Modulation of the Hyperglycemia Condition in Diabetic Lab Rats with Extracts of the Creole Jamaica Flower (Hibiscus sabdariffa L.) from the Morelia Region (Mexico)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals
2.3. Obtention of the Functional Ingredient from Hibiscus Leaves
2.3.1. Obtention of Hibiscus Extracts
2.3.2. Total Phenolic Compounds
2.3.3. Total Flavonoid Content
2.3.4. Total Anthocyanin Content
2.3.5. Antioxidant Activity
2.3.6. Metal Ions Chelating Activity
2.4. In Vitro Inhibitory Activity of the α-Amylase Enzyme
2.5. Identification and Quantification of Phenolic Compounds by RP-HPLC
2.6. Evaluation of Functionality in Induced Diabetic Rat Lab Model
2.6.1. Ethical Clearance
2.6.2. Animal Acquisition and Husbandry
2.6.3. Establishment of Streptozotocin (STZ) Diabetes in Rats
2.6.4. Plasma Collection
2.6.5. Nutritional Parameters
2.6.6. Biochemical Parameters
2.7. Glucose Homeostasis Analyses
2.7.1. Short-Term Postprandial Glucose Response
2.7.2. Long-Term Postprandial Glucose Response
2.7.3. Insulin Resistance Index
2.8. Statistical Analyses
3. Results
3.1. Obtention of the Functional Ingredient of Hibiscus Extracts
3.1.1. Chemical Characterization of the Hibiscus Extracts
3.1.2. Antioxidant Activity of the Hibiscus Extracts
3.1.3. Chelating Capacity of the Hibiscus Extracts
3.1.4. Identification and Quantification of Phenolic Compounds by RP-HPLC
3.2. Inhibitory α-Amylase Activity of the Selected Hibiscus Extract
3.3. Effect of the Hibiscus Extracts on Nutritional Parameters
3.4. Effect of the Hibiscus Extracts on Metabolic Biomarkers
3.5. Effect of the Hibiscus Extracts on Glucose Homeostasis: Postprandial Response
3.6. Effect of the Hibiscus Extracts on Glucose Homeostasis: Insulin Resistance Index
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Wang, Q.; Wu, K.; Sun, Z.; Tang, Z.; Li, X.; Zhang, B. Anthocyanins’ effects on diabetes mellitus and islet transplantation. Crit. Rev. Food Sci. Nutr. 2023, 63, 12102–12125. [Google Scholar] [CrossRef]
- Jamrozik, D.; Borymska, W.; Kaczmarczyk-Żebrowska, I. Hibiscus sabdariffa in Diabetes Prevention and Treatment—Does It Work? An Evidence-Based Review. Food 2022, 11, 2134. [Google Scholar] [CrossRef] [PubMed]
- Golovinskaia, O.; Wang, C.K. The hypoglycemic potential of phenolics from functional foods and their mechanisms. Food Sci. Hum. Wellness 2023, 12, 986–1007. [Google Scholar] [CrossRef]
- Upadhyay, T.K.; Das, S.; Mathur, M.; Alam, M.; Bhardwaj, R.; Joshi, N.; Sharangi, A.B. Medicinal plants and their bioactive components with antidiabetic potentials. In Book Antidiabetic Medicinal Plants. Applications and Opportunities; Naeem, M., Aftab, T., Eds.; Elsevier: New York, NY, USA, 2024; pp. 327–364. [Google Scholar]
- Magaña-Rodríguez, O.R.; Ortega-Pérez, L.G.; Ayala-Ruiz, L.A.; Piñon-Simental, J.S.; Gallegos-Torres, O.F.; Chavez, P.R. Inhibitory Effects of Edible and Medicinal Plant Extracts on the Enzymatic Activity of Pancreatic Lipase. J. Mex. Chem. Soc. 2023, 67, 172–181. [Google Scholar] [CrossRef]
