Variation in Lipid Peroxidation in the Ejaculates of Wild Banded Mongooses (Mungos mungo): A Test of the Oxidative Shielding Hypothesis
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Experimental Design for Testing the Oxidative Shielding Hypothesis
2.3. Ejaculate Collection
2.4. Sample Preparation and MDA Analysis
2.5. Statistical Analysis of Oxidative Shielding
2.6. Ethics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stearns, S.C. The Evolution of Life-Histories; Oxford University Press: Oxford, UK, 1992. [Google Scholar]
- Monaghan, P.; Metcalfe, N.B.; Torres, R. Oxidative Stress as a Mediator of Life History Trade-Offs: Mechanisms, Measurements and Interpretation. Ecol. Lett. 2009, 12, 75–92. [Google Scholar] [CrossRef] [PubMed]
- Speakman, J.R.; Garratt, M. Oxidative Stress as a Cost of Reproduction: Beyond the Simplistic Trade-off Model. BioEssays 2014, 36, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hood, W.R. Current versus Future Reproduction and Longevity: A Re-Evaluation of Predictions and Mechanisms. J. Exp. Biol. 2016, 219, 3177–3189. [Google Scholar] [CrossRef] [PubMed]
- Harshman, L.G.; Zera, A.J. The Cost of Reproduction: The Devil in the Details. Trends Ecol. Evol. 2007, 22, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Metcalfe, N.B.; Alonso-Alvarez, C. Oxidative Stress as a Life-History Constraint: The Role of Reactive Oxygen Species in Shaping Phenotypes from Conception to Death. Funct. Ecol. 2010, 24, 984–996. [Google Scholar] [CrossRef]
- Isaksson, C.; Sheldon, B.C.; Uller, T. The Challenges of Integrating Oxidative Stress into Life-History Biology. Bioscience 2011, 61, 194–202. [Google Scholar] [CrossRef]
- Austad, S.N. The Comparative Biology of Mitochondrial Function and the Rate of Aging. Integr. Comp. Biol. 2018, 58, 559–566. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology & Medicine; Oxford University Press: New York, NY, USA, 2015. [Google Scholar]
- Alonso-Alvarez, C.; Canelo, T.; Romero-Haro, A.Á. The Oxidative Cost of Reproduction: Theoretical Questions and Alternative Mechanisms. Bioscience 2017, 67, 258–270. [Google Scholar] [CrossRef]
- Speakman, J.R.; Blount, J.D.; Bronikowski, A.M.; Buffenstein, R.; Isaksson, C.; Kirkwood, T.B.L.; Monaghan, P.; Ozanne, S.E.; Beaulieu, M.; Briga, M.; et al. Oxidative Stress and Life Histories: Unresolved Issues and Current Needs. Ecol. Evol. 2015, 5, 5745–5757. [Google Scholar] [CrossRef]
- Vitikainen, E.I.K.; Cant, M.A.; Sanderson, J.L.; Mitchell, C.; Nichols, H.J.; Marshall, H.H.; Thompson, F.J.; Gilchrist, J.S.; Hodge, S.J.; Johnstone, R.A.; et al. Evidence of Oxidative Shielding of Offspring in a Wild Mammal. Front. Ecol. Evol. 2016, 4, 58. [Google Scholar] [CrossRef]
- Blount, J.D.; Vitikainen, E.I.K.; Stott, I.; Cant, M.A. Oxidative Shielding and the Cost of Reproduction. Biol. Rev. 2016, 91, 483–497. [Google Scholar] [CrossRef] [PubMed]
- Grune, T.; Krämer, K.; Hoppe, P.P.; Siems, W. Enrichment of Eggs with N-3 Polyunsaturated Fatty Acids: Effects of Vitamin E Supplementation. Lipids 2001, 36, 833–838. [Google Scholar] [CrossRef] [PubMed]
- Al-Gubory, K.H.; Fowler, P.A.; Garrel, C. The Roles of Cellular Reactive Oxygen Species, Oxidative Stress and Antioxidants in Pregnancy Outcomes. Int. J. Biochem. Cell Biol. 2010, 42, 1634–1650. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Agarwal, A.; Banerjee, J.; Alvarez, J.G. The Role of Oxidative Stress in Spontaneous Abortion and Recurrent Pregnancy Loss: A Systematic Review. Obstet. Gynecol. Surv. 2007, 62, 335–347. [Google Scholar] [CrossRef]
