Characterization of Extractable and Non-Extractable Phenols and Betalains in Berrycactus (Myrtillocactus geometrizans) and Its Chemoprotective Effect in Early Stage of Colon Cancer In Vivo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Sample
2.2. Extractable Phenolics
2.3. Non-Extractable Phenolics
2.4. Total Phenolic, Flavonoid, and Condensed Tannins
2.5. Betanin and Vulgaxanthines
2.6. Dietary Fiber
2.7. Antioxidant Capacity Determination
2.8. Identification of Bioactive Compounds by UPLC-QTOF-MSE
2.9. In Vivo Experimental Design
2.10. Histologic Analysis
2.11. β-Glucoronidase Activity Determination
2.12. Short-Chain Fatty Acids in Feces
2.13. Statistical Analysis
3. Results and Discussion
3.1. Betalains and Dietary Fiber
3.2. Phenolics in Extractable and Non-Extractable Polyphenols
3.3. Polyphenol Profile of EP and NEP by UPLC-QToF MS
3.4. Antioxidant Capacity of EP and NEP
3.5. In Vivo Model
3.6. Quantification of ACF in Distal Colonic Tissue
3.7. β-Glucoronidase Activity
3.8. Production of Short-Chain Fatty Acids
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saura-Calixto, F. Concept and health-related properties of nonextractable polyphenols: The missing dietary polyphenols. J. Agric. Food Chem. 2012, 60, 11195–11200. [Google Scholar] [CrossRef] [PubMed]
- Das, T.; Chatterjee, N.; Capanoglu, E.; Lorenzo, J.M.; Das, A.K.; Dhar, P. The synergistic ramification of insoluble dietary fiber and associated non-extractable polyphenols on gut microbial population escorting alleviation of lifestyle diseases. Food Chem. 2023, 18, 100697. [Google Scholar] [CrossRef]
- Hernández-López, D.; Vaillant, F.; Reynoso-Camacho, R.; Guzman-Maldonado, S.H. Myrtillocactus (cactaceae): Botanical, agronomic, physicochemical and chemical characteristics of fruits. Fruits 2008, 63, 269–276. [Google Scholar] [CrossRef]
- Guzmán-Maldonado, S.H.; Herrera-Hernández, G.; Hernández-López, D.; Reynoso-Camacho, R.; Guzmán-Tovar, A.; Vaillant, F.; Brat, P. Physicochemical, nutritional and functional characteristics of two underutilised fruit cactus species (Myrtillocactus) produced in central Mexico. Food Chem. 2010, 121, 381–386. [Google Scholar] [CrossRef]
- Sánchez-Recillas, E.; Campos-Vega, R.; Pérez-Ramírez, I.F.; Luzardo-Ocampo, I.; Cuéllar-Núñez, M.L.; Vergara-Castañeda, H.A. Garambullo (Myrtillocactus geometrizans): Effect of in vitro gastrointestinal digestion on the bioaccessibility and antioxidant capacity of phytochemicals. Food Funct. 2022, 13, 4699–4713. [Google Scholar] [CrossRef]
- Sánchez-Recillas, E.; Almanza-Aguilera, E.; Dufoo-Hurtado, E.; Luzardo-Ocampo, I.; Campos-Vega, R.; Vergara-Castañeda, H.A. Untargeted metabolomics of gut-derived metabolites from in vitro colonic fermentation of garambullo (Myrtillocactus geometrizans). J. Funct. Foods 2024, 114, 106063. [Google Scholar] [CrossRef]
- Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol 2019, 10, 277. [Google Scholar]
