Micronutrient Antioxidants for Men (Menevit®) Improve Sperm Function by Reducing Oxidative Stress, Resulting in Improved Assisted Reproductive Technology Outcomes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Semen Sample
2.3. Measuring Static Oxidation–Reduction Potential (sORP) Using MiOXSYS
2.4. Detection of 8-OHdG Levels
2.5. Measuring Sperm DNA Fragmentation
2.6. Ethical Statement
2.7. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Study Participants
3.2. Serum Oxidants and Semen Parameters
3.3. Clinical Outcomes of IVF-ET
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vander Borght, M.; Wyns, C. Fertility and infertility: Definition and epidemiology. Clin. Biochem. 2018, 62, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Baskaran, S.; Parekh, N.; Cho, C.-L.; Henkel, R.; Vij, S.; Arafa, M.; Selvam, M.K.P.; Shah, R. Male infertility. Lancet 2021, 397, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Jewett, A.; Mardovich, S.; Zhang, Y.; Sunderam, M.; DeSantis, C.; Cofie, A.; Yartel, A.; Hannon-Hall, L.; Buxton, C.; Kissin, D.M. 2020 Assisted Reproductive Technology Fertility Clinic and National Summary Repor; U.S. Department of Health & Human Services: Washington, DC, USA, 2022.
- Cooper, T.G.; Noonan, E.; Von Eckardstein, S.; Auger, J.; Baker, H.G.; Behre, H.M.; Haugen, T.B.; Kruger, T.; Wang, C.; Mbizvo, M.T. World Health Organization reference values for human semen characteristics. Hum. Reprod. Update 2010, 16, 231–245. [Google Scholar] [CrossRef] [PubMed]
- Mazzilli, R.; Vaiarelli, A.; Dovere, L.; Cimadomo, D.; Ubaldi, N.; Ferrero, S.; Rienzi, L.; Lombardo, F.; Lenzi, A.; Tournaye, H. Severe male factor in in vitro fertilization: Definition, prevalence, and treatment. An update. Asian J. Androl. 2022, 24, 125–134. [Google Scholar] [PubMed]
- Sharlip, I.D.; Jarow, J.P.; Belker, A.M.; Lipshultz, L.I.; Sigman, M.; Thomas, A.J.; Schlegel, P.N.; Howards, S.S.; Nehra, A.; Damewood, M.D. Best practice policies for male infertility. Fertil. Steril. 2002, 77, 873–882. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Majzoub, A. Role of antioxidants in assisted reproductive techniques. World J. Men’s Health 2017, 35, 77–93. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, A.K. Trends of male factor infertility, an important cause of infertility: A review of literature. J. Hum. Reprod. Sci. 2015, 8, 191. [Google Scholar] [CrossRef]
- Hammadeh, M.; Al Hasani, S.; Rosenbaum, P.; Schmidt, W.; Fischer Hammadeh, C. Reactive oxygen species, total antioxidant concentration of seminal plasma and their effect on sperm parameters and outcome of IVF/ICSI patients. Arch. Gynecol. Obstet. 2008, 277, 515–526. [Google Scholar] [CrossRef]
- Almeida, S.; Rato, L.; Sousa, M.; Alves, M.G.; Oliveira, P.F. Fertility and sperm quality in the aging male. Curr. Pharm. Des. 2017, 23, 4429–4437. [Google Scholar] [CrossRef]
- Lettieri, G.; D’Agostino, G.; Mele, E.; Cardito, C.; Esposito, R.; Cimmino, A.; Giarra, A.; Trifuoggi, M.; Raimondo, S.; Notari, T. Discovery of the involvement in DNA oxidative damage of human sperm nuclear basic proteins of healthy young men living in polluted areas. Int. J. Mol. Sci. 2020, 21, 4198. [Google Scholar] [CrossRef]
- Sudhakaran, G.; Kesavan, D.; Kandaswamy, K.; Guru, A.; Arockiaraj, J. Unravelling the epigenetic impact: Oxidative stress and its role in male infertility-associated sperm dysfunction. Reprod. Toxicol. 2024, 124, 108531. [Google Scholar] [CrossRef]
- Majzoub, A.; Agarwal, A. Systematic review of antioxidant types and doses in male infertility: Benefits on semen parameters, advanced sperm function, assisted reproduction and live-birth rate. Arab J. Urol. 2018, 16, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Parekh, N.; Selvam, M.K.P.; Henkel, R.; Shah, R.; Homa, S.T.; Ramasamy, R.; Ko, E.; Tremellen, K.; Esteves, S. Male oxidative stress infertility (MOSI): Proposed terminology and clinical practice guidelines for management of idiopathic male infertility. World J. Men’s Health 2019, 37, 296–312. [Google Scholar] [CrossRef]
- de Ligny, W.; Smits, R.M.; Mackenzie-Proctor, R.; Jordan, V.; Fleischer, K.; de Bruin, J.P.; Showell, M.G. Antioxidants for male subfertility. Cochrane Database Syst. Rev. 2022, 5, CD007411. [Google Scholar] [CrossRef]