- Li, Z.; Tian, J.; Cheng, Z.; Teng, W.; Zhang, W.; Bao, Y.; Li, B. Hypoglycemic bioactivity of anthocyanins: A review on proposed targets and potential signaling pathways. Crit. Rev. Food Sci. Nutr. 2023, 63, 7878–7895. [Google Scholar] [CrossRef] [PubMed]
- Swargiary, A.; Roy, M.K.; Mahmud, S. Phenolic compounds as α-glucosidase inhibitors: A docking and molecular dynamics simulation study. J. Biomol. Struct. Dyn. 2023, 41, 3862–3871. [Google Scholar] [CrossRef] [PubMed]
- Solverson, P. Anthocyanin bioactivity in obesity and diabetes: The essential role of glucose transporters in the gut and periphery. Cell 2020, 9, 2515. [Google Scholar] [CrossRef]
- Salau, V.F.; Erukainure, O.L.; Olofinsan, K.O.; Bharuth, V.; Ijomone, O.M.; Islam, M.S. Ferulic acid improves glucose homeostasis by modulation of key diabetogenic activities and restoration of pancreatic architecture in diabetic rats. Fundam. Clin. Pharmacol. 2023, 37, 324–339. [Google Scholar] [CrossRef] [PubMed]
- Martini, D.; Marino, M.; Venturi, S.; Tucci, M.; Klimis-Zacas, D.; Riso, P.; Del-Bo, C. Blueberries and their bioactives in the modulation of oxidative stress, inflammation and cardio/vascular function markers: A systematic review of human intervention studies. J. Nutr. Biochem. 2023, 111, 109154. [Google Scholar] [CrossRef]
- Sun, C.; Zhao, C.; Guven, E.C.; Paoli, P.; Simal-Gandara, J.; Ramkumar, K.M.; Xiao, J. Dietary polyphenols as antidiabetic agents: Advances and opportunities. Food Front. 2020, 1, 18–44. [Google Scholar] [CrossRef]
- Naz, R.; Saqib, F.; Awadallah, S.; Wahid, M.; Latif, M.F.; Iqbal, I.; Mubarak, M.S. Food Polyphenols and Type II Diabetes Mellitus: Pharmacology and Mechanisms. Molecules 2023, 28, 3996. [Google Scholar] [CrossRef]
- García-Muñoz, A.M.; García-Guillén, A.I.; Victoria-Montesinos, D.; Abellán-Ruiz, M.S.; Alburquerque-González, B.; Cánovas, F. Effect of the combination of Hibiscus sabdariffa in combination with other plant extracts in the prevention of metabolic syndrome: A Systematic Review and Meta-Analysis. Foods 2023, 12, 2269. [Google Scholar] [CrossRef] [PubMed]
- Salami, S.O.; Afolayan, A.J. Suitability of Roselle-Hibiscus sabdariffa L. as raw material for soft drink production. J. Food Qual. 2020, 2020, 8864142. [Google Scholar] [CrossRef]
- Amtaghri, S.; Qabouche, A.; Slaoui, M.; Eddouks, M. A comprehensive overview of Hibiscus rosa-sinensis L.: Its ethnobotanical uses, phytochemistry, therapeutic uses, pharmacological activities, and toxicology. Endocr. Metab. Immune. Disord. Drug Targets 2024, 24, 86–115. [Google Scholar] [CrossRef]
- Montalvo-González, E.; Villagrán, Z.; González-Torres, S.; Iñiguez-Muñoz, L.E.; Isiordia-Espinoza, M.A.; Ruvalcaba-Gómez, J.M.; Anaya-Esparza, L.M. Physiological effects and human health benefits of Hibiscus sabdariffa: A review of clinical trials. Pharmaceuticals 2022, 15, 464. [Google Scholar] [CrossRef] [PubMed]