- Bouyahya, A.; Omari, N.E.; El Hachlafi, N.; Jemly, M.E.; Hakkour, M.; Balahbib, A.; El Menyiy, N.; Bakrim, S.; Naceiri Mrabti, H.; Khouchlaa, A.; et al. Chemical compounds of berry-derived polyphenols and their effects on gut Microbiota, inflammation, and cancer. Molecules 2022, 27, 3286. [Google Scholar] [CrossRef]
- Rawla, P.; Sunkara, T.; Barsouk, A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Prz. Gastroenterol. 2019, 14, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Morgan, E.; Arnold, M.; Gini, A.; Lorenzoni, V.; Cabasag, C.J.; Laversanne, M.; Vignat, J.; Ferlay, J.; Murphy, N.; Bray, F. Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN. Gut 2023, 72, 338–344. [Google Scholar] [CrossRef]
- Magalhães, B.; Peleteiro, B.; Lunet, N. Dietary patterns and colorectal cancer: Systematic review and meta-analysis. Eur. J. Cancer Prev. 2012, 21, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Hernández, M.G.; Guevara-Lara, F.; Reynoso-Camacho, R.; Guzmán-Maldonado, S.H. Effects of maturity stage and storage on cactus berry (Myrtillocactus geometrizans) phenolics, vitamin C, betalains and their antioxidant properties. Food Chem. 2011, 129, 1744–1750. [Google Scholar] [CrossRef]
- Ye, X.Q.; Chen, J.C.; Liu, D.H.; Jiang, P.; Shi, J.; Xue, S.; Wu, D.; Xu, J.G.; Kakuda, Y. Identification of bioactive composition and antioxidant activity in young mandarin fruits. Food Chem. 2011, 124, 1561–1566. [Google Scholar] [CrossRef]
- Arranz, S.; Saura Calixto, F. Analysis of polyphenols in cereals may be improved performing acidic hydrolysis: A study in wheat flour and wheat bran and cereals of the diet. J. Cereal Sci. 2010, 51, 313–318. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, S.S.; Cheryan, M.; Salunkhe, D.K.; Luh, B.S. Tannin analysis of food products. Crit. Rev. Food Sci. Nutr. 1986, 24, 401–449. [Google Scholar] [CrossRef]
- Nilsson, T. Studies into the pigments in beetroot. Lant. Brukshogsko Lans Annaler. 1970, 36, 179–219. [Google Scholar]
- Prosky, L.; Asp, N.G.; Schweizer, T.F.; DeVries, J.W.; Furda, I. Determination of insoluble, soluble, and total dietary fiber in foods and food products: Interlaboratory study. J. Assoc. Off. Anal. Chem. 1988, 71, 1017–1023. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Jiménez, J.; Saura-Calixto, F. Macromolecular antioxidants or non-extractable polyphenols in fruit and vegetables: Intake in four European countries. Food Res. Int. 2015, 74, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-González, S.; Pérez-Ramírez, I.F.; Castaño-Tostado, E.; Amaya-Llano, S.; Rodríguez-García, M.E.; Reynoso-Camacho, R. Improvement of physico-chemical properties and phenolic compounds bioavailability by concentrating dietary fiber of peach (Prunus persica) juice by-product. J. Sci. Food Agric. 2018, 98, 3109–3118. [Google Scholar] [CrossRef]
- Reynoso, R.; Giner, T.; De Mejia, E. Safety of a Filtrate of Fermented Garambullo Fruit: Biotransformation and Toxicity Studies. Food Chem. Toxicol. 1999, 37, 825–830. [Google Scholar] [CrossRef]
- Kulkarni, S.; Hickman, D. Isoflurane and carbon dioxide elicit similar behavioral responses in rats. Animals 2020, 10, 1431. [Google Scholar] [CrossRef]
