Comparative Study of Flavonoid Profiles, Antioxidant, and Antiproliferative Activities in Hot-Air and Vacuum Drying of Different Parts of Pitaya (Hylocereus undatus Britt) Flowers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Extraction and Determination of Phytochemicals
2.3. Determination of Antioxidant Activities
2.4. Determination of Antiproliferative Activity and Cytotoxicity
2.5. Statistical Analysis
3. Results
3.1. Changes in Total Phenolic Content in Different Parts of Pitaya Flowers after HAD and VD Treatments
3.2. Changes in Flavonoids in Different Parts of Pitaya Flowers after HAD and VD Treatments
3.3. Changes in Antioxidant Activities in Different Parts of Pitaya Flowers after HAD and VD Treatments
3.4. Changes in Antiproliferative Activity and Cytotoxicity in Different Parts of Pitaya Flowers after HAD and VD Treatments
3.5. Correlation Analysis
4. Discussion
4.1. Effect of HAD and VD Treatments on the Polyphenol Composition of Pitaya Flowers
4.2. Effect of HAD and VD Treatments on Antioxidant Activity of Pitaya Flowers
4.3. Effect of HAD and VD Treatments on Antiproliferative Activity of Pitaya Flowers
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Li, X.; Gao, Y.; Han, W.; Lin, J.; Hu, Q.; Chen, D. Antioxidant activity and mechanism in flower of Hylocereus undatus (Haw.) Britt. et Rose. Acta Biol. Cracoviensia Ser. Bot. 2013, 55, 80–85. [Google Scholar] [CrossRef]
- Zhao, C.; Li, C.; Huang, Q.; Fu, X. Characterization, functional and biological properties of degraded polysaccharides from Hylocereus undatus flowers. J. Food Process. Preserv. 2019, 43, e13973. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Zhao, C.; Fu, X. Physicochemical characterization, antioxidative and immunoregulatory activity of polysaccharides from the flower of Hylocereus undatus (Haw.) Britton et Rose. Int. J. Biol. Macromol. 2023, 251, 126408. [Google Scholar] [CrossRef]
- Liao, W.; Wu, H.; Pang, L.; He, B.; Tong, J.; Qin, J.; Li, L.; Liu, W.; Zhou, X.; Huang, S.; et al. Hylocereus undatus flower suppresses DSS-induced colitis in mice by reducing intestinal inflammation, repairing the intestinal physical barrier, and modulating gut and lung microbiota. J. Funct. Foods 2023, 110, 105820. [Google Scholar] [CrossRef]
- Yi, Y.; Wu, X.; Wang, Y.; Ye, W.-C.; Zhang, Q.-W. Studies on the flavonoids from the flowers of Hylocereus undatus. J. Chin. Med. Mater. 2011, 34, 712–716. [Google Scholar]
- Goncalves, A.C.; Falcao, A.; Alves, G.; Silva, L.R.; Flores-Felix, J.D. Antioxidant activity of the main phenolics found in red fruits: An in vitro and in silico study. Food Chem. 2024, 452, 139459. [Google Scholar] [CrossRef]
- Yi, Y.; Zhang, Q.W.; Li, S.L.; Wang, Y.; Ye, W.C.; Zhao, J.; Wang, Y.T. Simultaneous quantification of major flavonoids in "Bawanghua", the edible flower of Hylocereus undatus using pressurised liquid extraction and high performance liquid chromatography. Food Chem. 2012, 135, 528–533. [Google Scholar] [CrossRef]