- Dattilo, M.; Giuseppe, D.A.; Ettore, C.; Ménézo, Y. Improvement of gamete quality by stimulating and feeding the endogenous antioxidant system: Mechanisms, clinical results, insights on gene-environment interactions and the role of diet. J. Assist. Reprod. Genet. 2016, 33, 1633–1648. [Google Scholar] [CrossRef]
- Henkel, R.; Sandhu, I.S.; Agarwal, A. The excessive use of antioxidant therapy: A possible cause of male infertility? Andrologia 2019, 51, e13162. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-X.; Wang, P.; Feng, W.; Liu, C.; Yang, P.; Chen, Y.-J.; Sun, L.; Sun, Y.; Yue, J.; Gu, L.-J. Relationships between seminal plasma metals/metalloids and semen quality, sperm apoptosis and DNA integrity. Environ. Pollut. 2017, 224, 224–234. [Google Scholar] [CrossRef]
- Davila, M.P.; Munoz, P.M.; Tapia, J.A.; Ferrusola, C.O.; Pena, F.J. Inhibition of mitochondrial complex I leads to decreased motility and membrane integrity related to increased hydrogen peroxide and reduced ATP production, while the inhibition of glycolysis has less impact on sperm motility. PLoS ONE 2015, 10, e0138777. [Google Scholar]
- Gvozdjáková, A.; Kucharská, J.; Dubravicky, J.; Mojto, V.; Singh, R.B. Coenzyme Q 10, α-tocopherol, and oxidative stress could be important metabolic biomarkers of male infertility. Dis. Markers 2015, 2015, 827941. [Google Scholar] [CrossRef]
- Kessopoulou, E.; Powers, H.J.; Sharma, K.K.; Pearson, M.J.; Russell, J.M.; Cooke, I.D.; Barratt, C.L. A double-blind randomized placebo cross-over controlled trial using the antioxidant vitamin E to treat reactive oxygen species associated male infertility. Fertil. Steril. 1995, 64, 825–831. [Google Scholar] [CrossRef]
- Sijilmassi, O. Folic acid deficiency and vision: A review. Graefe’s Arch. Clin. Exp. Ophthalmol. 2019, 257, 1573–1580. [Google Scholar] [CrossRef] [PubMed]
- Froese, D.S.; Fowler, B.; Baumgartner, M.R. Vitamin B12, folate, and the methionine remethylation cycle—Biochemistry, pathways, and regulation. J. Inherit. Metab. Dis. 2019, 42, 673–685. [Google Scholar] [CrossRef] [PubMed]
- Brattström, L.; Israelsson, B.; Jeppsson, J.-O.; Hultberg, B. Folic acid—An innocuous means to reduce plasma homocysteine. Scand. J. Clin. Lab. Investig. 1988, 48, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Ubbink, J.B.; Vermaak, W.H.; van der Merwe, A.; Becker, P.J.; Delport, R.; Potgieter, H.C. Vitamin requirements for the treatment of hyperhomocysteinemia in humans. J. Nutr. 1994, 124, 1927–1933. [Google Scholar] [CrossRef] [PubMed]
- Franken, D.G.; Boers, G.; Blom, H.J.; Trijbels, F.; Kloppenborg, P. Treatment of mild hyperhomocysteinemia in vascular disease patients. Arterioscler. Thromb. Vasc. Biol. 1994, 14, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Landgren, F.; Israelsson, B.; Lindgren, A.; Hultberg, B.; Andersson, A.; Brattström, L. Plasma homocysteine in acute myocardial infarction: Homocysteine-lowering effect of folic acid. J. Intern. Med. 1995, 237, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Berg, M.v.d.; Boers, G.; Franken, D.; Blom, H.; Van Kamp, G.; Jakobs, C.; Rauwerda, J.; Kluft, C.; Stehouwert, C. Hyperhomocysteinaemia and endothelial dysfunction in young patients with peripheral arterial occlusive disease. Eur. J. Clin. Investig. 1995, 25, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Collaboration, H.L.T. Lowering blood homocysteine with folic acid based supplements: Meta-analysis of randomised trials. BMJ 1998, 316, 894–898. [Google Scholar] [CrossRef] [PubMed]
- Malinow, M.R.; Duell, P.B.; Hess, D.L.; Anderson, P.H.; Kruger, W.D.; Phillipson, B.E.; Gluckman, R.A.; Block, P.C.; Upson, B.M. Reduction of plasma homocyst (e) ine levels by breakfast cereal fortified with folic acid in patients with coronary heart disease. N. Engl. J. Med. 1998, 338, 1009–1015. [Google Scholar] [CrossRef] [PubMed]
- Lobo, A.; Naso, A.; Arheart, K.; Kruger, W.D.; Abou-Ghazala, T.; Alsous, F.; Nahlawi, M.; Gupta, A.; Moustapha, A.; van Lente, F. Reduction of homocysteine levels in coronary artery disease by low-dose folic acid combined with vitamins B6 and B12. Am. J. Cardiol. 1999, 83, 821–825. [Google Scholar] [CrossRef]