- Bird, R.P. Observation and quantification of aberrant crypts in the murine colon treated with a colon carcinogen: Preliminary findings. Cancer Lett. 1987, 37, 147–151. [Google Scholar] [CrossRef]
- Wijnands, M.V.W. Effect of dietary galacto-oligosaccharides on azoxymethane-induced aberrant crypt foci and colorectal cancer in Fischer 344 rats. Carcinogenesis 2001, 22, 127–132. [Google Scholar] [CrossRef]
- García-Villalba, R.; Giménez-Bastida, J.A.; García-Conesa, M.T.; Tomás-Barberán, F.A.; Carlos Espín, J.; Larrosa, M. Alternative method for gas chromatography-mass spectrometry analysis of short-chain fatty acids in faecal samples. J. Sep. Sci. 2012, 35, 1906–1913. [Google Scholar] [CrossRef]
- Rodríguez-Herrera, V.V.; García-Cruz, L.; Valle-Guadarrama, S. Aqueous two-phase extraction: A non-thermal technique to separate and concentrate betalains from Bougainvillea glabra Choisy bracts. Ind. Crops Prod. 2023, 193, 116245. [Google Scholar] [CrossRef]
- Santos, G.B.M.; Dionísio, A.P.; Magalhães, H.C.R.; de Abreu, F.A.P.; Lira, S.M.; de Lima, A.C.V.; da Silva, G.S.; Guedes, J.A.C.; da Silva Araujo, I.M.; Artur, A.G.; et al. Effects of processing on the chemical, physicochemical, enzymatic, and volatile metabolic composition of pitaya (Hylocereus polyrhizus (F.A.C. Weber) Britton & Rose). Food Res. Int. 2020, 127, 108710. [Google Scholar] [PubMed]
- Salehi, E.; Emam-Djomeh, Z.; Askari, G.; Fathi, M. Opuntia ficus indica fruit gum: Extraction, characterization, antioxidant activity and functional properties. Carbohydr. Polym. 2019, 206, 565–572. [Google Scholar] [CrossRef]
- Domínguez-Avila, J.A.; Wall-Medrano, A.; Velderrain-Rodríguez, G.R.; Chen, C.Y.O.; Salazar-López, N.J.; Robles-Sánchez, M.; González-Aguilar, G.A. Gastrointestinal interactions, absorption, splanchnic metabolism and pharmacokinetics of orally ingested phenolic compounds. Food Funct. 2017, 8, 15–38. [Google Scholar] [CrossRef] [PubMed]
- Reynoso-Camacho, R.; Sotelo-González, A.M.; Patiño-Ortiz, P.; Rocha-Guzmán, N.E.; Pérez-Ramírez, I.F. Berry by-products obtained from a decoction process are a rich source of low- and high-molecular weight extractable and non-extractable polyphenols. Food Bioprod. Process. 2021, 127, 371–387. [Google Scholar] [CrossRef]
- Fonseca, A.M.A.; Geraldi, M.V.; Junior, M.R.M.; Silvestre, A.J.D.; Rocha, S.M. Purple passion fruit (Passiflora edulis f. edulis): A comprehensive review on the nutritional value, phytochemical profile and associated health effects. Food Res. Int. 2022, 160, 111665. [Google Scholar]
- El-Hawary, S.S.; Sobeh, M.; Badr, W.K.; Abdelfattah, M.A.O.; Ali, Z.Y.; El-Tantawy, M.E.; Rabeh, M.A.; Wink, M. HPLC-PDA-MS/MS profiling of secondary metabolites from Opuntia ficus-indica cladode, peel and fruit pulp extracts and their antioxidant, neuroprotective effect in rats with aluminum chloride induced neurotoxicity. Saudi J. Biol. Sci. 2020, 27, 2829–2838. [Google Scholar] [CrossRef] [PubMed]