- Cid-Ortega, S.; Guerrero-Beltrán, J.A. Roselle calyces (Hibiscus sabdariffa), an alternative to the food and beverages industries: A review. J. Food Sci. Technol. 2015, 52, 6859–6869. [Google Scholar] [CrossRef]
- Rasheed, D.M.; Porzel, A.; Frolov, A.; El Seedi, H.R.; Wessjohann, L.A.; Farag, M.A. Comparative analysis of Hibiscus sabdariffa (roselle) hot and cold extracts in respect to their potential for α-glucosidase inhibition. Food Chem. 2018, 250, 236–244. [Google Scholar] [CrossRef]
- Alegbe, E.O.; Teralı, K.; Olofinsan, K.A.; Surgun, S.; Ogbaga, C.C.; Ajiboye, T.O. Antidiabetic activity-guided isolation of gallic and protocatechuic acids from Hibiscus sabdariffa calyxes. J. Food Biochem. 2019, 43, e12927. [Google Scholar] [CrossRef]
- Hapsari, B.W.; Manikharda-Setyaningsih, W. Methodologies in the Analysis of Phenolic Compounds in Roselle (Hibiscus sabdariffa L.): Composition, Biological Activity, and Beneficial Effects on Human Health. Horticulturae 2021, 7, 35. [Google Scholar] [CrossRef]
- Nieto, J.A.; Santoyo, S.; Prodanov, M.; Reglero, G.; Jaime, L. Valorisation of grape stems as a source of phenolic antioxidants by using a sustainable extraction methodology. Foods 2020, 9, 604. [Google Scholar] [CrossRef] [PubMed]
- Nieto, J.A.; Fernández-Jalao, I.; Siles-Sánchez, M.D.L.N.; Santoyo, S.; Jaime, L. Implication of the Polymeric Phenolic Fraction and Matrix Effect on the Antioxidant Activity, Bioaccessibility, and Bioavailability of Grape Stem Extracts. Molecules 2023, 28, 2461. [Google Scholar] [CrossRef] [PubMed]
- Soares, L.A.L.; Bassani, V.L.; González Ortega, G.; Petrovick, P.R. Total Flavonoid Determination for the Quality Control of Aqueous Extractives from Phyllanthus niruri L. Acta Farm. Bonaer. 2003, 22, 203–207. [Google Scholar]
- Prior, R.L.; Cao, G.; Martin, A.; Sofic, E.; McEwen, J.; O’Brien, C.; Mainland, C.M. Antioxidant Capacity as Influenced by Total Phenolic and Anthocyanin Content, Maturity, and Variety of Vaccinium Species. J. Agric. Food Chem. 1998, 46, 2686–2693. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Xie, Z.; Huang, J.; Xu, X.; Jin, Z. Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Food Chem. 2008, 111, 370–376. [Google Scholar] [CrossRef]
- Ademiluyi, A.O.; Oboh, G. Aqueous extracts of Roselle (Hibiscus sabdariffa Linn.) varieties inhibit α-amylase and α-glucosidase activities in vitro. J. Med. Food 2013, 16, 88–93. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, F.; Ren, X.; Wang, Y.; Blanchard, C. Resistant starch manipulated hyperglycemia/hyperlipidemia and related genes expression in diabetic rats. Int. J. Biol. Macromol. 2015, 75, 316–321. [Google Scholar] [CrossRef]