- Upchurch, G.R.; Welch, G.N.; Fabian, A.J.; Freedman, J.E.; Johnson, J.L.; Keaney, J.F.; Loscalzo, J. Homocyst (e) ine decreases bioavailable nitric oxide by a mechanism involving glutathione peroxidase. J. Biol. Chem. 1997, 272, 17012–17017. [Google Scholar] [CrossRef] [PubMed]
- Chambers, J.C.; McGregor, A.; Jean-Marie, J.; Obeid, O.A.; Kooner, J.S. Demonstration of rapid onset vascular endothelial dysfunction after hyperhomocysteinemia: An effect reversible with vitamin C therapy. Circulation 1999, 99, 1156–1160. [Google Scholar] [CrossRef] [PubMed]
- Nappo, F.; De Rosa, N.; Marfella, R.; De Lucia, D.; Ingrosso, D.; Perna, A.F.; Farzati, B.; Giugliano, D. Impairment of endothelial functions by acute hyperhomocysteinemia and reversal by antioxidant vitamins. JAMA 1999, 281, 2113–2118. [Google Scholar] [CrossRef] [PubMed]
- Kanani, P.M.; Sinkey, C.A.; Browning, R.L.; Allaman, M.; Knapp, H.R.; Haynes, W.G. Role of oxidant stress in endothelial dysfunction produced by experimental hyperhomocyst (e) inemia in humans. Circulation 1999, 100, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Gaskins, A.J.; Chavarro, J.E. Diet and fertility: A review. Am. J. Obstet. Gynecol. 2018, 218, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Karahan, G.; Chan, D.; Shirane, K.; McClatchie, T.; Janssen, S.; Baltz, J.M.; Lorincz, M.; Trasler, J. Paternal MTHFR deficiency leads to hypomethylation of young retrotransposons and reproductive decline across two successive generations. Development 2021, 148, dev199492. [Google Scholar] [CrossRef] [PubMed]
- Jungwirth, A.; Giwercman, A.; Tournaye, H.; Diemer, T.; Kopa, Z.; Dohle, G.; Krausz, C.; Infertility, E.W.G.o.M. European Association of Urology guidelines on Male Infertility: The 2012 update. Eur. Urol. 2012, 62, 324–332. [Google Scholar] [CrossRef]
- Ogawa, S.; Ota, K.; Takahashi, T.; Yoshida, H. Impact of Homocysteine as a Preconceptional Screening Factor for In Vitro Fertilization and Prevention of Miscarriage with Folic Acid Supplementation Following Frozen-Thawed Embryo Transfer: A Hospital-Based Retrospective Cohort Study. Nutrients 2023, 15, 3730. [Google Scholar] [CrossRef]
- Ota, K.; Takahashi, T.; Mitsui, J.; Kuroda, K.; Hiraoka, K.; Kawai, K. A case of discrepancy between three ERA tests in a woman with repeated implantation failure complicated by chronic endometritis. BMC Pregnancy Childbirth 2022, 22, 891. [Google Scholar] [CrossRef] [PubMed]
- Gardner, D.K.; Lane, M.; Stevens, J.; Schlenker, T.; Schoolcraft, W.B. Blastocyst score affects implantation and pregnancy outcome: Towards a single blastocyst transfer. Fertil. Steril. 2000, 73, 1155–1158. [Google Scholar] [CrossRef]
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen, 6th ed.; WHO Press: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/i/item/9789240030787 (accessed on 27 July 2021).
- Agarwal, A.; Selvam, M.K.P.; Arafa, M.; Okada, H.; Homa, S.; Killeen, A.; Balaban, B.; Saleh, R.; Armagan, A.; Roychoudhury, S. Multi-center evaluation of oxidation-reduction potential by the MiOXSYS in males with abnormal semen. Asian J. Androl. 2019, 21, 565. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Sharma, R.; Roychoudhury, S.; Du Plessis, S.; Sabanegh, E. MiOXSYS: A novel method of measuring oxidation reduction potential in semen and seminal plasma. Fertil. Steril. 2016, 106, 566–573.e10. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Roychoudhury, S.; Bjugstad, K.B.; Cho, C.-L. Oxidation-reduction potential of semen: What is its role in the treatment of male infertility? Ther. Adv. Urol. 2016, 8, 302–318. [Google Scholar] [CrossRef] [PubMed]
