A Novel MAO-B/SSAO Inhibitor Improves Multiple Aspects of Dystrophic Phenotype in mdx Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Mice and PXS-5131 In Vivo Treatments
2.3. Muscle Functional Assessment
2.4. Creatine Kinase Assay
2.5. Histological Analyses
2.6. Immunofluorescence Analyses
2.7. Dihydroethidium (DHE) Staining
2.8. Transcriptomic Analyses
2.9. Quantitative Real-Time Polymerase Chain Analyses
2.10. Statistical Analyses
3. Results
3.1. Inhibition of SSAO and MAO-B Decreased Oxidative Stress, Inflammatory Infiltrate and Collagen Deposition in mdx Mice
3.2. Treatment with PXS-5131 Partially Prevented Force Drop upon Eccentric Contractions
3.3. Effects of PXS-5131 Treatment on Gene Expressions
3.4. Longer PXS-5131 Treatment Decreased Histological Alterations in the Diaphragm and Heart at Later in Older Mice
4. Discussion
5. Study Limitations and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duan, D.; Goemans, N.; Takeda, S.; Mercuri, E.; Aartsma-Rus, A. Duchenne Muscular Dystrophy. Nat. Rev. Dis. Prim. 2021, 7, 13. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Zhang, J.; Shi, K.; Liu, Z. Drug Development Progress in Duchenne Muscular Dystrophy. Front. Pharmacol. 2022, 13, 950651. [Google Scholar] [CrossRef] [PubMed]
- Vitiello, L.; Tibaudo, L.; Pegoraro, E.; Bello, L.; Canton, M. Teaching an Old Molecule New Tricks: Drug Repositioning for Duchenne Muscular Dystrophy. Int. J. Mol. Sci. 2019, 20, 6053. [Google Scholar] [CrossRef] [PubMed]
- Elangkovan, N.; Dickson, G. Gene Therapy for Duchenne Muscular Dystrophy. J. Neuromuscul. Dis. 2021, 8, S303–S316. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, A.S.; Puig, M.; Nagaraju, K.; Hoffman, E.P.; Villalta, S.A.; Rao, V.A.; Wakefield, L.M.; Woodcock, J. Immune-Mediated Pathology in Duchenne Muscular Dystrophy. Sci. Transl. Med. 2015, 7, 299rv4. [Google Scholar] [CrossRef] [PubMed]
- Salmi, M.; Jalkanen, S. Vascular Adhesion Protein-1: A Cell Surface Amine Oxidase in Translation. Antioxid. Redox Signal. 2019, 30, 314–332. [Google Scholar] [CrossRef] [PubMed]
- Weston, C.J.; Shepherd, E.L.; Claridge, L.C.; Rantakari, P.; Curbishley, S.M.; Tomlinson, J.W.; Hubscher, S.G.; Reynolds, G.M.; Aalto, K.; Anstee, Q.M.; et al. Vascular Adhesion Protein-1 Promotes Liver Inflammation and Drives Hepatic Fibrosis. J. Clin. Investig. 2015, 125, 501–520. [Google Scholar] [CrossRef] [PubMed]
- Newsome, P.N.; Sanyal, A.J.; Neff, G.; Schattenberg, J.M.; Ratziu, V.; Ertle, J.; Link, J.; Mackie, A.; Schoelch, C.; Lawitz, E.; et al. A Randomised Phase IIa Trial of Amine Oxidase Copper-Containing 3 (AOC3) Inhibitor BI 1467335 in Adults with Non-Alcoholic Steatohepatitis. Nat. Commun. 2023, 14, 7151. [Google Scholar] [CrossRef] [PubMed]
- Zeeuw, D.d.; Renfurm, R.W.; Bakris, G.; Rossing, P.; Perkovic, V.; Hou, F.F.; Nangaku, M.; Sharma, K.; Heerspink, H.J.L.; Garcia-Hernandez, A.; et al. Efficacy of a Novel Inhibitor of Vascular Adhesion Protein-1 in Reducing Albuminuria in Patients with Diabetic Kidney Disease (ALBUM): A Randomised, Placebo-Controlled, Phase 2 Trial. Lancet Diabetes Endocrinol. 2018, 6, 925–933. [Google Scholar] [CrossRef]