- Kim, W.K.; Chung, M.K.; Kang, N.E.; Kim, M.H.; Park, O.J. Effect of resistant starch from corn or rice on glucose control, colonic events, and blood lipid concentrations in streptozotocin-induced diabetic rats. J. Nutr. Biochem. 2003, 14, 166–172. [Google Scholar] [CrossRef]
- Kumar, V.; Akinleye, A.O.; Makkar, H.P.; Angulo-Escalante, M.A.; Becker, K. Growth performance and metabolic efficiency in Nile tilapia (Oreochromis niloticus L.) fed on a diet containing Jatropha platyphylla kernel meal as a protein source. J. Anim. Physiol. Anim. 2012, 96, 37–46. [Google Scholar] [CrossRef]
- Suárez-Diéguez, T.; Nájera, M.O.; Galván, M.; Nieto, J.A. Impact of a retrograded starch ingredient obtained from Negro Jamapa beans (Phaseolus vulgaris L. Negro Jamapa) on glucose metabolism and oxidative stress in induced diabetic lab rats model. Int. J. Biol. Macromol. 2023, 253, 127447. [Google Scholar]
- Unger, G.; Benozzi, S.F.; Perruzza, F.; Pennacchiotti, G.L. Índice triglicéridos y glucosa: Un indicador útil de insulinorresistencia. Endocrinol Nutr. 2014, 61, 533–540. [Google Scholar] [CrossRef]
- Peredo Pozos, G.I.; Ruiz-López, M.A.; Zamora Natera, J.F.; Alvarez Moya, C.; Barrientos-Ramirez, L.; Reynoso-Silva, M.; Vargas-Radillo, J.J. Antioxidant capacity and antigenotoxic effect of Hibiscus sabdariffa L. extracts obtained with ultrasound-assisted extraction process. Appl. Sci. 2020, 10, 560. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Obanijesu, E.O.; Alara, J.A.; Abdul-Mudalip, S.K. Extract-rich in flavonoids from Hibiscus sabdariffa calyces: Optimizing microwave-assisted extraction method and characterization through LC-Q-TOF-MS analysis. J. Food Eng. 2020, 43, 13339. [Google Scholar] [CrossRef]
- Mercado-Mercado, G.; Blancas-Benitez, F.J.; Velderrain-Rodríguez, G.R.; Montalvo-González, E.; González-Aguilar, G.A.; Alvarez-Parrilla, E.; Sáyago-Ayerdi, S.G. Bioaccessibility of polyphenols released and associated to dietary fibre in calyces and decoction residues of Roselle (Hibiscus sabdariffa L.). J. Funct. Foods. 2015, 18, 171–181. [Google Scholar] [CrossRef]
- Diez-Echave, P.; Vezza, T.; Rodriguez-Nogales, A.; Ruiz-Malagón, A.J.; Hidalgo-Garcia, L.; Garrido-Mesa, J.; Molina-Tijeras, J.A.; Romero, M.; Robles-Vera, I.; Pimentel-Moral, S.; et al. The prebiotic properties of Hibiscus sabdariffa extract contribute to the beneficial effects in diet-induced obesity in mice. Food Res. Inter. 2020, 127, 108722. [Google Scholar] [CrossRef]
- Al-Yousef, H.M.; Hassan, W.H.; Abdelaziz, S.; Amina, M.; Adel, R.; El-Sayed, M.A. UPLC-ESI-MS/MS Profile and Antioxidant, Cytotoxic, Antidiabetic, and Antiobesity Activities of the Aqueous Extracts of Three Different Hibiscus Species. J. Chem. 2020, 1, 6749176. [Google Scholar] [CrossRef]