- Arafa, M.; Agarwal, A.; Al Said, S.; Majzoub, A.; Sharma, R.; Bjugstad, K.; AlRumaihi, K.; Elbardisi, H. Semen quality and infertility status can be identified through measures of oxidation–reduction potential. Andrologia 2018, 50, e12881. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Roychoudhury, S.; Sharma, R.; Gupta, S.; Majzoub, A.; Sabanegh, E. Diagnostic application of oxidation-reduction potential assay for measurement of oxidative stress: Clinical utility in male factor infertility. Reprod. Biomed. Online 2017, 34, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, S.; Kishida, T.; Mayama, T.; Kanno, H.; Kishida, R.; Yamada, H.; Kikuchi, H.; Shinagawa, M.; Katagiri, M.; Yoshida, H. [Can seminal oxidation-reduction potential be a predictor of outcome for in vitro fertilization?] Taigaijyusei nioite seieki sankakangendeni ha chiryou seiseki no yosokuinshi to narieruka (in Japanese). J. Jpn. Soc. Reprod. Med. 2021, 66, 282. [Google Scholar]
- Saito, S.; Yamauchi, H.; Hasui, Y.; Kurashige, J.; Ochi, H.; Yoshida, K. Quantitative determination of urinary 8-hydroxydeoxyguanosine (8-OH-dg) by using ELISA. Res. Commun. Mol. Pathol. Pharmacol. 2000, 107, 39–44. [Google Scholar] [PubMed]
- Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’for medical statistics. Bone Marrow Transplant. 2013, 48, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Bui, A.D.; Sharma, R.; Henkel, R.; Agarwal, A. Reactive oxygen species impact on sperm DNA and its role in male infertility. Andrologia 2018, 50, e13012. [Google Scholar] [CrossRef]
- Ebisch, I.; Pierik, F.; De Jong, F.; Thomas, C.; Steegers-Theunissen, R. Does folic acid and zinc sulphate intervention affect endocrine parameters and sperm characteristics in men? Int. J. Androl. 2006, 29, 339–345. [Google Scholar] [CrossRef]
- Raigani, M.; Yaghmaei, B.; Amirjannti, N.; Lakpour, N.; Akhondi, M.; Zeraati, H.; Hajihosseinal, M.; Sadeghi, M. The micronutrient supplements, zinc sulphate and folic acid, did not ameliorate sperm functional parameters in oligoasthenoteratozoospermic men. Andrologia 2014, 46, 956–962. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zeng, Y.-M.; Luo, Y.-D.; He, J.; Luo, B.-W.; Lu, X.-C.; Zhu, L.-L. Effects of folic acid and folic acid plus zinc supplements on the sperm characteristics and pregnancy outcomes of infertile men: A systematic review and meta-analysis. Heliyon 2023, 9, e18224. [Google Scholar] [CrossRef]
- Eskenazi, B.; Kidd, S.; Marks, A.; Sloter, E.; Block, G.; Wyrobek, A. Antioxidant intake is associated with semen quality in healthy men. Hum. Reprod. 2005, 20, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Ribas-Maynou, J.; Yeste, M. Oxidative stress in male infertility: Causes, effects in assisted reproductive techniques, and protective support of antioxidants. Biology 2020, 9, 77. [Google Scholar] [CrossRef] [PubMed]
- Gill, K.; Machalowski, T.; Harasny, P.; Kups, M.; Grabowska, M.; Duchnik, E.; Sipak, O.; Fraczek, M.; Kurpisz, M.; Kurzawa, R.; et al. Male Infertility Coexists with Decreased Sperm Genomic Integrity and Oxidative Stress in Semen Irrespective of Leukocytospermia. Antioxidants 2022, 11, 1987. [Google Scholar] [CrossRef] [PubMed]
- Babakhanzadeh, E.; Nazari, M.; Ghasemifar, S.; Khodadadian, A. Some of the factors involved in male infertility: A prospective review. Int. J. Gen. Med. 2020, 13, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Virk, G.; Ong, C.; Du Plessis, S.S. Effect of oxidative stress on male reproduction. World J. Men’s Health 2014, 32, 1. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.J.; Baker, M.A. The role of genetics and oxidative stress in the etiology of male infertility—A unifying hypothesis? Front. Endocrinol. 2020, 11, 581838. [Google Scholar] [CrossRef] [PubMed]
- Bansal, A.K.; Bilaspuri, G. Impacts of oxidative stress and antioxidants on semen functions. Vet. Med. Int. 2011, 2011, 686137. [Google Scholar] [CrossRef]
- Rael, L.T.; Bar-Or, R.; Salottolo, K.; Mains, C.W.; Slone, D.S.; Offner, P.J.; Bar-Or, D. Injury severity and serum amyloid A correlate with plasma oxidation-reduction potential in multi-trauma patients: A retrospective analysis. Scand. J. Trauma Resusc. Emerg. Med. 2009, 17, 57. [Google Scholar] [CrossRef]
- Gill, K.; Kups, M.; Harasny, P.; Machalowski, T.; Grabowska, M.; Lukaszuk, M.; Matuszewski, M.; Duchnik, E.; Fraczek, M.; Kurpisz, M. The negative impact of varicocele on basic semen parameters, sperm nuclear DNA dispersion and oxidation-reduction potential in semen. Int. J. Environ. Res. Public Health 2021, 18, 5977. [Google Scholar] [CrossRef] [PubMed]