- Matthews, D.C.; Ritter, A.; Thomas, R.G.; Andrews, R.D.; Lukic, A.S.; Revta, C.; Kinney, J.W.; Tousi, B.; Leverenz, J.B.; Fillit, H.; et al. Rasagiline Effects on Glucose Metabolism, Cognition, and Tau in Alzheimer’s Dementia. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2021, 7, e12106. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, R.; Munari, F.; Angioni, R.; Venegas, F.; Agnellini, A.; Castro-Gil, M.P.; Castegna, A.; Luisetto, R.; Viola, A.; Canton, M. Targeting Monoamine Oxidase to Dampen NLRP3 Inflammasome Activation in Inflammation. Cell. Mol. Immunol. 2021, 18, 1311–1313. [Google Scholar] [CrossRef] [PubMed]
- Menazza, S.; Blaauw, B.; Tiepolo, T.; Toniolo, L.; Braghetta, P.; Spolaore, B.; Reggiani, C.; Lisa, F.D.; Bonaldo, P.; Canton, M. Oxidative Stress by Monoamine Oxidases Is Causally Involved in Myofiber Damage in Muscular Dystrophy. Hum. Mol. Genet. 2010, 19, 4207–4215. [Google Scholar] [CrossRef] [PubMed]
- Vitiello, L.; Marabita, M.; Sorato, E.; Nogara, L.; Forestan, G.; Mouly, V.; Salviati, L.; Acosta, M.; Blaauw, B.; Canton, M. Drug Repurposing for Duchenne Muscular Dystrophy: The Monoamine Oxidase B Inhibitor Safinamide Ameliorates the Pathological Phenotype in Mdx Mice and in Myogenic Cultures from DMD Patients. Front. Physiol. 2018, 9, 1087. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.; Saad, S.; Zhang, J.; Gross, S.; Jarolimek, W.; Schilter, H.; Chen, J.A.; Gill, A.J.; Pollock, C.A.; Wong, M.G. Semicarbazide-Sensitive Amine Oxidase (SSAO) Inhibition Ameliorates Kidney Fibrosis in a Unilateral Ureteral Obstruction Murine Model. Am. J. Physiol. Ren. Physiol. 2014, 307, F908–F916. [Google Scholar] [CrossRef] [PubMed]
- Katagiri, D.; Hamasaki, Y.; Doi, K.; Negishi, K.; Sugaya, T.; Nangaku, M.; Noiri, E. Interstitial Renal Fibrosis Due to Multiple Cisplatin Treatments Is Ameliorated by Semicarbazide-Sensitive Amine Oxidase Inhibition. Kidney Int. 2016, 89, 374–385. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, M.; Krawczyk, M.; Noor, F.; Grünhage, F.; Lammert, F.; Schneider, J.G. Increased Circulating VAP-1 Levels Are Associated with Liver Fibrosis in Chronic Hepatitis C Infection. J. Clin. Med. 2019, 8, 103. [Google Scholar] [CrossRef] [PubMed]
- Jarnicki, A.G.; Schilter, H.; Liu, G.; Wheeldon, K.; Essilfie, A.; Foot, J.S.; Yow, T.T.; Jarolimek, W.; Hansbro, P.M. The Inhibitor of Semicarbazide-sensitive Amine Oxidase, PXS-4728A, Ameliorates Key Features of Chronic Obstructive Pulmonary Disease in a Mouse Model. Br. J. Pharmacol. 2016, 173, 3161–3175. [Google Scholar] [CrossRef] [PubMed]
- Foot, J.S.; Buson, A.; Deodhar, M.; Findlay, A.D.; Robertson, A.D.; Turner, C.I.; Yow, T.; Zhou, W.; Jarolimek, W. Combining Monoamine Oxidase B and Semicarbazide-Sensitive Amine Oxidase Enzyme Inhibition to Address Inflammatory Disease. Bioorg. Med. Chem. Lett. 2022, 74, 128942. [Google Scholar] [CrossRef]
- Blaauw, B.; Mammucari, C.; Toniolo, L.; Agatea, L.; Abraham, R.; Sandri, M.; Reggiani, C.; Schiaffino, S. Akt Activation Prevents the Force Drop Induced by Eccentric Contractions in Dystrophin-Deficient Skeletal Muscle. Hum. Mol. Genet. 2008, 17, 3686–3696. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Smith, L.R.; Barton, E.R. SMASH—Semi-Automatic Muscle Analysis Using Segmentation of Histology: A MATLAB Application. Skelet. Muscle 2014, 4, 21. [Google Scholar] [CrossRef] [PubMed]
- Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon Provides Fast and Bias-Aware Quantification of Transcript Expression. Nat. Methods 2017, 14, 417–419. [Google Scholar] [CrossRef] [PubMed]