- Montiel-Sánchez, M.; García-Cayuela, T.; Gómez-Maqueo, A.; García, H.S.; Cano, M.P. In vitro gastrointestinal stability, bioaccessibility and potential biological activities of betalains and phenolic compounds in cactus berry fruits (Myrtillocactus geometrizans). Food Chem. 2021, 342, 128087. [Google Scholar] [CrossRef] [PubMed]
- Ketnawa, S.; Reginio, F.C., Jr.; Thuengtung, S.; Ogawa, Y. Changes in bioactive compounds and antioxidant activity of plant-based foods by gastrointestinal digestion: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 4684–4705. [Google Scholar] [CrossRef]
- Antolovich, M.; Prenzler, P.D.; Patsalides, E.; McDonald, S.; Robards, K. Methods for testing antioxidant activity. Analyst 2002, 127, 183–198. [Google Scholar] [CrossRef]
- Baenas, N.; Ruales, J.; Moreno, D.A.; Barrio, D.A.; Stinco, C.M.; Martínez-Cifuentes, G.; Meléndez-Martínez, A.J.; García-Ruiz, A. Characterization of Andean blueberry in bioactive compounds, evaluation of biological properties, and in vitro bioaccessibility. Foods 2020, 9, 1483. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef] [PubMed]
- Karadag, A.; Ozcelik, B.; Saner, S. Review of methods to determine antioxidant capacities. Food Anal. Met. 2009, 2, 41–60. [Google Scholar] [CrossRef]
- Rodrigues, C.A.; Nicácio, A.E.; Boeing, J.S.; Garcia, F.P.; Nakamura, C.V.; Visentainer, J.V.; Maldaner, L. Rapid extraction method followed by a d-SPE clean-up step for determination of phenolic composition and antioxidant and antiproliferative activities from berry fruits. Food Chem. 2020, 309, 125694. [Google Scholar] [CrossRef] [PubMed]
- Tow, W.W.; Premier, R.; Jing, H.; Ajlouni, S. Antioxidant and antiproliferation effects of extractable and nonextractable polyphenols isolated from apple waste using different extraction methods. J. Food Sci. 2011, 76, T163–T172. [Google Scholar] [CrossRef]
- Lin, Y.; Huang, G.; Zhang, Q.; Wang, Y.; Dia, V.P.; Meng, X. Ripening affects the physicochemical properties, phytochemicals and antioxidant capacities of two blueberry cultivars. Postharvest Biol. Technol. 2020, 162, 111097. [Google Scholar] [CrossRef]
- Han, Y.; Huang, M.; Cai, X.; Gao, Z.; Li, F.; Rakariyatham, K.; Song, M.; Fernández Tomé, S.; Xiao, H. Non-extractable polyphenols from cranberries: Potential anti-inflammation and anti-colon-cancer agents. Food Funct. 2019, 10, 7714–7723. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, W.; Cao, J.; Li, Y. Changes in extractable and non-extractable polyphenols and their antioxidant properties during fruit on-tree ripening in five peach cultivars. Hortic. Plant J. 2019, 5, 137–144. [Google Scholar] [CrossRef]
- Guo, C.; Yang, J.; Wei, J.; Li, Y.; Xu, J.; Jiang, Y. Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutr. Res. 2003, 23, 1719–1726. [Google Scholar] [CrossRef]
- Wargovich, M.J.; Brown, V.R.; Morris, J. Aberrant crypt foci: The case for inclusion as a biomarker for colon cancer. Cancers 2010, 2, 1705–1716. [Google Scholar] [CrossRef]
