Controlled Cultivation Confers Rhodiola rosea Synergistic Activity on Muscle Cell Homeostasis, Metabolism and Antioxidant Defense in Primary Human Myoblasts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rhodiola rosea L. Wild Harvest (RRwh) and Controlled Cultivation (RRcc)
2.2. Rhodiola rosea L. Extracts
2.3. Cell Culture Experiments
2.3.1. In Vitro Treatment of Cell Cultures
2.3.2. Measurement of Intracellular ATP Content
2.3.3. Measurement of Mitochondrial Potential
2.3.4. Metabolomic Profiling of In Vitro Cultured Human Myoblasts
2.3.5. Isolation of RNA, cDNA Synthesis and qPCR Analysis Myoblast mRNAs
2.4. Phytochemical Profiling of Rhodiola rosea L. by UHPLC Analysis
3. Results
3.1. RRcc Promotes the Transcription of myoD and Pax7
3.2. RRcc and RRwh Regulate the Redox State of Skeletal Muscle Cells
3.3. RRcc and RRwh Both Promote ATP Production and Mitochondrial Activity
3.4. Metabolomic Profiling of RRcc- and RRwh-Treated Human Myoblasts
3.5. RRcc Presents Folic Acid Cycle Modulatory Activity
3.6. Both Folic Acid Stimulatory and Antioxidant Activity Contribute to RRcc Activity
3.7. Phytochemical Profile of RRcc vs. RRwh
4. Discussion
5. Limitations of the Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Chen, W.; Simal-Gandara, J.; Georgiev, M.I.; Li, H.; Hu, H.; Wu, X.; Efferth, T.; Wang, S. West meets east: Open up a dialogue on phytomedicine. Chin. Med. 2021, 16, 57. [Google Scholar] [CrossRef] [PubMed]
- Tinsley, G.M.; Jagim, A.R.; Potter, G.D.M.; Garner, D.; Galpin, A.J. Rhodiola Rosea as an Adaptogen to Enhance Exercise Performance: A Review of the Literature. Br. J. Nutr. 2023, 131, 461–473. [Google Scholar] [CrossRef] [PubMed]
- Stojcheva, E.I.; Quintela, J.C. The Effectiveness of Rhodiola rosea L. Preparations in Alleviating Various Aspects of Life-Stress Symptoms and Stress-Induced Conditions—Encouraging Clinical Evidence. Molecules 2022, 27, 3902. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Deng, B.; Xu, L.; Liu, H.; Song, Y.; Lin, F. Effects of Rhodiola Rosea Supplementation on Exercise and Sport: A Systematic Review. Front. Nutr. 2022, 9, 856287. [Google Scholar] [CrossRef]
- Kosakowska, O.; Bączek, K.; Przybył, J.L.; Pióro-Jabrucka, E.; Czupa, W.; Synowiec, A.; Gniewosz, M.; Costa, R.; Mondello, L.; Węglarz, Z. Antioxidant and antibacterial activity of roseroot (Rhodiola rosea L.) dry extracts. Molecules 2018, 23, 1767. [Google Scholar] [CrossRef]
- Kang, D.Z.; Hong, H.D.; Kim, K.I.; Choi, S.Y. Anti-fatigue effects of fermented Rhodiola rosea extract in mice. Prev. Nutr. Food Sci. 2015, 20, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Pu, W.L.; Zhang, M.Y.; Bai, R.Y.; Sun, L.K.; Li, W.H.; Yu, Y.L.; Zhang, Y.; Song, L.; Wang, Z.X.; Peng, Y.F.; et al. Anti-inflammatory effects of Rhodiola rosea L.: A review. Biomed. Pharmacother. 2020, 121, 109552. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.J. Rhodiola Rosea Therapy for Major Depressive Disorder: A Study Protocol for a Randomized, Double-Blind, Placebo- Controlled Trial. J. Clin. Trials 2014, 4, 170. [Google Scholar] [CrossRef]