- Arafa, M.; Henkel, R.; Agarwal, A.; Majzoub, A.; Elbardisi, H. Correlation of oxidation–reduction potential with hormones, semen parameters and testicular volume. Andrologia 2019, 51, e13258. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Bui, A.D. Oxidation-reduction potential as a new marker for oxidative stress: Correlation to male infertility. Investig. Clin. Urol. 2017, 58, 385–399. [Google Scholar] [CrossRef] [PubMed]
- Ames, B.N.; Shigenaga, M.K.; Hagen, T.M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA 1993, 90, 7915–7922. [Google Scholar] [CrossRef]
- De Iuliis, G.N.; Thomson, L.K.; Mitchell, L.A.; Finnie, J.M.; Koppers, A.J.; Hedges, A.; Nixon, B.; Aitken, R.J. DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodeling and the formation of 8-hydroxy-2′-deoxyguanosine, a marker of oxidative stress. Biol. Reprod. 2009, 81, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, Y.; Ishikawa, T.; Kondo, Y.; Yamaguchi, K.; Fujisawa, M. The assessment of oxidative stress in infertile patients with varicocele. BJU Int. 2008, 101, 1547–1552. [Google Scholar] [CrossRef] [PubMed]
- Vorilhon, S.; Brugnon, F.; Kocer, A.; Dollet, S.; Bourgne, C.; Berger, M.; Janny, L.; Pereira, B.; Aitken, R.; Moazamian, A. Accuracy of human sperm DNA oxidation quantification and threshold determination using an 8-OHdG immuno-detection assay. Hum. Reprod. 2018, 33, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, K.; Uchida, M.; Watanabe, N.; Ihana, T.; Ishiguro, Y.; Kuroda, S.; Takeshima, T.; Yumura, Y.; Mieno, M.; Yoshida, K.; et al. Effects of antioxidant co-supplementation therapy on spermatogenesis dysfunction in relation to the basal oxidation-reduction potential levels in spermatozoa: A pilot study. Reprod. Med. Biol. 2022, 21, e12450. [Google Scholar] [CrossRef] [PubMed]
- Homa, S.T.; Vassiliou, A.M.; Stone, J.; Killeen, A.P.; Dawkins, A.; Xie, J.; Gould, F.; Ramsay, J.W. A comparison between two assays for measuring seminal oxidative stress and their relationship with sperm DNA fragmentation and semen parameters. Genes 2019, 10, 236. [Google Scholar] [CrossRef]
- Sakkas, D.; Alvarez, J.G. Sperm DNA fragmentation: Mechanisms of origin, impact on reproductive outcome, and analysis. Fertil. Steril. 2010, 93, 1027–1036. [Google Scholar] [CrossRef]
- Simon, L.; Brunborg, G.; Stevenson, M.; Lutton, D.; McManus, J.; Lewis, S.E. Clinical significance of sperm DNA damage in assisted reproduction outcome. Hum. Reprod. 2010, 25, 1594–1608. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.-C.; Jing, J.; Chen, L.; Ge, Y.-F.; Feng, R.-X.; Liang, Y.-J.; Yao, B. Analysis of human sperm DNA fragmentation index (DFI) related factors: A report of 1010 subfertile men in China. Reprod. Biol. Endocrinol. 2018, 16, 23. [Google Scholar] [CrossRef] [PubMed]
- Alkhayal, A.; San Gabriel, M.; Zeidan, K.; Alrabeeah, K.; Noel, D.; McGraw, R.; Bissonnette, F.; Kadoch, I.J.; Zini, A. Sperm DNA and chromatin integrity in semen samples used for intrauterine insemination. J. Assist. Reprod. Genet. 2013, 30, 1519–1524. [Google Scholar] [CrossRef]
- Tanaka, T.; Kobori, Y.; Terai, K.; Inoue, Y.; Osaka, A.; Yoshikawa, N.; Shimomura, Y.; Suzuki, K.; Minami, T.; Iwahata, T.; et al. Seminal oxidation–reduction potential and sperm DNA fragmentation index increase among infertile men with varicocele. Hum. Fertil. 2022, 25, 142–146. [Google Scholar] [CrossRef]
- Xue, X.; Wang, W.-S.; Shi, J.-Z.; Zhang, S.-L.; Zhao, W.-Q.; Shi, W.-H.; Guo, B.-Z.; Qin, Z. Efficacy of swim-up versus density gradient centrifugation in improving sperm deformity rate and DNA fragmentation index in semen samples from teratozoospermic patients. J. Assist. Reprod. Genet. 2014, 31, 1161–1166. [Google Scholar] [CrossRef]
- Gharagozloo, P.; Aitken, R.J. The role of sperm oxidative stress in male infertility and the significance of oral antioxidant therapy. Hum. Reprod. 2011, 26, 1628–1640. [Google Scholar] [CrossRef] [PubMed]
- Schisterman, E.F.; Sjaarda, L.A.; Clemons, T.; Carrell, D.T.; Perkins, N.J.; Johnstone, E.; Lamb, D.; Chaney, K.; Van Voorhis, B.J.; Ryan, G. Effect of folic acid and zinc supplementation in men on semen quality and live birth among couples undergoing infertility treatment: A randomized clinical trial. JAMA 2020, 323, 35–48. [Google Scholar] [CrossRef]