- Chiamolera, F.M.; Parra, L.; Sanchez, E.; Casas, M.; Hueso, J.J.; Cuevas, J. Determining Optimal Levels of Pruning in Hylocereus undatus (Haw.) Britton and Rose in Trellis Systems. Agronomy 2023, 13, 238. [Google Scholar] [CrossRef]
- Udomkun, P.; Nagle, M.; Mahayothee, B.; Nohr, D.; Koza, A.; Müller, J. Influence of air drying properties on non-enzymatic browning, major bio-active compounds and antioxidant capacity of osmotically pretreated papaya. Lwt-Food Sci. Technol. 2015, 60, 914–922. [Google Scholar] [CrossRef]
- Osama, K.; Mujtaba, A.; Siddiqui, M.H.; Qadri, O.S.; Younis, K. Optimization of vacuum drying and determination of functional properties of Kadam (Neolamarckia cadamba) fruit powder. J. Food Process. Preserv. 2022, 46, e16751. [Google Scholar] [CrossRef]
- Guo, X.; Li, T.; Tang, K.; Liu, R.H. Effect of Germination on Phytochemical Profiles and Antioxidant Activity of Mung Bean Sprouts (Vigna radiata). J. Agric. Food Chem. 2012, 60, 11050–11055. [Google Scholar] [CrossRef]
- Zhang, X.; Bian, Z.; Li, S.; Chen, X.; Lu, C. Comparative Analysis of Phenolic Compound Profiles, Antioxidant Capacities, and Expressions of Phenolic Biosynthesis-Related Genes in Soybean Microgreens Grown under Different Light Spectra. J. Agric. Food Chem. 2019, 67, 13577–13588. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, J.; Xiao, G.; Chen, L.; Guo, X. Impact of kernel development on phenolic profiles and antioxidant activity in Castanea henryi. Int. J. Food Sci. Technol. 2022, 57, 5801–5810. [Google Scholar] [CrossRef]
- Cheng, Y.; Xiang, N.; Cheng, X.; Chen, H.; Guo, X. Effect of photoperiod on polyphenol biosynthesis and cellular antioxidant capacity in mung bean (Vigna radiata) sprouts. Food Res. Int. 2022, 159, 111626. [Google Scholar] [CrossRef]
- Dewanto, V.; Wu, X.Z.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef]
- Lu, Q.; Wang, S.H.; Xue, S.J.; Yang, D.; Li, L. Effects of drying methods on phenolic components in different parts of Chrysanthemum morifolium flower. J. Food Process. Preserv. 2020, 44, e14982. [Google Scholar] [CrossRef]
- Nicolas, J.J.; Richard-Forget, F.C.; Goupy, P.M.; Amiot, M.J.; Aubert, S.Y. Enzymatic browning reactions in apple and apple products. Crit. Rev. Food Sci. Nutr. 1994, 34, 109–157. [Google Scholar] [CrossRef]
- Kampatsikas, I.; Bijelic, A.; Rompel, A. Biochemical and structural characterization of tomato polyphenol oxidases provide novel insights into their substrate specificity. Sci. Rep. 2019, 9, 4022. [Google Scholar] [CrossRef]
- Tekin-Cakmak, Z.H.; Kayacan Cakmakoglu, S.; Avci, E.; Sagdic, O.; Karasu, S. Ultrasound-assisted vacuum drying as alternative drying method to increase drying rate and bioactive compounds retention of raspberry. J. Food Process. Preserv. 2021, 45, 16044. [Google Scholar] [CrossRef]