- Abidov, M.; Crendal, F.; Grachev, S.; Seifulla, R.; Ziegenfuss, T. Effect of extracts from Rhodiola rosea and Rhodiola crenulata (Crassulaceae) roots on ATP content in mitochondria of skeletal muscles. Bull. Exp. Biol. Med. 2003, 136, 585–587. [Google Scholar] [CrossRef] [PubMed]
- Parisi, A.; Tranchita, E.; Duranti, G.; Ciminelli, E.; Quaranta, F.; Ceci, R.; Cerulli, C.; Borrione, P.; Sabatini, S. Effects of chronic Rhodiola Rosea supplementation on sport performance and antioxidant capacity in trained male: Preliminary results. J. Sports Med. Phys. Fitness 2010, 50, 57–63. [Google Scholar]
- Hezhang, Y.; Bin, L.; Wenbo, S.; Junjie, W.; Jing, Z.; Zhaolong, W.; Yi, L.; Yaowei, S.; Chang, L. Combined effects of Rhodiola rosea and caffeine supplementation on aerobic endurance and muscle explosiveness: A synergistic approach. Front. Nutr. 2024, 11, 1335950. [Google Scholar] [CrossRef]
- Pomari, E.; Stefanon, B.; Colitti, M. Effects of two different Rhodiola rosea extracts on primary human visceral adipocytes. Molecules 2015, 20, 8409–8428. [Google Scholar] [CrossRef] [PubMed]
- Sist, P.; Tramer, F.; Lorenzon, P.; Urbani, R.; Vrhovsek, U.; Bernareggi, A.; Sciancalepore, M. Rhodiola rosea, a protective antioxidant for intense physical exercise: An in vitro study. J. Funct. Foods 2018, 48, 27–36. [Google Scholar] [CrossRef]
- Perfumi, M.; Mattioli, L. Adaptogenic and central nervous system effects of single doses of 3% rosavin and 1% salidroside Rhodiola rosea L. extract in mice. Phyther. Res. 2007, 21, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Jiang, S.; Deng, N.; Zheng, B.; Li, T.; Liu, R.H. Phytochemical Profiles, Antioxidant Activity and Antiproliferative Mechanism of Rhodiola rosea L. Phenolic Extract. Nutrients 2022, 14, 3602. [Google Scholar] [CrossRef]
- Polumackanycz, M.; Konieczynski, P.; Orhan, I.E.; Abaci, N.; Viapiana, A. Chemical Composition, Antioxidant and Anti-Enzymatic Activity of Golden Root (Rhodiola rosea L.) Commercial Samples. Antioxidants 2022, 11, 919. [Google Scholar] [CrossRef]
- Galambosi, B.; Galambosi, Z.; Slacanin, I. Comparison of natural and cultivated roseroot (Rhodiola rosea L.) roots in Finland. J. Med. Spice Plants 2007, 12, 141–147. [Google Scholar]
- Marchev, A.S.; Aneva, I.Y.; Koycheva, I.K.; Georgiev, M.I. Phytochemical variations of Rhodiola rosea L. wild-grown in Bulgaria. Phytochem. Lett. 2017, 20, 386–390. [Google Scholar] [CrossRef]
- Committee on Herbal Medicinal Products (HMPC). Community herbal monograph on Rhodiola rosea L., rhizoma et radix. Eur. Med. Agency 2012, 44, 1–5. [Google Scholar]
- Shikov, A.N.; Pozharitskaya, O.N.; Makarov, V.G.; Wagner, H.; Verpoorte, R.; Heinrich, M. Medicinal Plants of the Russian Pharmacopoeia; Their history and applications. J. Ethnopharmacol. 2014, 154, 481–536. [Google Scholar] [CrossRef]
- Therapeutic Goods Administration (TGA). Compositional Guideline: Rhodiola rosea Dried Root (Powdered) Extract. Available online: https://www.tga.gov.au/resources/resource/compositional-guidelines/rhodiola-rosea-dried-root-powdered-extract (accessed on 1 March 2024).