- Showell, M.G.; Mackenzie-Proctor, R.; Brown, J.; Yazdani, A.; Stankiewicz, M.T.; Hart, R.J. Antioxidants for male subfertility. Cochrane Database Syst. Rev. 2014, CD007411. [Google Scholar] [CrossRef]
- Jenkins, T.; Aston, K.; Carrell, D.; DeVilbiss, E.; Sjaarda, L.; Perkins, N.; Mills, J.L.; Chen, Z.; Sparks, A.; Clemons, T.; et al. The impact of zinc and folic acid supplementation on sperm DNA methylation: Results from the folic acid and zinc supplementation randomized clinical trial (FAZST). Fertil. Steril. 2022, 117, 75–85. [Google Scholar] [CrossRef]
- Scaruffi, P.; Licata, E.; Maccarini, E.; Massarotti, C.; Bovis, F.; Sozzi, F.; Stigliani, S.; Dal Lago, A.; Casciano, I.; Rago, R.; et al. Oral Antioxidant Treatment of Men Significantly Improves the Reproductive Outcome of IVF Cycles. J. Clin. Med. 2021, 10, 3254. [Google Scholar] [CrossRef]
- Rashki Ghaleno, L.; Alizadeh, A.; Drevet, J.R.; Shahverdi, A.; Valojerdi, M.R. Oxidation of sperm DNA and male infertility. Antioxidants 2021, 10, 97. [Google Scholar] [CrossRef]
- Nowicka-Bauer, K.; Nixon, B. Molecular changes induced by oxidative stress that impair human sperm motility. Antioxidants 2020, 9, 134. [Google Scholar] [CrossRef]
- Evans, E.P.; Scholten, J.T.; Mzyk, A.; Reyes-San-Martin, C.; Llumbet, A.E.; Hamoh, T.; Arts, E.G.; Schirhagl, R.; Cantineau, A.E. Male subfertility and oxidative stress. Redox Biol. 2021, 46, 102071. [Google Scholar] [CrossRef]
- Ravel, C.; Chantot-Bastaraud, S.; Chalmey, C.; Barreiro, L.; Aknin-Seifer, I.; Pfeffer, J.; Berthaut, I.; Mathieu, E.E.; Mandelbaum, J.; Siffroi, J.-P. Lack of association between genetic polymorphisms in enzymes associated with folate metabolism and unexplained reduced sperm counts. PLoS ONE 2009, 4, e6540. [Google Scholar] [CrossRef]
- Ebisch, I.; Thomas, C.; Peters, W.; Braat, D.; Steegers-Theunissen, R. The importance of folate, zinc and antioxidants in the pathogenesis and prevention of subfertility. Hum. Reprod. Update 2007, 13, 163–174. [Google Scholar] [CrossRef]
- Boxmeer, J.C.; Smit, M.; Utomo, E.; Romijn, J.C.; Eijkemans, M.J.; Lindemans, J.; Laven, J.S.; Macklon, N.S.; Steegers, E.A.; Steegers-Theunissen, R.P. Low folate in seminal plasma is associated with increased sperm DNA damage. Fertil. Steril. 2009, 92, 548–556. [Google Scholar] [CrossRef]
- Tunc, O.; Thompson, J.; Tremellen, K. Improvement in sperm DNA quality using an oral antioxidant therapy. Reprod. BioMed. Online 2009, 18, 761–768. [Google Scholar] [CrossRef]
- Tremellen, K.; Miari, G.; Froiland, D.; Thompson, J. A randomised control trial examining the effect of an antioxidant (Menevit) on pregnancy outcome during IVF-ICSI treatment. Aust. N. Z. J. Obstet. Gynaecol. 2007, 47, 216–221. [Google Scholar] [CrossRef]
Oral Antioxidants (n = 84) | No Antioxidants (n = 52) | p-Value | |
---|---|---|---|
Age (median, range) | 37 (31–41) | 33 (29–37) | 0.0114 a |
Body mass index (mean ± SD) | 23.5 ± 3.2 | 24.4 ± 2.9 | 0.131 b |
Serum hormone | |||
FSH (mIU/mL, mean ± SD) | 4.3 (3.2–5.9) | 3.4 (2.4–4.6) | 0.00217 a |
LH (mIU/mL, mean ± SD) | 2.9 (2.3–4.1) | 2.6 (2.1–3.1) | 0.0341 a |
Testosterone (ng/mL, mean ± SD) | 5.1 (4.2–6.7) | 4.9 (3.8–6.3) | 0.309 a |
Serum oxidants | |||
Folate (ng/mL) | 6.9 (5.1–9.0) | 5.8 (5.0–7.7) | 0.0778 a |
Zinc (μg/dL) | 80.0 (73.5–92.0) | 84.5 (69.8–91.5) | 0.83 a |
Vitamin E (mg/dL) | 1.10 (0.94–1.30) | 1.19 (1.00–1.43) | 0.0845 a |
Total homocysteine (nmol/mL) | 12.4 (10.8–14.8) | 12.0 (10.8–15.0) | 0.957 a |
Semen parameters | |||
Semen volume (mL) | 3.0 (2.0–4.0) | 2.5 (2.0–3.7) | 0.239 a |
Sperm concentration (106 per mL) | 28.7 (10.8–66.0) | 90.0 (64.7–127.6) | <0.001 a |
Total motility (%) | 55.0 (34.0–75.5) | 81.5 (71.0–92.3) | <0.001 a |
Progressive motility (%) | 44.0 (25.0–61.0) | 64.0 (53.5–77.3) | <0.001 a |
Normal forms (%) | 3.0 (2.0–5.0) | 4.0 (3.0–5.0) | 0.0523 a |
sORP (mV/106) | 0.81 (0.23–2.77) | 0.27 (0.12–0.45) | <0.001 a |
OHdG (ng/mL) | 13.4 (10.5–18.1) | 11.9 (9.6–15.6) | 0.072 a |
DFI (%) | 13.8 (9.0–21.6) | 10.1 (7.3–13.8) | 0.014 a |
Zinc (mg/dL) | 11.4 (6.5–16.8) | 15.4 (9.2–21.1) | 0.0191 a |