- Maciel, L.G.; do Carmo, M.A.V.; Azevedo, L.; Daguer, H.; Molognoni, L.; de Almeida, M.M.; Granato, D.; Rosso, N.D. Hibiscus sabdariffa anthocyanins-rich extract: Chemical stability, in vitro antioxidant and antiproliferative activities. Food Chem. Toxicol. 2018, 113, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Sachdewa, A.; Khemani, L.D. Effect of Hibiscus rosa sinensis Linn. ethanol flower extract on blood glucose and lipid profile in streptozotocin induced diabetes in rats. J. Ethnopharmacol. 2003, 89, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Adeyemi, D.O.; Adewole, O.S. Hibiscus sabdariffa renews pancreatic β-cells in experimental type 1 diabetic model rats. Morphologie 2019, 103, 80–93. [Google Scholar] [CrossRef]
- Venkatesh, S.; Thilagavathi, J. Anti-diabetic activity of flowers of Hibiscus rosasinensis. Fitoterapia 2008, 79, 79–81. [Google Scholar] [CrossRef] [PubMed]
- Adeyemi, D.O.; Ukwenya, V.O.; Obuotor, E.M.; Adewole, S.O. Anti-hepatotoxic activities of Hibiscus sabdariffa L. in animal model of streptozotocin diabetes-induced liver damage. BMC Complement. Altern. Med. 2014, 14, 277. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Pérez, C.; Segura-Carretero, A.; del Mar Contreras, M. Phenolic compounds as natural and multifunctional anti-obesity agents: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1212–1229. [Google Scholar] [CrossRef] [PubMed]
Extraction Condition | TPC (mg GAE/g) | TFC (mg QE/g) | TAC (mg CE/g) | ABTS (μmol T./g) | DPPH (μmol T./g) | Chelating (%) |
---|---|---|---|---|---|---|
Water:ethanol 80:20 25 °C | 405.06 ± 7.07 a | 23.98 ± 0.75 b | 9.00 ± 0.01 a | 219.4 ± 0.03 a | 134.4 ± 0.01 a | 40.93 ± 0.03 b |
Water:ethanol 80:20 50 °C | 403.28 ± 7.71 a | 25.30 ± 1.58 b | 4.80 ± 0.05 c | 192.5 ± 0.01 a | 132.0 ± 0.01 a | 41.64 ± 0.02 b |
Water:ethanol 50:50 25 °C | 202.50 ± 2.04 d | 15.96 ± 0.24 d | 5.40 ± 0.08 b | 77.9 ± 0.01 c | 42.7 ± 0.01 b | 49.99 ± 0.03 a |
Water:ethanol 50:50 50 °C | 189.15 ± 5.04 e | 17.82 ± 0.86 d | 3.00 ± 0.01 d | 170.5 ± 0.01 ab | 44.6 ± 0.01 b | 51.97 ± 0.01 a |
Water:ethanol 100:0 25 °C | 232.78 ± 2.31 c | 20.38 ± 0.82 c | 3.60 ± 0.04 d | 110.9 ± 0.01 b | 31.2 ± 0.01 b | 50.73 ± 0.03 a |
Water:ethanol 100:0 50 °C | 312.46 ± 9.84 b | 28.86 ± 1.54 a | 4.80 ± 0.02 bc | 42.7 ± 0.01 c | 54.1 ± 0.01 b | 53.37 ± 0.04 a |
Compound | mg/g 100 Extract |
---|---|
Gallic acid | 5.29 ± 0.24 |
Caffeic acid | 4.15 ± 2.11 |
Vanillic acid | N.D. |
p-Coumaric acid | 2.15 ± 0.27 |
Ferulic acid | 4.22 ± 0.41 |
Protocatechuic acid | N.D. |
Cinnamic acid | <LOQ |
Myricetin | 18.79 ± 3.26 |
Quercetin | N.D. |
Apigenin | 10.16 ± 1.93 |
Kaempferol | N.D. |
Experimental Group | BMG (%) | SGR (%) | MGR (g/kg · día) | Daily Intake (g Food/kg · día) |
---|---|---|---|---|
ND | 33.05 ± 3.87 a | 0.36 ± 0.04 a | 2.95 ± 0.28 a | 75.94 ± 8.39 b |
DC | 10.04 ± 9.34 b | 0.12 ± 0.11 b | 0.87 ± 0.82 b | 116.83 ± 14.48 a |
D200 | 13.14 ± 10.64 b | 0.15 ± 0.12 b | 1.15 ± 0.91 b | 128.79 ± 10.22 a |
D400 | 16.48 ± 6.80 b | 0.19 ± 0.07 b | 1.46 ± 0.58 b | 107.80 ± 7.11 a |