- Murata, M.; Tsurutani, M.; Hagiwara, S.; Homma, S. Subcellular Location of Polyphenol Oxidase in Apples. Biosci. Biotechnol. Biochem. 1997, 61, 1495–1499. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S. Recent Advances of Polyphenol Oxidases in Plants. Molecules 2023, 28, 2158. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Singh, R.P. In vitro methods of assay of antioxidants: An overview. Food Rev. Int. 2008, 24, 392–415. [Google Scholar] [CrossRef]
- Jha, D.K.; Panda, L.; Ramaiah, S.; Anbarasu, A. Evaluation and Comparison of Radical Scavenging Properties of Solvent Extracts from Justicia adhatoda Leaf Using DPPH Assay. Appl. Biochem. Biotechnol. 2014, 174, 2413–2425. [Google Scholar] [CrossRef]
- Su, D.; Ti, H.; Zhang, R.; Zhang, M.; Wei, Z.; Deng, Y.; Guo, J. Structural elucidation and cellular antioxidant activity evaluation of major antioxidant phenolics in lychee pulp. Food Chem. 2014, 158, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Dutta, A.; Dahiya, A.; Kalra, N. Quercetin-3-Rutinoside alleviates radiation-induced lung inflammation and fibrosis via regulation of NF-ΚB/TGF-β1 signaling. Phytomedicine 2022, 99, 154004. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Hu, M.-J.; Wang, Y.-Q.; Cui, Y.-L. Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules 2019, 24, 1123. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Yang, H.; Xu, Z.; Li, Z.; Zhang, Z.; Zhang, W.; Deng, J. A comparative metabolomics analysis of phytochemcials and antioxidant activity between broccoli floret and by-products (leaves and stalks). Food Chem. 2024, 443, 138517. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhao, Y.; Tao, H.; Li, L.; He, Y.; Zhang, X.; Zhu, Y.; Hong, G. Analysis of the Flavonoidome Reveals the Different Health-Promoting Flavonoid Characteristics in Fruit. Antioxidants 2023, 12, 1665. [Google Scholar] [CrossRef]
- Felice, M.R.; Maugeri, A.; De Sarro, G.; Navarra, M.; Barreca, D. Molecular Pathways Involved in the Anti-Cancer Activity of Flavonols: A Focus on Myricetin and Kaempferol. Int. J. Mol. Sci. 2022, 23, 4411. [Google Scholar] [CrossRef]
- Khaled, A.M.; Othman, M.S.; Obeidat, S.T.; Aleid, G.M.; Aboelnaga, S.M.; Fehaid, A.; Hathout, H.M.R.; Bakkar, A.A.; Moneim, A.E.A.; El-Garawani, I.M.; et al. Green-Synthesized Silver and Selenium Nanoparticles Using Berberine: A Comparative Assessment of In Vitro Anticancer Potential on Human Hepatocellular Carcinoma Cell Line (HepG2). Cells 2024, 13, 287. [Google Scholar] [CrossRef]
- Zhang, B.; Quan, H.; Cai, Y.X.; Han, X.H.; Kang, H.Y.; Lu, Y.Z.; Cheng, H.; Xiang, N.; Lan, X.Z.; Guo, X.B. Comparative study of browning, phenolic profiles, antioxidant and antiproliferative activities in hot air and vacuum drying of lily (Lilium lancifolium Thunb.) bulbs. Lwt-Food Sci. Technol. 2023, 184, 115015. [Google Scholar] [CrossRef]