Creatinine (μg/mL) | 162.2 (122.1–209.3) | 158.7 (135.5–210.1) | 0.677 a |
Spermine (mM) | 0.70 (0.56–0.85) | 0.54 (0.34–0.83) | 0.0337 a |
Testosterone (ng/mL) | 23.5 (15.8–30.9) | 21.4 (14.9–28.6) | 0.478 a |
Oral Antioxidants (n = 84) | No Antioxidants (n = 52) | p-Value | |||
---|---|---|---|---|---|
sORP: ≤1.9 mv/106 mL (n = 52) | sORP: >1.9 mv/106 mL (n = 32) | ||||
Serum Oxidants | |||||
Folate | Baseline | 6.8 (5.3–9.0) | 7.0 (5.1–8.5) | 5.8 (5.0–7.7) | 0.183 ** |
After 3 months | 16.3 (13.0–19.7) | 17.4 (15.4–20.0) | 6.3 (5.1–8.2) | <0.001 ** | |
After 6 months | 15.5 (11.5–20.0) | 16.9 (14.0–19.0) | 5.6 (4.5–7.2) | <0.001 ** | |
p-value | <0.001 * | <0.001 * | 0.073 * | ||
Zinc | Baseline | 85.0 (76.8–92.3) | 76.0 (71.5–91.3) | 84.5 (69.8–91.5) | 0.344 ** |
After 3 months | 85.0 (79.8–97.3) | 83.0 (73.8–94.3) | 79.0 (69.5–90.8) | 0.257 ** | |
After 6 months | 87.5 (77.3–101.0) | 80.5 (73.0–92.8) | 82.0 (70.3–92.5) | 0.191 ** | |
p-value | 0.136 * | 0.050 * | 0.432 * | ||
Vitamin E | Baseline | 1.10 (0.95–1.30) | 1.10 (0.90–1.32) | 1.19 (1.00–1.43) | 0.249 ** |
After 3 months | 1.24 (1.10–1.40) | 1.125 (1.06–1.42) | 1.11 (0.97–1.32) | 0.107** | |
After 6 months | 1.24 (1.05–1.37) | 1.28 (1.06–1.44) | 1.10 (0.97–1.23) | <0.05 ** | |
p-value | <0.001 * | <0.001 * | <0.001 * | ||
Total homocysteine | Baseline | 13.0 (11.2–14.8) | 12.3 (10.7–14.2) | 12.0 (10.8–15.0) | 0.843 ** |
After 3 months | 10.7 (9.75–12.0) | 10.5 (9.5–11.7) | 12.5 (10.8–15.7) | <0.001 ** | |
After 6 months | 11.0 (9.68–12.1) | 11.3 (10.2–12.2) | 13.5 (11.0–16.1) | <0.001 ** | |
p-value | <0.001 * | <0.001 * | 0.518 * |
Oral Antioxidants (n = 84) | No Antioxidants (n = 52) | p-Value | |||
---|---|---|---|---|---|
sORP: ≤1.9 mv/106 mL (n = 52) | sORP: >1.9 mv/106 mL (n = 32) | ||||
Semen Parameters | |||||
Semen volume (mL) | Baseline | 2.7 (2.0–3.4) | 3.6 (2.6–5.0) | 2.5 (2.0–3.7) | <0.05 ** |
After 3 months | 2.6 (2.0–3.5) | 3.3 (2.8–4.6) | 2.4 (1.8–3.5) | <0.05 ** | |
After 6 months | 2.6 (2.0–3.2) | 3.6 (2.3–4.4) | 3.0 (2.0–3.7) | 0.096 ** | |
p-value | 0.691 * | 0.227 * | 0.889 * | ||
Sperm concentration (106 per mL) | Baseline | 53.3 (28.5–91.3) | 8.4 (4.1–17.6) | 90.0 (64.7–127.6) | <0.001 ** |
After 3 months | 48.3 (26.6–81.2) | 10.0 (6.6–18.7) | 89.8 (55.2–130.2) | <0.001 ** | |
After 6 months | 49.3 (28.6–68.9) | 14.3 (5.3–25.9) | 76.7 (50.9–130.2) | <0.001 ** | |
p-value | 0.186 * | <0.05 * | 0.272 | ||
Total motility (%) | Baseline | 64.5 (42.5–78.3) | 50.5 (25.0–67.3) | 81.5 (71.0–92.3) | <0.001 ** |
After 3 months | 63.5 (41.8–77.3) | 45.0 (30.3–61.0) | 83.0 (66.8–93.3) | <0.001 ** | |
After 6 months | 58.0 (38.8–71.8) | 45.5 (25.5–66.3) | 80.5 (67.8- 91.0) | <0.001 ** | |
p-value | 0.858 | 0.306 | 0.520 | ||
Progressive motility (%) | Baseline | 50.0 (27.8–62.8) | 40.0 (17.3–52.0) | 64.0 (53.5–77.3) | <0.001 ** |
After 3 months | 51.0 (29.5–64.3) | 37.0 (19.8–52.3) | 62.5 (51.0–75.5) | <0.001 ** | |
After 6 months | 44.5 (29.8–58.3) | 36.5 (20.8–58.5) | 62.5 (51.8–75.7) | <0.001 ** | |
p-value | 0.966 * | 0.798 * | 0.227 | ||
sORP | Baseline | 0.33 (0.15–0.70) | 3.66 (2.00–7.06) | 0.27 (0.12–0.45) | <0.001 ** |
After 3 months | 0.34 (0.12–0.65) | 2.78 (1.58–5.00) | 0.24 (0.10–0.61) | <0.001 ** | |
After 6 months | 0.40 (0.17–0.66) | 1.53 (1.06–5.19) | 0.36 (0.18–0.57) | <0.001 ** | |
p-value | 0.441 * | <0.05 * | 0.095 * | ||
8-OHdG | Baseline | 14.4 (10.6–18.1) | 13.2 (9.3–17.9) | 11.9 (9.6–15.6) | 0.196 ** |
After 3 months | 14.1 (10.9–16.7) | 14.3 (11.4–16.5) | 14.1 (9.9–17.9) | 0.926 ** | |
After 6 months | 14.6 (11.2–17.7) | 13.5 (10.2–16.0) | 11.9 (8.6–16.2) | 0.084 ** | |
p-value | 0.841 * | 0.519 * | 0.174 * | ||
DFI | Baseline | 10.9 (7.9–17.2) | 15.2 (12.1–23.8) | 10.1 (7.3–13.8) | <0.001 ** |
After 3 months | 12.6 (7.3–18.2) | 15.3 (10.4–22.7) | 9.5 (6.5–14.2) | <0.001 ** | |
After 6 months | 13.0 (7.7–21.5) | 15.3 (10.8–23.9) | 10.2 (6.5–18.6) | <0.001 ** | |
p-value | 0.116 * | 0.261 * | 0.334 * | ||
Zinc | Baseline | 10.5 (6.3–16.5) | 13.4 (9.8–18.8) | 15.4 (9.2–21.1) | <0.05 ** |
After 3 months | 11.7 (7.1–16.7) | 14.5 (11.1–17.1) | 14.8 (9.7–19.5) | 0.0583 ** | |