- Soneson, C.; Love, M.I.; Robinson, M.D. Differential Analyses for RNA-Seq: Transcript-Level Estimates Improve Gene-Level Inferences. F1000Research 2016, 4, 1521. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lun, A.T.L.; Smyth, G.K. From Reads to Genes to Pathways: Differential Expression Analysis of RNA-Seq Experiments Using Rsubread and the EdgeR Quasi-Likelihood Pipeline. F1000Research 2016, 5, 1438. [Google Scholar] [CrossRef] [PubMed]
- Risso, D.; Ngai, J.; Speed, T.P.; Dudoit, S. Normalization of RNA-Seq Data Using Factor Analysis of Control Genes or Samples. Nat. Biotechnol. 2014, 32, 896–902. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Nolte, H.; MacVicar, T.D.; Tellkamp, F.; Krüger, M. Instant Clue: A Software Suite for Interactive Data Visualization and Analysis. Sci. Rep. 2018, 8, 12648. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape Provides a Biologist-Oriented Resource for the Analysis of Systems-Level Datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef] [PubMed]
- Vetrone, S.A.; Montecino-Rodriguez, E.; Kudryashova, E.; Kramerova, I.; Hoffman, E.P.; Liu, S.D.; Miceli, M.C.; Spencer, M.J. Osteopontin Promotes Fibrosis in Dystrophic Mouse Muscle by Modulating Immune Cell Subsets and Intramuscular TGF-Beta. J. Clin. Investig. 2009, 119, 1583–1594. [Google Scholar] [CrossRef]
- Petrof, B.J. Macrophage Plasticity in Duchenne Muscular Dystrophy: A Nexus of Pathological Remodelling with Therapeutic Implications. J. Physiol. 2022, 600, 3455–3464. [Google Scholar] [CrossRef]
- Dort, J.; Orfi, Z.; Fabre, P.; Molina, T.; Conte, T.C.; Greffard, K.; Pellerito, O.; Bilodeau, J.-F.; Dumont, N.A. Resolvin-D2 Targets Myogenic Cells and Improves Muscle Regeneration in Duchenne Muscular Dystrophy. Nat. Commun. 2021, 12, 6264. [Google Scholar] [CrossRef]
- Wehling, M.; Spencer, M.J.; Tidball, J.G. A Nitric Oxide Synthase Transgene Ameliorates Muscular Dystrophy in Mdx Mice. J. Cell Biol. 2001, 155, 123–131. [Google Scholar] [CrossRef]
- Allen, D.G.; Whitehead, N.P. Duchenne Muscular Dystrophy—What Causes the Increased Membrane Permeability in Skeletal Muscle? Int. J. Biochem. Cell Biol. 2011, 43, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Blaauw, B.; Agatea, L.; Toniolo, L.; Canato, M.; Quarta, M.; Dyar, K.A.; Danieli-Betto, D.; Betto, R.; Schiaffino, S.; Reggiani, C. Eccentric Contractions Lead to Myofibrillar Dysfunction in Muscular Dystrophy. J. Appl. Physiol. 2010, 108, 105–111. [Google Scholar] [CrossRef]
- Nelson, D.M.; Fasbender, E.K.; Jakubiak, M.C.; Lindsay, A.; Lowe, D.A.; Ervasti, J.M. Rapid, Redox-Mediated Mechanical Susceptibility of the Cortical Microtubule Lattice in Skeletal Muscle. Redox Biol. 2020, 37, 101730. [Google Scholar] [CrossRef] [PubMed]
- Juban, G.; Saclier, M.; Yacoub-Youssef, H.; Kernou, A.; Arnold, L.; Boisson, C.; Larbi, S.B.; Magnan, M.; Cuvellier, S.; Théret, M.; et al. AMPK Activation Regulates LTBP4-Dependent TGF-Β1 Secretion by Pro-Inflammatory Macrophages and Controls Fibrosis in Duchenne Muscular Dystrophy. Cell Rep. 2018, 25, 2163–2176.e6. [Google Scholar] [CrossRef]
- Hodgetts, S.; Radley, H.; Davies, M.; Grounds, M.D. Reduced Necrosis of Dystrophic Muscle by Depletion of Host Neutrophils, or Blocking TNFalpha Function with Etanercept in Mdx Mice. Neuromuscul. Disord. 2006, 16, 591–602. [Google Scholar] [CrossRef]