- Medini, F.; Ksouri, R.; Msaada, K.; Legault, J. Phenolic compounds from Limonium densiflorum: A multifaceted approach to antioxidant, anti-inflammatory, anticancer, and anti-influenza activities. Int. J. Environ. Health Res. 2024, Online ahead of print. [Google Scholar] [CrossRef]
Compounds and Contents | Parts | Fresh | HAD | VD |
---|---|---|---|---|
Total flavonoid glycosides (mg/g) | Calyx | 4.82 ± 0.21 c | 8.64 ± 0.20 b | 9.97 ± 0.37 a |
Petal | 3.38 ± 0.22 d | 10.30 ± 0.63 a | 8.49 ± 0.52 b | |
Stamen | 3.09 ± 0.20 d | 4.54 ± 0.09 c | 4.55 ± 0.08 c | |
Pistil | 1.53 ± 0.059 f | 2.07 ± 0.07 e | 1.68 ± 0.04 ef | |
Q3Ru (μg/g) | Calyx | 69.73 ± 4.89 g | 235.0 ± 8.88 e | 264.9 ± 9.46 d |
Petal | ND | ND | ND | |
Stamen | 39.39 ± 3.66 h | 102.6 ± 1.38 f | 104.9 ± 4.89 f | |
Pistil | 394.0 ± 29.19 c | 438.9 ± 26.92 b | 596.1 ± 13.75 a | |
HY (μg/g) | Calyx | 98.04 ± 4.16 e | 156.6 ± 3.20 c | 164.0 ± 5.64 c |
Petal | ND | ND | ND | |
Stamen | 118.6 ± 5.09 d | 311.0 ± 7.09 b | 331.4 ± 10.56 a | |
Pistil | 67.67 ± 6.59 g | 80.83 ± 2.47 f | 104.7 ± 6.91 h | |
Q3G (μg/g) | Calyx | 169.1 ± 13.22 c | 362.9 ± 0.91 b | 425.7 ± 12.00 a |
Petal | ND | ND | ND | |
Stamen | ND | ND | ND | |
Pistil | 62.34 ± 0.42 d | ND | ND | |
K3Rb (μg/g) | Calyx | 178.2 ± 8.93 e | 387.5 ± 9.60 d | 459.5 ± 19.31 d |
Petal | 796.0 ± 36.98 c | 2641 ± 162.6 a | 2174 ± 133.9 b | |
Stamen | 89.43 ± 5.18 ef | 135.8 ± 2.79 e | 154.0 ± 4.35 e | |
Pistil | 0.56 ± 0.03 f | ND | ND | |
K3Ru and I3Rb (μg/g) | Calyx | 1825 ± 57.06 f | 3141 ± 66.89 d | 3459 ± 119.8 c |
Petal | 2116 ± 178.9 e | 6702 ± 403.7 a | 5609 ± 350.1 b | |
Stamen | 775.3 ± 47.98 h | 1146 ± 22.22 g | 1214 ± 35.28 g | |
Pistil | 375.0 ± 28.03 ij | 582.4 ± 19.88 hi | 406.6 ± 10.76 j | |
I3Ru (μg/g) | Calyx | 1228 ± 42.44 c | 2333 ± 55.77 b | 2437 ± 109.1 a |
Petal | 70.80 ± 4.48 j | 144.3 ± 11.25 gh | 79.21 ± 6.48 hi | |
Stamen | 105.1 ± 2.97 ghi | 139.1 ± 12.49 ghi | 172.2 ± 4.97 g | |
Pistil | 547.2 ± 39.44 f | 918.2 ± 21.68 d | 581.9 ± 13.99 e | |
K3G (μg/g) | Calyx | 418.7 ± 35.24 f | 559.3 ± 12.61 e | 748.6 ± 27.76 d |
Petal | 372.6 ± 0.78 f | 813.7 ± 49.98 d | 634.5 ± 30.90 e | |
Stamen | 1936 ± 135.5 c | 2669 ± 52.87 a | 2532 ± 40.11 b | |
Pistil | 85.44 ± 2.20 g | 49.07 ± 5.25 g | ND | |
I3G (μg/g) | Calyx | 829.7 ± 90.43 c | 1461 ± 41.30 b | 2019 ± 82.89 a |
Petal | 24.28 ± 0.15 d | ND | ND | |
Stamen | 27.76 ± 1.77 d | 44.25 ± 2.12 d | 36.81 ± 3.08 d | |
Pistil | ND | ND | ND | |
Total flavonoid aglycones (μg/g) | Calyx | ND | 830.8 ± 40.47 a | 435.8 ± 17.72 b |
Petal | ND | 180.6 ± 10.65 f | 86.66 ± 7.22 g | |
Stamen | ND | 315.5 ± 47.84 c | 264.6 ± 12.48 de | |
Pistil | ND | 280.3 ± 5.40 d | 236.7 ± 3.78 e | |
QE (μg/g) | Calyx | ND | 161.1 ± 7.21 b | 104.4 ± 2.13 d |