After 6 months | 11.2 (7.2–14.1) | 12.4 (9.5–16.8) | 15.1 (11.1–18.8) | <0.05 ** | |
p-value | 0.584 * | 0.911 * | 0.779 * | ||
Creatinine | Baseline | 176.7 (135.4–208.6) | 150.7 (112.0–219.0) | 158.7 (135.5–210.1) | 0.390 ** |
After 3 months | 162.1 (116.9–196.0) | 130.6 (111.7–202.4) | 154.8 (128.4–211.1) | 0.650 ** | |
After 6 months | 159.7 (126.2–191.3) | 138.1 (98.2–201.4) | 159.8 (126.9–193.1) | 0.432 ** | |
p-value | 0.050 * | 0.911 * | 0.050 * | ||
Spermine | Baseline | 0.725 (0.630–0.853) | 0.635 (0.488–0.863) | 0.540 (0.335–0.832) | 0.066 ** |
After 3 months | 0.695 (0.355–0.862) | 0.630 (0.408–0.820) | 0.880 (0.388–0.873) | 0.881 ** | |
After 6 months | 0.695 (0.478–0.873) | 0.625 (0.345–0.885) | 0.615 (0.430–0.875) | 0.733 ** | |
p-value | 0.827 * | 0.902 * | 0.061 * | ||
Testosterone | Baseline | 23.6 (15.8–31.9) | 22.6 (16.1–30.6) | 21.4 (14.9–28.6) | 0.676 ** |
After 3 months | 25.8 (15.8–37.3) | 20.7 (16.2–27.1) | 19.9 (14.1–35.8) | 0.728 ** | |
After 6 months | 23.1 (15.8–32.4) | 21.5 (14.8–28.4) | 21.7 (15.5–30.7) | 0.650 ** | |
p-value | 0.694 * | 0.102 * | 1.000 * |
Oral Antioxidants (n = 84) | No Antioxidants (n = 30) | p-Value | |||
---|---|---|---|---|---|
sORP: ≤1.9 mv/106 mL (n = 52) | sORP: >1.9 mv/106 mL (n = 32) | ||||
Number of total oocytes retrieved | Baseline | 6.0 (4.0–10.0) | 6.0 (2.0–10.0) | 7.0 (3.5–13.5) | 0.728 ** |
After 6 months | 4.0 (2.0–6.0) | 2.5 (1–9.8) | 5.0 (4.0–7.0) | 0.296 ** | |
p-value | <0.001 * | 0.166 * | 0.606 * | ||
Number of MII oocytes | Baseline | 5.0 (3.0–8.0) | 5.0 (2.0–9.0) | 6.0 (3.5–10.0) | 0.733 ** |
After 6 months | 3.0 (2.0–5.0) | 2.0 (1.0–7.5) | 4.0 (3.0–6.0) | 0.324 ** | |
p-value | <0.001 * | 0.154 * | 0.538 * | ||
Fertilization rate (%) | Baseline | 80.0 (60.0–100.0) | 75.0 (50.0–92.5) | 84.6 (66.7–88.2) | 0.496 ** |
After 6 months | 66.7 (50.0–100.0) | 70.7 (50.0–100.0) | 77.5 (75.0–83.3) | 0.592 ** | |
p-value | 0.0988 * | 0.808 * | 0.979 * | ||
High-quality blastocyst rate (%) | Baseline | 20.0 (0–50.0) | 33.3 (0–55.3) | 43.8 (0–62.8) | 0.425 ** |
After 6 months | 20.0 (0–60.0) | 50.0 (26.8–50.0) | 40.0 (8.4–79.9) | 0.695 ** | |
p-value | 0.726 * | 0.709 * | 0.712 * | ||
Implantaion rate (%) | Baseline | 38.9% | 47.1% | 35.9% | 0.529 *** |
After 6 months | 53.8% | 76.2% | 33.3% | <0.05 *** | |
p-value | 0.132 *** | <0.05 *** | 1.00 *** | ||
Clinical pregnancy rate (%) | Baseline | 25.9% | 38.2% | 28.2% | 0.395 *** |
After 6 months | 35.9% | 71.4% | 22.2% | <0.05 *** | |
p-value | 0.301 *** | <0.05 *** | 0.753 *** | ||
Miscarraige rate (%) | Baseline | 57.1% | 38.5% | 18.2% | 0.0724 *** |
After 6 months | 21.4% | 26.7% | 50% | 0.572 *** | |
p-value | 0.05 *** | 0.689 *** | 0.516 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogawa, S.; Ota, K.; Nishizawa, K.; Shinagawa, M.; Katagiri, M.; Kikuchi, H.; Kobayashi, H.; Takahashi, T.; Yoshida, H. Micronutrient Antioxidants for Men (Menevit®) Improve Sperm Function by Reducing Oxidative Stress, Resulting in Improved Assisted Reproductive Technology Outcomes. Antioxidants 2024, 13, 635. https://doi.org/10.3390/antiox13060635
Ogawa S, Ota K, Nishizawa K, Shinagawa M, Katagiri M, Kikuchi H, Kobayashi H, Takahashi T, Yoshida H. Micronutrient Antioxidants for Men (Menevit®) Improve Sperm Function by Reducing Oxidative Stress, Resulting in Improved Assisted Reproductive Technology Outcomes. Antioxidants. 2024; 13(6):635. https://doi.org/10.3390/antiox13060635
Chicago/Turabian StyleOgawa, Seiji, Kuniaki Ota, Kaori Nishizawa, Masumi Shinagawa, Mikiko Katagiri, Hiroyuki Kikuchi, Hideyuki Kobayashi, Toshifumi Takahashi, and Hiroaki Yoshida. 2024. "Micronutrient Antioxidants for Men (Menevit®) Improve Sperm Function by Reducing Oxidative Stress, Resulting in Improved Assisted Reproductive Technology Outcomes" Antioxidants 13, no. 6: 635. https://doi.org/10.3390/antiox13060635
APA StyleOgawa, S., Ota, K., Nishizawa, K., Shinagawa, M., Katagiri, M., Kikuchi, H., Kobayashi, H., Takahashi, T., & Yoshida, H. (2024). Micronutrient Antioxidants for Men (Menevit®) Improve Sperm Function by Reducing Oxidative Stress, Resulting in Improved Assisted Reproductive Technology Outcomes. Antioxidants, 13(6), 635. https://doi.org/10.3390/antiox13060635