- Liu, Q.; Luo, Q.; Zhong, B.; Tang, K.; Chen, X.; Yang, S.; Li, X. Salidroside attenuates myocardial remodeling in DOCA-salt-induced mice by inhibiting the endothelin 1 and PI3K/AKT/NFκB signaling pathways. Eur. J. Pharmacol. 2023, 962, 176236. [Google Scholar] [CrossRef] [PubMed]
- Erst, A.A.; Kotsupiy, O.V.; Erst, A.S.; Kuznetsov, A.A. Individual Differences in Growth and in Accumulation of Secondary Metabolites in Rhodiola rosea Cultivated in Western Siberia. Int. J. Mol. Sci. 2023, 24, 11244. [Google Scholar] [CrossRef] [PubMed]
- Peschel, W.; Kump, A.; Horváth, A.; Csupor, D. Age and harvest season affect the phenylpropenoid content in cultivated European Rhodiola rosea L. Ind. Crops Prod. 2016, 83, 787–802. [Google Scholar] [CrossRef]
- Zhang, P.; Li, W.; Wang, L.; Liu, H.; Gong, J.; Wang, F.; Chen, X. Salidroside Inhibits Myogenesis by Modulating p-Smad3-Induced Myf5 Transcription. Front. Pharmacol. 2018, 9, 209. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.M.; Klass, M.; Harris, C.; Csete, M. A reducing redox environment promotes C2C12 myogenesis: Implications for regeneration in aged muscle. Cell Biol. Int. 2007, 31, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Bernatoniene, J.; Jakstas, V.; Kopustinskiene, D.M. Phenolic Compounds of Rhodiola rosea L. as the Potential Alternative Therapy in the Treatment of Chronic Diseases. Int. J. Mol. Sci. 2023, 24, 12293. [Google Scholar] [CrossRef] [PubMed]
- Shulpekova, Y.; Nechaev, V.; Kardasheva, S.; Sedova, A.; Kurbatova, A.; Bueverova, E.; Kopylov, A.; Malsagova, K.; Dlamini, J.C.; Ivashkin, V. The concept of folic acid in health and disease. Molecules 2021, 26, 3731. [Google Scholar] [CrossRef] [PubMed]
- Galasso, L.; Cappella, A.; Mulè, A.; Castelli, L.; Ciorciari, A.; Stacchiotti, A.; Montaruli, A. Polyamines and Physical Activity in Musculoskeletal Diseases: A Potential Therapeutic Challenge. Int. J. Mol. Sci. 2023, 24, 9798. [Google Scholar] [CrossRef]
- Soda, K. Overview of Polyamines as Nutrients for Human Healthy Long Life and Effect of Increased Polyamine Intake on DNA Methylation. Cells 2022, 11, 164. [Google Scholar] [CrossRef]
- Tabbaa, M.; Ruz Gomez, T.; Campelj, D.G.; Gregorevic, P.; Hayes, A.; Goodman, C.A. The regulation of polyamine pathway proteins in models of skeletal muscle hypertrophy and atrophy: A potential role for mTORC1. Am. J. Physiol. Cell Physiol. 2021, 320, C987–C999. [Google Scholar] [CrossRef]
- Magsar, J.; Sharkhuu, A.; Ba̧czek, K.; Przybył, J.L.; Wȩglarz, Z. Intraspecific variability of roseroot (Rhodiola rosea) naturally occurring in Mongolian Altai. Acta Hortic. 2012, 955, 51–58. [Google Scholar] [CrossRef]
- Adamczak, A.; Buchwald, W.; Gryszczyńska, A. Biometric features and content of phenolic compounds of roseroot (Rhodiola rosea L.). Acta Soc. Bot. Pol. 2016, 85, 11–14. [Google Scholar] [CrossRef]
- Vouillamoz, J.F.; Carron, C.A.; Malnoë, P.; Baroffio, C.A.; Carlen, C. Rhodiola rosea “Mattmark”, the first synthetic cultivar is launched in Switzerland. Acta Hortic. 2012, 955, 185–189. [Google Scholar] [CrossRef]
- Alperth, F.; Turek, I.; Weiss, S.; Vogt, D.; Bucar, F. Qualitative and quantitative analysis of different rhodiola rosea rhizome extracts by UHPLC-DAD-ESI-MSn. Sci. Pharm. 2019, 87, 8. [Google Scholar] [CrossRef]
- Altantsetseg, K.; Przybył, J.L.; Węglarz, Z.; Geszprych, A. Content of biologically active compounds in roseroot (Rhodiola sp.) raw material of different derivation. Herba Pol. 2007, 53, 20–26. [Google Scholar]