- Almet, A.A.; Maini, P.K.; Moulton, D.E.; Byrne, H.M. Modeling perspectives on the intestinal crypt, a canonical system for growth, mechanics, and remodeling. Curr. Opin. Biomed. Eng. 2020, 15, 32–39. [Google Scholar] [CrossRef]
- Caderni, G.; Femia, A.P.; Giannini, A.; Favuzza, A.; Luceri, C.; Salvadori, M.; Dolara, P. Identification of mucin-depleted foci in the unsectioned colon of azoxymethane-treated rats: Correlation with carcinogenesis. Cancer Res. 2003, 63, 2388–2392. [Google Scholar] [PubMed]
- Boateng, J.; Verghese, M.; Shackelford, L.; Walker, L.T.; Khatiwada, J.; Ogutu, S.; Williams, D.S.; Jones, J.; Guyton, M.; Asiamah, D.; et al. Selected fruits reduce azoxymethane (AOM)-induced aberrant crypt foci (ACF) in Fisher 344 male rats. Food Chem. Toxicol. 2007, 45, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Arango-Varela, S.S.; Luzardo-Ocampo, I.; Maldonado-Celis, M.E. Andean berry (Vaccinium meridionale Swartz) juice, in combination with Aspirin, displayed antiproliferative and pro-apoptotic mechanisms in vitro while exhibiting protective effects against AOM-induced colorectal cancer in vivo. Food Res. Int. 2022, 157, 111244. [Google Scholar] [CrossRef] [PubMed]
- Conteduca, V.; Sansonno, D.; Russi, S.; Dammacco, F. Precancerous colorectal lesions. Int. J. Oncol. 2013, 43, 973–984. [Google Scholar] [CrossRef] [PubMed]
- De-Souza, A.S.C.; Costa-Casagrande, T.A. Animal models for colorectal cancer. Arq. Bras. Cir. Dig. 2018, 31, e1369. [Google Scholar] [CrossRef]
- Khan, H.; Reale, M.; Ullah, H.; Sureda, A.; Tejada, S.; Wang, Y.; Zhang, Z.J.; Xiao, J. Anti-cancer effects of polyphenols via targeting p53 signaling pathway: Updates and future directions. Biotechnol. Adv. 2020, 38, 107385. [Google Scholar] [CrossRef]
- Sagdicoglu-Celep, A.G.; Demirkaya, A.; Solak, E.K. Antioxidant and anticancer activities of gallic acid loaded sodium alginate microspheres on colon cancer. Curr. Appl. Phys. 2022, 40, 30–42. [Google Scholar] [CrossRef]
- Secme, M.; Mutlu, D.; Elmas, L.; Arslan, S. Assessing effects of caffeic acid on cytotoxicity, apoptosis, invasion, GST enzyme activity, oxidant, antioxidant status and micro-RNA expressions in HCT116 colorectal cancer cells. South Afr. J. Bot. 2023, 157, 19–26. [Google Scholar] [CrossRef]
- Tezerji, S.; Nazari Robati, F.; Abdolazimi, H.; Fallah, A.; Talaei, B. Quercetin’s effects on colon cancer cells apoptosis and proliferation in a rat model of disease. Clin. Nutr. ESPEN 2022, 48, 441–445. [Google Scholar] [CrossRef]
- Sears, C.L.; Garrett, W.S. Microbes, Microbiota, and colon cancer. Cell Host Microbe 2014, 15, 317–328. [Google Scholar] [CrossRef]
- Zhang, J.; Lacroix, C.; Wortmann, E.; Ruscheweyh, H.J.; Sunagawa, S.; Sturla, S.J.; Schwab, C. Gut microbial beta-glucuronidase and glycerol/diol dehydratase activity contribute to dietary heterocyclic amine biotransformation. BMC Microbiol. 2019, 19, 99. [Google Scholar] [CrossRef] [PubMed]