D600 | 19.01 ± 10.20 ab | 0.21 ± 0.10 ab | 1.65 ± 0.80 b | 116.29 ± 13.36 a |
Experimental Group | Initial Glucose (mmol/L Blood) | Final Glucose (mmol/L Blood) | Glycosylated Hemoglobin (%) | TyG Index |
---|---|---|---|---|
ND | 4.81 ± 0.62 c | 5.47 ± 0.57 c | 7.49 ± 0.87 b | 8.43 ± 0.19 c |
DC | 26.41 ± 3.33 b | 28.08 ± 2.69 a | 14.92 ± 1.76 a | 11.02 ± 0.14 a |
D200 | 34.33 ± 2.66 a | 22.24 ± 3.27 bc* | 8.05 ± 0.87 b | 10.49 ± 0.35 b |
D400 | 32.29 ± 2.24 a | 18.85 ± 6.24 b* | 7.53 ± 1.12 b | 10.22 ± 0.27 b |
D600 | 31.92 ± 2.08 a | 15.93 ± 2.83 b* | 7.41 ± 1.02 b | 10.17 ± 0.34 b |
Experimental Group | CHO (mmol/L Blood) | TG (mmol/L Blood) | HDL (mmol/L Blood) | VLDL (mmol/L Blood) | LDL (mmol/L Blood) | LDL/HDL Index |
---|---|---|---|---|---|---|
ND | 2.80 ± 0.25 bc | 1.07 ± 0.19 c | 1.30 ± 0.10 b | 0.21 ± 0.04 c | 1.29 ± 0.24 a | 1.00 ± 0.19 a |
DC | 3.41 ± 0.29 a | 2.74 ± 0.15 a | 1.84 ± 0.15 a | 0.55 ± 0.03 a | 1.01 ± 0.31 ab | 0.57 ± 0.21 ab |
D200 | 2.87 ± 0.10 b | 2.13 ± 0.76 ab | 1.69 ± 0.33 a | 0.45 ± 0.15 ab | 0.75 ± 0.35 bc | 0.50 ± 0.38 b |
D400 | 2.43 ± 0.25 cd | 1.86 ± 0.39 b | 1.52 ± 0.30 ab | 0.38 ± 0.08 b | 0.48 ± 0.26 c | 0.32 ± 0.21 b |
D600 | 2.14 ± 0.24 d | 1.78 ± 0.35 bc | 1.50 ± 0.11 ab | 0.35 ± 0.08 bc | 0.28 ± 0.26 c | 0.19 ± 0.18 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suárez-Diéguez, T.; Palma-Morales, M.; Camacho Bernal, G.I.; Valdez López, E.N.; Rodríguez-Pérez, C.; Cruz-Cansino, N.d.S.; Nieto, J.A. Modulation of the Hyperglycemia Condition in Diabetic Lab Rats with Extracts of the Creole Jamaica Flower (Hibiscus sabdariffa L.) from the Morelia Region (Mexico). Antioxidants 2024, 13, 1010. https://doi.org/10.3390/antiox13081010
Suárez-Diéguez T, Palma-Morales M, Camacho Bernal GI, Valdez López EN, Rodríguez-Pérez C, Cruz-Cansino NdS, Nieto JA. Modulation of the Hyperglycemia Condition in Diabetic Lab Rats with Extracts of the Creole Jamaica Flower (Hibiscus sabdariffa L.) from the Morelia Region (Mexico). Antioxidants. 2024; 13(8):1010. https://doi.org/10.3390/antiox13081010
Chicago/Turabian StyleSuárez-Diéguez, Teodoro, Marta Palma-Morales, Gloria Isabel Camacho Bernal, Erick Noe Valdez López, Celia Rodríguez-Pérez, Nelly del Socorro Cruz-Cansino, and Juan Antonio Nieto. 2024. "Modulation of the Hyperglycemia Condition in Diabetic Lab Rats with Extracts of the Creole Jamaica Flower (Hibiscus sabdariffa L.) from the Morelia Region (Mexico)" Antioxidants 13, no. 8: 1010. https://doi.org/10.3390/antiox13081010
APA StyleSuárez-Diéguez, T., Palma-Morales, M., Camacho Bernal, G. I., Valdez López, E. N., Rodríguez-Pérez, C., Cruz-Cansino, N. d. S., & Nieto, J. A. (2024). Modulation of the Hyperglycemia Condition in Diabetic Lab Rats with Extracts of the Creole Jamaica Flower (Hibiscus sabdariffa L.) from the Morelia Region (Mexico). Antioxidants, 13(8), 1010. https://doi.org/10.3390/antiox13081010