Petal | ND | ND | ND | |
Stamen | ND | ND | ND | |
Pistil | ND | 123.4 ± 2.61 c | 172.2 ± 1.92 a | |
KA (μg/g) | Calyx | ND | 44.38 ± 0.39 e | 23.24 ± 1.76 f |
Petal | ND | 180.6 ± 10.65 c | 86.66 ± 7.22 d | |
Stamen | ND | 315.5 ± 31.81 a | 264.6 ± 12.48 b | |
Pistil | ND | 70.87 ± 1.85 d | 64.49 ± 1.87 de | |
IS (μg/g) | Calyx | ND | 625.3 ± 41.14 a | 308.1 ± 14.21 b |
Petal | ND | ND | ND | |
Stamen | ND | ND | ND | |
Pistil | ND | 86.08 ± 1.14 c | ND | |
Total phenolics (mg/g) | Calyx | 4.82 ± 0.21 d | 9.47 ± 0.19 b | 10.41 ± 0.39 a |
Petal | 3.38 ± 0.22 e | 10.48 ± 0.64 a | 8.58 ± 0.52 c | |
Stamen | 3.09 ± 0.20 e | 4.86 ± 0.07 d | 4.81 ± 0.10 d | |
Pistil | 1.53 ± 0.06 g | 2.35 ± 0.07 f | 1.92 ± 0.02 fg |
Parts | Treatments | Antioxidant Activities | Antiproliferation IC50 (mg/mL DW) | |
---|---|---|---|---|
DPPH Value (mg Trolox/g DW) | ORAC Value (μmol TE/g DW) | |||
Calyx | Fresh | 4.85 ± 0.11 g | 9.20 ± 0.22 f | 53.97 ± 3.39 b |
HAD | 11.62 ± 0.53 d | 40.40 ± 4.07 bc | 4.87 ± 0.51 h | |
VD | 12.10 ± 0.05 d | 38.87 ± 4.46 c | 17.52 ± 0.91 ef | |
Petal | Fresh | 0.60 ± 0.04 h | 5.29 ± 0.17 f | 65.64 ± 5.12 a |
HAD | 7.34 ± 0.70 e | 32.17 ± 1.03 cd | 17.25 ± 0.23 ef | |
VD | 5.47 ± 0.19 fg | 28.83 ± 2.28 de | 19.12 ± 0.26 e | |
Stamen | Fresh | 0.59 ± 0.03 h | 5.98 ± 0.08 f | 31.03 ± 1.41 d |
HAD | 5.51 ± 0.30 fg | 21.63 ± 1.48 e | 7.84 ± 0.63 gh | |
VD | 5.85 ± 0.45 f | 27.93 ± 0.16 de | 16.16 ± 0.39 ef | |
Pistil | Fresh | 19.83 ± 1.13 c | 15.19 ± 2.50 f | 37.91 ± 2.00 c |
HAD | 39.16 ± 0.97 b | 52.25 ± 7.18 a | 10.28 ± 1.02 g | |
VD | 40.10 ± 1.19 a | 52.00 ± 6.35 a | 14.44 ± 0.16 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, C.; Long, H.; Hu, J.; Guo, X. Comparative Study of Flavonoid Profiles, Antioxidant, and Antiproliferative Activities in Hot-Air and Vacuum Drying of Different Parts of Pitaya (Hylocereus undatus Britt) Flowers. Antioxidants 2024, 13, 956. https://doi.org/10.3390/antiox13080956
Shi C, Long H, Hu J, Guo X. Comparative Study of Flavonoid Profiles, Antioxidant, and Antiproliferative Activities in Hot-Air and Vacuum Drying of Different Parts of Pitaya (Hylocereus undatus Britt) Flowers. Antioxidants. 2024; 13(8):956. https://doi.org/10.3390/antiox13080956
Chicago/Turabian StyleShi, Caifeng, Huaqian Long, Jia Hu, and Xinbo Guo. 2024. "Comparative Study of Flavonoid Profiles, Antioxidant, and Antiproliferative Activities in Hot-Air and Vacuum Drying of Different Parts of Pitaya (Hylocereus undatus Britt) Flowers" Antioxidants 13, no. 8: 956. https://doi.org/10.3390/antiox13080956
APA StyleShi, C., Long, H., Hu, J., & Guo, X. (2024). Comparative Study of Flavonoid Profiles, Antioxidant, and Antiproliferative Activities in Hot-Air and Vacuum Drying of Different Parts of Pitaya (Hylocereus undatus Britt) Flowers. Antioxidants, 13(8), 956. https://doi.org/10.3390/antiox13080956