- Arimochi, H.; Kataoka, K.; Kuwahara, T.; Nakayama, H.; Misawa, N.; Ohnishi, Y. Effects of β-glucuronidase-deficient and lycopene-producing Escherichia coli strains on formation of azoxymethane-induced aberrant crypt foci in the rat colon. Biochem. Biophys. Res. Commun. 1999, 262, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Skar, V.; Skar, A.G.; Strømme, J.H. Beta-glucuronidase activity related to bacterial growth in common bile duct bile in gallstone patients. Scand. J. Gastroenterol. 1988, 23, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Gasaly, N.; Hermoso, M.A.; Gotteland, M. Butyrate and the fine-tuning of colonic homeostasis: Implication for inflammatory bowel diseases. Int. J. Mol. Sci. 2021, 22, 3061. [Google Scholar] [CrossRef]
- Fagundes, R.R.; Belt, S.C.; Bakker, B.M.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N. Beyond butyrate: Microbial fiber metabolism supporting colonic epithelial homeostasis. Trends Microbiol. 2024, 32, 178–189. [Google Scholar] [CrossRef]
- Sze, M.A.; Topçuoğlu, B.D.; Lesniak, N.A.; Ruffin, M.T.; Schloss, P.D. Fecal short-chain fatty acids are not predictive of colonic tumor status and cannot be predicted based on bacterial community structure. mBio 2019, 10, e01454-19. [Google Scholar] [CrossRef]
- Serra, A.; Macià, A.; Romero, M.P.; Reguant, J.; Ortega, N.; Motilva, M.J. Metabolic pathways of the colonic metabolism of flavonoids (flavonols, flavones and flavanones) and phenolic acids. Food Chem. 2012, 130, 383–393. [Google Scholar] [CrossRef]
- Sivaprakasam, S.; Prasad, P.D.; Singh, N. Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis. Pharmacol. Therapeut. 2016, 164, 144–151. [Google Scholar] [CrossRef]
- Wang, M.; Wichienchot, S.; He, X.; Fu, X.; Huang, Q.; Zhang, B. In vitro colonic fermentation of dietary fibers: Fermentation rate, short-chain fatty acid production and changes in microbiota. Trends Food Sci. Technol. 2019, 88, 1–9. [Google Scholar] [CrossRef]
Extractable Polyphenols | Non-Extractable Polyphenols | |||||
---|---|---|---|---|---|---|
H2SO4 | HCl | |||||
1 M | 4 M | 1 M | 4 M | |||
TP | (mg GAE/100 g) | 958.7 ± 26 a | 1804.8 ± 3.7 b | 1447.7 ± 3.7 c | 2070.1 ± 14.1 d | 2008.1 ± 25.4 e |
TF | (mg CE/100 g) | 397.1 ± 13 a | 802.2 ± 2.2 b | 1339.6 ± 85 c | 1431.0 ± 26 d | 1114.3 ± 11 d |
CT | (mg CE/100 g) | 120.9 ± 4 a | 163.2 ± 3.7 b | 103.1 ± 3.7 c | 114.3 ± 11 d | 98.7 ± 3.5 c |
Family | Component Name | Retention Time (min) | Molecular Formula | Observed m/z | Adducts | Fragments | Extractable Polyphenols (EPs) | Non-Extractable Polyphenols (NEPs) | |
---|---|---|---|---|---|---|---|---|---|
HCl | |||||||||
1 M | 4 M | ||||||||
Flavonols | Kaempferol rutinoside | 3.79 | C27H30O15 | 593.1517 | [M-H]− | 284.02482, 151.05667 | 15.14 ± 3.10 d | 3.84 ± 0.16 c | 4.27 ± 0.15 b |
Myricetin * | 3.99 | C15H10O8 | 317.0315 | [M-H]− | 179.03553, 151.04052 | ND | ND | ND | |
Quercetin rhamnosyl- rhamnosyl-hexoside | 4.44 | C33H40O20 | 755.2054 | [M-H]− | 609.14759, 300.02792, 151.00426 | 150.48 ± 0.73 i | 40.74 ± 0.04 e | 20.21 ± 0.15 d | |
Kaempferol rhamnosyl- hexoside-rhamnoside | 5.14 | C33H40O19 | 739.2113 | [M-H]− | 447.09479, 431.19371, 284.03324, 151.06481 | 12.02 ± 0.00 d | 2.53 ± 0.03 c | 0.89 ± 0.05 a | |