- Elameen, A.; Kosman, V.M.; Thomsen, M.; Pozharitskaya, O.N.; Shikov, A.N. Variability of Major Phenyletanes and Phenylpropanoids in 16-Year-Old Rhodiola rosea L. Clones in Norway. Molecules 2020, 25, 3463. [Google Scholar] [CrossRef] [PubMed]
- Węglarz, Z.; Przybył, J.L.; Geszprych, A. Roseroot (Rhodiola rosea L.): Effect of Internal and External Factors on Accumulation of Biologically Active Compounds. Bioact. Mol. Med. Plants 2008, 16, 297–315. [Google Scholar] [CrossRef]
- Gomes, M.J.; Martinez, P.F.; Pagan, L.U.; Damatto, R.L.; Cezar, M.D.M.; Lima, A.R.R.; Okoshi, K.; Okoshi, M.P. Skeletal muscle aging: Influence of oxidative stress and physical exercise. Oncotarget 2017, 8, 20428–20440. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Barrio, P.M.; Noreen, E.E.; Gilsanz-Estebaranz, L.; Lorenzo-Calvo, J.; Martínez-Ferrán, M.; Pareja-Galeano, H. Rhodiola rosea supplementation on sports performance: A systematic review of randomized controlled trials. Phytother. Res. 2023, 37, 4414–4428. [Google Scholar] [CrossRef]
- Santilli, V.; Bernetti, A.; Mangone, M.; Paoloni, M. Clinical definition of sarcopenia. Clin. Cases Miner. Bone Metab. 2014, 11, 177–180. [Google Scholar] [CrossRef]
- Wu, J.; Ding, P.; Wu, H.; Yang, P.; Guo, H.; Tian, Y.; Meng, L.; Zhao, Q. Sarcopenia: Molecular regulatory network for loss of muscle mass and function. Front. Nutr. 2023, 10, 1037200. [Google Scholar] [CrossRef] [PubMed]
Peak | Rt (min) | Compound | Formula | m/z [M + H]− or [M + CH3COO]− | MS/MS | Mass Accuracy (Error ppm) |
---|---|---|---|---|---|---|
1 | 1.97 | Gallic acid | C7H5O5 | 169.0132 | 125.0232 | 0.47 |
2 | 3.91 | Rhodiocyanoside A | C11H16NO6 | 318.1195 [M + CH3COO]− | 258.9975; 161.0445; 59.0127 | 1.97 |
3 | 4.67 | p-hydroxyphenacyl-β-D-glucopyranoside | C14H17O8 | 313.0922 | 151.039 | 3.71 |
4 | 5.2 | Heterodendrin | C11H18NO6 | 320.1349 [M + CH3COO]− | 261.1170; 161.0445; 59.0127 | −0.07 |
5 | 5.6 | Coumaric acid | C9H7O3 | 163.0391 | 119.049 | 0.66 |
6 | 5.84 | Salidroside | C14H19O7 | 299.1136 | 179.0552; 161.0446; 119.0339 | 3.64 |
7 | 6.06 | Salidroside hexoside | C20H29O12 | 461.1667 | 299.1137; 179.0552 | 2.96 |
8 | 6.36 | Gallocatechin | C14H13O7 | 305.0667 | 125.0232 | 3.51 |
9 | 6.42 | Rhodioloside D | C16H29O8 | 349.1855 | 179.0552; 119.0338 | −0.51 |
10 | 6.66 | Caffeic acid hexoside | C15H17O9 | 341.0888 | 179.0341 | 2.66 |
11 | 6.81 | Catechin | C15H13O6 | 289.0722 | 169.0134 | 4.8 |
12 | 6.83 | Rhodioloside A | C16H27O8 | 347.1713 | 179.0552; 119.0338 | −4.04 |
13 | 7.27 | Caffeic acid | C9H7O4 | 179.0342 | 135.044 | 1.39 |
14 | 7.47 | Viridoside | C15H21O7 | 313.1249 | 151.0754 | 3.98 |
15 | 7.96 | Unknown | - | 755.2054 | 609.1464; 300.0274 | −4.19 |
16 | 8.37 | Epicatechin | C15H13O6 | 289.0722 | 169.0134 | 4.8 |
17 | 8.68 | Epigallocatechine 3-gallate | C22H17O11 | 457.0781 | 169.0133 | 2.81 |
18 | 9.02 | Quercetin hexoside isomer 1 | C21H19O12 | 463.0889 | 300.0276 | 1.4 |
19 | 9.35 | Epigallocatechin 3-gallate | C22H17O11 | 457.0781 | 169.0133 | 2.81 |
20 | 9.79 | Quercetin 3-(2G-glucosylrutinoside) | C33H39O21 | 771.2002 | 463.0879; 301.0344 | 1.48 |
21 | 9.87 | Rutin | C27H29O16 | 609.1461 | 463.0884; 300.0276 | 0.88 |
22 | 9.9 | Quercetin hexoside isomer 2 | C21H19O12 | 463.0887 | 300.0276 | 1.4 |
23 | 10.37 | Ferulic acid | C10H9O4 | 193.05 | 178.0263 | −3.16 |
24 | 10.7 | Rhodioloside E | C21H37O11 | 465.2344 | 191.0554; 149.0445 | −0.67 |
