waves | [313] |
Minocycline | Retinal degeneration in mice induced by light | 45 mg/kg | ameliorated loss of photoreceptor cells and depicted marked preservation of outer retina preserved amplitudes of a and b ERG waves | [314] |
Fenofibrate | Iron-induced oxidative stress in ARPE-19 cells and mouse model | 50–100 µM | reversed iron-induced upregulation of Wnt/β-catenin signaling owing to chelation of iron | [316] |
OT-674 | Oxidative stress in A2E-loaded and light-irradiated ARPE-19 cells | 0.01–10 mM | ↑ cell viability and ↓ photo-oxidation by quenching singlet oxygen | [317] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basyal, D.; Lee, S.; Kim, H.J. Antioxidants and Mechanistic Insights for Managing Dry Age-Related Macular Degeneration. Antioxidants 2024, 13, 568. https://doi.org/10.3390/antiox13050568
Basyal D, Lee S, Kim HJ. Antioxidants and Mechanistic Insights for Managing Dry Age-Related Macular Degeneration. Antioxidants. 2024; 13(5):568. https://doi.org/10.3390/antiox13050568
Chicago/Turabian StyleBasyal, Deepak, Sooyeun Lee, and Hye Jin Kim. 2024. "Antioxidants and Mechanistic Insights for Managing Dry Age-Related Macular Degeneration" Antioxidants 13, no. 5: 568. https://doi.org/10.3390/antiox13050568
APA StyleBasyal, D., Lee, S., & Kim, H. J. (2024). Antioxidants and Mechanistic Insights for Managing Dry Age-Related Macular Degeneration. Antioxidants, 13(5), 568. https://doi.org/10.3390/antiox13050568