Quercetin rutinoside * | 5.35 | C27H30O16 | 609.1479 | [M-H]− | 300.02817, 151.00450 | 44.82 ± 0.06 h | 5.24 ± 7.41 c | 5.72 ± 0.13 b | |
Kaempferol dihexoside | 5.61 | C27H30O16 | 609.1482 | [M-H]− | 447.09449, 284.03222, 151.09310 | 9.13 ± 0.86 c | 4.58 ± 0.15 c | 7.80 ± 0.12 c | |
Kaempferol hexoside | 6.22 | C21H20O11 | 447.0954 | [M-H]− | 285.04134, 151.07177 | 8.66 ± 0.01 c | 1.32 ± 0.01 b | 1.21 ± 0.0 a | |
(Iso)-rhamnetin hexoside | 7.50 | C22H22O12 | 477.1062 | [M-H]− | 284.97552, 151.00421 | 4.74 ± 0.00 b | 2.45 ± 0.00 c | 1.02 ± 0.0 a | |
Isorhamnetin * | 9.99 | C16H12O7 | 315.0504 | [M-H]− | 315.05231, 300.02842, 285.04171, 151.00472 | ND | 0.34 ± 0.00 a | 0.24 ± 0.02 a | |
Quercetin * | 11.02 | C15H10O7 | 301.0365 | [M-H]− | 178.99924, 151.00423, 107.01432 | ND | 2.62 ± 0.02 c | 4.46 ± 0.18 b | |
Hydroxybenzoic acids | Dihydroxybenzoic acid isomer I | 1.84 | C7H6O4 | 153.0187 | [M-H]− | 137.02375, 109.02909 | ND | 2.50 ± 0.08 c | 1.16 ±0.01 a |
Methyl gallic acid | 2.23 | C8H8O4 | 183.0290 | [M-H]− | 169.04992 | ND | 2.85 ± 0.20 c | 1.62 ± 0.04 a | |
Hydroxybenzoic acid isomer I | 2.71 | C7H6O3 | 137.0243 | [M-H]− | 109.02171 | 7.78 ± 0.13 b | ND | ND | |
Dihydroxybenzoic acid hexoside | 2.82 | C13H16O9 | 315.0716 | [M-H]− | 153.01914, 137.02446, 109.02949 | 31.19 ± 2.42 g | 3.09 ± 0.07 c | 1.77 ± 0.04 a | |
Dihydroxybenzoic acid isomer II * | 2.84 | C7H6O4 | 153.0194 | [M-H]− | 137.03907, 109.02967 | ND | 3.36 ± 0.02 c | 1.47 ± 0.08 a | |
Hydroxybenzoic acid hexoside | 3.01 | C13H16O8 | 299.0773 | [M-H]− | 137.02452 | 21.28 ± 0.07 f | 3.38 ± 0.08 c | 0.98 ± 0.02 a | |
Gallic acid * | 3.07 | C7H6O5 | 169.0144 | [M-H]− | 125.0469 | ND | 3.02 ± 0.02 c | 8.57 ± 019 c | |
Hydroxybenzoic acid isomer II * | 3.22 | C7H6O3 | 137.0247 | [M-H]− | 109.02969 | 7.09 ± 0.42 b | 76.01 ± 0.72 f | 31.99 ±0.25 c | |
Hydroxybenzoic acid isomer III | 4.19 | C7H6O3 | 137.0251 | [M-H]− | 109.02996 | 5.70 ± 0.34 b | ND | ND | |
Vanillic acid * | 4.69 | C8H8O4 | 167.0357 | [M-H]− | 139.04067, 109.02987 | 4.35 ± 0.04 b | 9.91 ± 0.02 d | 7.04 ± 0.01 c | |
Hydroxycinnamic acids | Caffeic acid hexoside | 3.23 | C15H18O9 | 341.0878 | [M-H]− | 179.03506, 135.04525 | 16.06 ± 0.27 e | 5.01 ± 1.73 c | 5.37 ± 0.06 b |
Coumaroyl hexoside | 3.40 | C15H18O8 | 325.0933 | [M-H]− | 163.04038, 119.05054 | 4.21 ± 0.12 b | 0.92 ± 0.12 a | 1.12 ± 0.10 a | |
Ferulic acid hexoside | 3.66 | C16H20O9 | 355.1037 | [M-H]− | 193.05082, 178.02736, 134.03761 | 22.53 ± 1.32 f | 4.6 ± 0.05 c | ND | |
Coumaroylquinic acid | 4.61 | C16H18O8 | 337.0939 | [M-H]− | 191.05682, 163.05624 | 5.79 ± 1.25 b | ND | ND | |
Caffeic acid * | 4.80 | C9H8O4 | 179.0357 | [M-H]− | 109.02989 | ND | 2.13 ± 0.02 c | 0.31 ± 0.44 a | |
p-Coumaric acid * | 5.11 | C9H8O3 | 163.0408 | [M-H]− | 119.05085 | 8.75 ± 0.40 c | 1.62 ± 0.00 b | 1.00 ± 0.01 a | |
Ferulic acid * | 5.19 | C10H10O4 | 193.0515 | [M-H]− | 178.02806, 134.03809 | 3.27 ± 0.62 b | 0.64 ± 0.00 b | 1.12 ± 0.05 a | |