- Choi, M.; Jo, J.; Lee, M.; Park, J.; Yao, T.; Park, Y. Cathelicidin-related Antimicrobial Peptide Mediates Skeletal Muscle Degeneration Caused by Injury and Duchenne Muscular Dystrophy in Mice. J. Cachexia Sarcopenia Muscle 2022, 13, 3091–3105. [Google Scholar] [CrossRef] [PubMed]
- Millay, D.P.; Goonasekera, S.A.; Sargent, M.A.; Maillet, M.; Aronow, B.J.; Molkentin, J.D. Calcium Influx Is Sufficient to Induce Muscular Dystrophy through a TRPC-Dependent Mechanism. Proc. Natl. Acad. Sci. USA 2009, 106, 19023–19028. [Google Scholar] [CrossRef]
- Blair, H.A.; Dhillon, S. Safinamide: A Review in Parkinson’s Disease. CNS Drugs 2017, 31, 169–176. [Google Scholar] [CrossRef]
- Lian, D.; Chen, M.-M.; Wu, H.; Deng, S.; Hu, X. The Role of Oxidative Stress in Skeletal Muscle Myogenesis and Muscle Disease. Antioxidants 2022, 11, 755. [Google Scholar] [CrossRef] [PubMed]
- Canepari, M.; Rossi, R.; Pansarasa, O.; Maffei, M.; Bottinelli, R. Actin Sliding Velocity on Pure Myosin Isoforms from Dystrophic Mouse Muscles. Muscle Nerve 2009, 40, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Pozzer, D.; Varone, E.; Chernorudskiy, A.; Schiarea, S.; Missiroli, S.; Giorgi, C.; Pinton, P.; Canato, M.; Germinario, E.; Nogara, L.; et al. A Maladaptive ER Stress Response Triggers Dysfunction in Highly Active Muscles of Mice with SELENON Loss. Redox Biol. 2019, 20, 354–366. [Google Scholar] [CrossRef] [PubMed]
- Germani, S.; Ho, A.T.V.; Cherubini, A.; Varone, E.; Chernorudskiy, A.; Renna, G.M.; Fumagalli, S.; Gobbi, M.; Lucchetti, J.; Bolis, M.; et al. SEPN1-Related Myopathy Depends on the Oxidoreductase ERO1A and Is Druggable with the Chemical Chaperone TUDCA. Cell Rep. Med. 2024, 5, 101439. [Google Scholar] [CrossRef]
- Almeida, C.F.; Martins, P.C.; Vainzof, M. Comparative Transcriptome Analysis of Muscular Dystrophy Models Largemyd, Dmdmdx/Largemyd and Dmdmdx: What Makes Them Different? Eur. J. Hum. Genet. 2016, 24, 1301–1309. [Google Scholar] [CrossRef] [PubMed]
- Scripture-Adams, D.D.; Chesmore, K.N.; Barthélémy, F.; Wang, R.T.; Nieves-Rodriguez, S.; Wang, D.W.; Mokhonova, E.I.; Douine, E.D.; Wan, J.; Little, I.; et al. Single Nuclei Transcriptomics of Muscle Reveals Intra-Muscular Cell Dynamics Linked to Dystrophin Loss and Rescue. Commun. Biol. 2022, 5, 989. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, M.; Rosa, M.M.; Abreu, D.; Ferreira, J.J. Clinical Pharmacology Review of Safinamide for the Treatment of Parkinsons Disease. Neurodegener. Dis. Manag. 2015, 5, 481–496. [Google Scholar] [CrossRef] [PubMed]
- Kieny, P.; Chollet, S.; Delalande, P.; Fort, M.L.; Magot, A.; Pereon, Y.; Verbe, B.P. Evolution of Life Expectancy of Patients with Duchenne Muscular Dystrophy at AFM Yolaine de Kepper Centre between 1981 and 2011. Ann. Phys. Rehabil. Med. 2013, 56, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, J.G.; Hahn, H.S.; Wong, B.L.; Lorenz, J.N.; Wenisch, A.S.; Levin, L.S. Evolution of the Mdx Mouse Cardiomyopathy: Physiological and Morphological Findings. Neuromuscul. Disord. 2004, 14, 491–496. [Google Scholar] [CrossRef]
- Pegoraro, E.; Hoffman, E.P.; Piva, L.; Gavassini, B.F.; Cagnin, S.; Ermani, M.; Bello, L.; Soraru, G.; Pacchioni, B.; Bonifati, M.D.; et al. SPP1 Genotype Is a Determinant of Disease Severity in Duchenne Muscular Dystrophy. Neurology 2011, 76, 219–226. [Google Scholar] [CrossRef]