25 | 10.77 | Rosavin | C20H27O10 | 487.1823 [M + CH3COO]− | 427.1610; 293.0882 | 2.59 |
26 | 11.01 | Rosarin | C20H27O10 | 487.1823 [M + CH3COO]− | 427.1610; 293.0882 | 2.59 |
27 | 11.34 | Rosin | C15H19O6 | 355.1398 [M + CH3COO]− | 161.0446 | −0.01 |
28 | 11.51 | Rosiridin isomer 1 | C16H27O7 | 391.1975 [M + CH3COO]− | 331.1752; 179.0555; 161.0447 | 3.2 |
29 | 11.9 | Rosiridin isomer 2 | C16H27O7 | 391.1975 [M + CH3COO]− | 331.1752; 179.0555; 161.0447 | 3.2 |
30 | 13.06 | Rhodiolgin | C21H19O12 | 463.0868 | 317.0302 | −0.67 |
31 | 13.31 | Unknown | - | 737.5194 | 677.4975 | 1.69 |
32 | 13.75 | Sachaloside II | C21H33O10 | 505.2295 [M + CH3COO]− | 445.2080; | 3.17 |
33 | 14 | Sachalinoside A | C23H31O11 | 483.1875 | 271.0461 | 1.97 |
34 | 14.51 | Rhodiosin | C27H29O16 | 609.1466 | 301.0354 | 2.62 |
35 | 14.64 | Sacranoside A isomer 1 | C21H33O10 | 505.2295 [M + CH3COO]− | 445.2080; | 3.17 |
36 | 14.75 | Rhodiolatuntoside | C21H19O11 | 447.0927 | 301.0352 | 1.017 |
37 | 14.86 | Sacranoside A isomer 2 | C21H33O10 | 505.2295 [M + CH3COO]− | 445.2080; | 3.17 |
38 | 15.1 | Eriodictyol | C15H12O6 | 287.056 | 151.0026; 135.0404 | 0.97 |
39 | 15.18 | Vicenin 2 | C27H29O15 | 593.1519 | 285.0404 | 1.3 |
40 | 16.06 | Rhodioloside C | C22H37O12 | 493.2296 | 447.2239 | 4.61 |
41 | 16.23 | Rhodiooctanoside | C19H35O10 | 423.2239 | 291.1815 | 3.46 |
42 | 16.24 | Rhodioloside B | C22H37O12 | 493.2296 | 447.2239 | 4.61 |
43 | 20.9 | Rhodiolin | C25H19O10 | 479.0989 | 299.0199 | −4.3 |
Peak | Compound | % AUC Ration (RRcc/RRwh) |
---|---|---|
2 | Rhodiocyanoside A | 341% |
4 | Heterodendrin | 185% |
8 | Gallocatechin | 156% |
10 | Caffeic acid hexoside | 117% |
13 | Caffeic acid | 165% |
18 | Quercetin hexoside | 208% |
20 | Quercetin 3- (2G-glucosylrutinoside) | 362% |
21 | Rutin | 186% |
22 | Quercetin hexoside | 208% |
23 | Ferulic acid | 227% |
34 | Rhodiosin | 205% |
35 | Sacranoside A | 239% |
36 | Rhodiolatuntoside | 165% |
37 | Sacranoside A isomer | 395% |
38 | Eriodictyol | 168% |
39 | Vicenin 2 | 282% |
41 | Rhodiooctanoside | 314% |
43 | Rhodiolin | 475% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iannuzzo, F.; Schiano, E.; Pastore, A.; Guerra, F.; Tenore, G.C.; Novellino, E.; Stornaiuolo, M. Controlled Cultivation Confers Rhodiola rosea Synergistic Activity on Muscle Cell Homeostasis, Metabolism and Antioxidant Defense in Primary Human Myoblasts. Antioxidants 2024, 13, 1000. https://doi.org/10.3390/antiox13081000
Iannuzzo F, Schiano E, Pastore A, Guerra F, Tenore GC, Novellino E, Stornaiuolo M. Controlled Cultivation Confers Rhodiola rosea Synergistic Activity on Muscle Cell Homeostasis, Metabolism and Antioxidant Defense in Primary Human Myoblasts. Antioxidants. 2024; 13(8):1000. https://doi.org/10.3390/antiox13081000
Chicago/Turabian StyleIannuzzo, Fortuna, Elisabetta Schiano, Arianna Pastore, Fabrizia Guerra, Gian Carlo Tenore, Ettore Novellino, and Mariano Stornaiuolo. 2024. "Controlled Cultivation Confers Rhodiola rosea Synergistic Activity on Muscle Cell Homeostasis, Metabolism and Antioxidant Defense in Primary Human Myoblasts" Antioxidants 13, no. 8: 1000. https://doi.org/10.3390/antiox13081000
APA StyleIannuzzo, F., Schiano, E., Pastore, A., Guerra, F., Tenore, G. C., Novellino, E., & Stornaiuolo, M. (2024). Controlled Cultivation Confers Rhodiola rosea Synergistic Activity on Muscle Cell Homeostasis, Metabolism and Antioxidant Defense in Primary Human Myoblasts. Antioxidants, 13(8), 1000. https://doi.org/10.3390/antiox13081000