Sinapic acid hexoside | 5.23 | C17H22O10 | 385.1153 | [M-H]− | 223.09660, 209.08182 | 24.30 ± 0.11 f | 2.48 ± 0.05 c | 1.94 ± 0.07 a | |
Coumaroyl malic acid | 5.43 | C13H12O7 | 279.0519 | [M-H]− | 163.04082, 119.05093 | 4.55 ± 0.03 b | 2.12 ± 0.24 c | ND | |
Betalains | Betanidin | 2.80 | C18H16N2O8 | 389.0965 | [M+H]+ | 345.10744 | 7 ± 0.11 b | ND | ND |
Proline-betaxanthin (indicaxanthin) | 2.72 | C14H16N2O6 | 309.1068 | [M+H]+ | 389.09606 | 35.71 ± 0.18 g | ND | ND | |
Betanidin β-hexoside (betanin) * | 2.66 | C24H26N2O13 | 551.1486 | [M+H]+ | 389.09643 | 157.64 ± 3.01 i | ND | ND | |
Isobetanidin β-hexoside (isobetanin) | 3.67 | C24H26N2O13 | 551.1481 | [M+H]+ | 265.09656 | 1.98 ± 0.29 a | ND | ND |
Non-Extractable Polyphenols (μmol TE/g GL) | |||||
---|---|---|---|---|---|
Extractable Polyphenols (μmol TE/g GL) | H2SO4 | HCl | |||
1 M | 4 M | 1 M | 4 M | ||
DPPH | 40.0 ± 1.5 a | 376.6 ± 9 b | 394.2 ± 12.2 b | 452 ± 13 c | 357.2 ± 10.6 b |
FRAP | 105.7 ± 3.3 a | 614.7 ± 20 b | 841.4 ± 30 c | 1199 ± 38 d | 1159 ± 22 d |
TEAC | 100.8 ± 3.6 a | 1445.8 ± 34 b | 1037.9 ± 44 c | 1560 ± 66 d | 525.9 ± 51 e |
ORAC | 140.5 ± 5.5 a | 509.3 ± 22 b | 302.7 ± 11 c | 1620.8 ± 63 d | 1464 ± 56 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godínez-Santillán, R.I.; Kuri-García, A.; Ramírez-Pérez, I.F.; Herrera-Hernández, M.G.; Ahumada-Solórzano, S.M.; Guzmán-Maldonado, S.H.; Vergara-Castañeda, H.A. Characterization of Extractable and Non-Extractable Phenols and Betalains in Berrycactus (Myrtillocactus geometrizans) and Its Chemoprotective Effect in Early Stage of Colon Cancer In Vivo. Antioxidants 2024, 13, 1112. https://doi.org/10.3390/antiox13091112
Godínez-Santillán RI, Kuri-García A, Ramírez-Pérez IF, Herrera-Hernández MG, Ahumada-Solórzano SM, Guzmán-Maldonado SH, Vergara-Castañeda HA. Characterization of Extractable and Non-Extractable Phenols and Betalains in Berrycactus (Myrtillocactus geometrizans) and Its Chemoprotective Effect in Early Stage of Colon Cancer In Vivo. Antioxidants. 2024; 13(9):1112. https://doi.org/10.3390/antiox13091112
Chicago/Turabian StyleGodínez-Santillán, Rosa Iris, Aarón Kuri-García, Iza Fernanda Ramírez-Pérez, María Guadalupe Herrera-Hernández, Santiaga Marisela Ahumada-Solórzano, Salvador Horacio Guzmán-Maldonado, and Haydé Azeneth Vergara-Castañeda. 2024. "Characterization of Extractable and Non-Extractable Phenols and Betalains in Berrycactus (Myrtillocactus geometrizans) and Its Chemoprotective Effect in Early Stage of Colon Cancer In Vivo" Antioxidants 13, no. 9: 1112. https://doi.org/10.3390/antiox13091112
APA StyleGodínez-Santillán, R. I., Kuri-García, A., Ramírez-Pérez, I. F., Herrera-Hernández, M. G., Ahumada-Solórzano, S. M., Guzmán-Maldonado, S. H., & Vergara-Castañeda, H. A. (2024). Characterization of Extractable and Non-Extractable Phenols and Betalains in Berrycactus (Myrtillocactus geometrizans) and Its Chemoprotective Effect in Early Stage of Colon Cancer In Vivo. Antioxidants, 13(9), 1112. https://doi.org/10.3390/antiox13091112