- Bello, L.; Hoffman, E.P.; Pegoraro, E. Is It Time for Genetic Modifiers to Predict Prognosis in Duchenne Muscular Dystrophy? Nat. Rev. Neurol. 2023, 19, 410–423. [Google Scholar] [CrossRef] [PubMed]
- Pagel, C.N.; Wijesinghe, D.K.W.; Esfandouni, N.T.; Mackie, E.J. Osteopontin, Inflammation and Myogenesis: Influencing Regeneration, Fibrosis and Size of Skeletal Muscle. J. Cell Commun. Signal. 2014, 8, 95–103. [Google Scholar] [CrossRef]
- Coulis, G.; Jaime, D.; Guerrero-Juarez, C.; Kastenschmidt, J.M.; Farahat, P.K.; Nguyen, Q.; Pervolarakis, N.; McLinden, K.; Thurlow, L.; Movahedi, S.; et al. Single-Cell and Spatial Transcriptomics Identify a Macrophage Population Associated with Skeletal Muscle Fibrosis. Sci. Adv. 2023, 9, eadd9984. [Google Scholar] [CrossRef] [PubMed]
- Lorenzen, J.M.; Neunhöffer, H.; David, S.; Kielstein, J.T.; Haller, H.; Fliser, D. Angiotensin II Receptor Blocker and Statins Lower Elevated Levels of Osteopontin in Essential Hypertension—Results from the EUTOPIA Trial. Atherosclerosis 2010, 209, 184–188. [Google Scholar] [CrossRef] [PubMed]
- Lyle, A.N.; Remus, E.W.; Fan, A.E.; Lassègue, B.; Walter, G.A.; Kiyosue, A.; Griendling, K.K.; Taylor, W.R. Hydrogen Peroxide Regulates Osteopontin Expression through Activation of Transcriptional and Translational Pathways. J. Biol. Chem. 2014, 289, 275–285. [Google Scholar] [CrossRef]
- Schieber, M.; Chandel, N.S. ROS Function in Redox Signaling and Oxidative Stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef] [PubMed]
- Venegas, F.C.; Sánchez-Rodríguez, R.; Luisetto, R.; Angioni, R.; Viola, A.; Canton, M. Oxidative Stress by the Mitochondrial Monoamine Oxidase B Mediates Calcium Pyrophosphate Crystal–Induced Arthritis. Arthritis Rheumatol. 2024, 76, 279–284. [Google Scholar] [CrossRef]
- Das, R.; Mahabeleshwar, G.H.; Kundu, G.C. Osteopontin Stimulates Cell Motility and Nuclear Factor kB-Mediated Secretion of Urokinase Type Plasminogen Activator through Phosphatidylinositol 3-Kinase/Akt Signaling Pathways in Breast Cancer Cells. J. Biol. Chem. 2003, 278, 28593–28606. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gasparella, F.; Nogara, L.; Germinario, E.; Tibaudo, L.; Ciciliot, S.; Piccoli, G.; Venegas, F.C.; Fontana, F.; Sales, G.; Sabbatini, D.; et al. A Novel MAO-B/SSAO Inhibitor Improves Multiple Aspects of Dystrophic Phenotype in mdx Mice. Antioxidants 2024, 13, 622. https://doi.org/10.3390/antiox13060622
Gasparella F, Nogara L, Germinario E, Tibaudo L, Ciciliot S, Piccoli G, Venegas FC, Fontana F, Sales G, Sabbatini D, et al. A Novel MAO-B/SSAO Inhibitor Improves Multiple Aspects of Dystrophic Phenotype in mdx Mice. Antioxidants. 2024; 13(6):622. https://doi.org/10.3390/antiox13060622
Chicago/Turabian StyleGasparella, Francesca, Leonardo Nogara, Elena Germinario, Lucia Tibaudo, Stefano Ciciliot, Giorgia Piccoli, Francisca Carolina Venegas, Francesca Fontana, Gabriele Sales, Daniele Sabbatini, and et al. 2024. "A Novel MAO-B/SSAO Inhibitor Improves Multiple Aspects of Dystrophic Phenotype in mdx Mice" Antioxidants 13, no. 6: 622. https://doi.org/10.3390/antiox13060622
APA StyleGasparella, F., Nogara, L., Germinario, E., Tibaudo, L., Ciciliot, S., Piccoli, G., Venegas, F. C., Fontana, F., Sales, G., Sabbatini, D., Foot, J., Jarolimek, W., Blaauw, B., Canton, M., & Vitiello, L. (2024). A Novel MAO-B/SSAO Inhibitor Improves Multiple Aspects of Dystrophic Phenotype in mdx Mice. Antioxidants, 13(6), 622. https://doi.org/10.3390/antiox13060622