- Bouwstra, R.J.; Goselink, R.M.A.; Dobbelaar, P.; Nielen, M.; Newbold, J.R.; Van Werven, T. The Relationship between Oxidative Damage and Vitamin e Concentration in Blood, Milk, and Liver Tissue from Vitamin e Supplemented and Nonsupplemented Periparturient Heifers. J. Dairy Sci. 2008, 91, 977–987. [Google Scholar] [CrossRef]
- Shoji, H.; Shimizu, T. Effect of Human Breast Milk on Biological Metabolism in Infants. Pediatr. Int. 2019, 61, 6–15. [Google Scholar] [CrossRef]
- Duhig, K.; Chappell, L.C.; Shennan, A.H. Oxidative Stress in Pregnancy and Reproduction. Obstet. Med. 2016, 9, 113–116. [Google Scholar] [CrossRef]
- Viblanc, V.A.; Schull, Q.; Roth, J.D.; Rabdeau, J.; Saraux, C.; Uhlrich, P.; Criscuolo, F.; Dobson, F.S. Maternal Oxidative Stress and Reproduction: Testing the Constraint, Cost and Shielding Hypotheses in a Wild Mammal. Funct. Ecol. 2018, 32, 722–735. [Google Scholar] [CrossRef]
- Meniri, M.; Evans, E.; Thompson, F.J.; Marshall, H.H.; Nichols, H.J.; Lewis, G.; Holt, L.; Davey, E.; Mitchell, C.; Johnstone, R.A.; et al. Untangling the Oxidative Cost of Reproduction: An Analysis in Wild Banded Mongooses. Ecol. Evol. 2022, 12, e8644. [Google Scholar] [CrossRef]
- Birch, G.; Meniri, M.; Cant, M.A.; Blount, J.D. Defence against the Intergenerational Cost of Reproduction in Males: Oxidative Shielding of the Germline. Biol. Rev. 2023, 99, 70–84. [Google Scholar] [CrossRef]
- Soulsbury, C.D.; Halsey, L.G. Does Physical Activity Age Wild Animals? Front. Ecol. Evol. 2018, 6, 222. [Google Scholar] [CrossRef]
- Sharick, J.T.; Vazquez-Medina, J.P.; Ortiz, R.M.; Crocker, D.E. Oxidative Stress Is a Potential Cost of Breeding in Male and Female Northern Elephant Seals. Funct. Ecol. 2015, 29, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Velando, A. Attractive Male Sticklebacks Carry More Oxidative DNA Damage in the Soma and Germline. J. Evol. Biol. 2020, 33, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, J.L.; Lüpold, S. Sexual Selection and the Evolution of Sperm Quality. Mol. Hum. Reprod. 2014, 20, 1180–1189. [Google Scholar] [CrossRef] [PubMed]
- Silva, W.T.A.F.; Sáez-Espinosa, P.; Torijo-Boix, S.; Romero, A.; Devaux, C.; Durieux, M.; Gómez-Torres, M.J.; Immler, S. The Effects of Male Social Environment on Sperm Phenotype and Genome Integrity. J. Evol. Biol. 2019, 32, 535–544. [Google Scholar] [CrossRef]
- Martin-Hidalgo, D.; Bragado, M.J.; Batista, A.R.; Oliveira, P.F.; Alves, M.G. Antioxidants and Male Fertility: From Molecular Studies to Clinical Evidence. Antioxidants 2019, 8, 89. [Google Scholar] [CrossRef]
- Lesser, M.P. Oxidative Stress in Marine Environments: Biochemistry and Physiological Ecology. Annu. Rev. Physiol. 2006, 68, 253–278. [Google Scholar] [CrossRef]
- Lazzarino, G.; Listorti, I.; Bilotta, G.; Capozzolo, T.; Amorini, A.M.; Longo, S.; Caruso, G.; Lazzarino, G.; Tavazzi, B.; Bilotta, P. Water- and Fat-Soluble Antioxidants in Human Seminal Plasma and Serum of Fertile Males. Antioxidants 2019, 8, 96. [Google Scholar] [CrossRef]
- Cilio, S.; Rienzo, M.; Villano, G.; Mirto, B.F.; Giampaglia, G.; Capone, F.; Ferretti, G.; Di Zazzo, E.; Crocetto, F. Beneficial Effects of Antioxidants in Male Infertility Management: A Narrative Review. Oxygen 2022, 2, 1–11. [Google Scholar] [CrossRef]
- Velando, A.; Torres, R.; Alonso-Alvarez, C. Avoiding Bad Genes: Oxidatively Damaged DNA in Germ Line and Mate Choice. BioEssays 2008, 30, 1212–1219. [Google Scholar] [CrossRef]
- Aitken, R.J.; Koppers, A.J. Apoptosis and DNA Damage in Human Spermatozoa. Asian J. Androl. 2011, 13, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.C.; O’Flaherty, C. Peroxiredoxin 6 Is the Primary Antioxidant Enzyme for the Maintenance of Viability and DNA Integrity in Human Spermatozoa. Hum. Reprod. 2018, 33, 1394–1407. [Google Scholar] [CrossRef] [PubMed]
- Wagner, H.; Cheng, J.W.; Ko, E.Y. Role of Reactive Oxygen Species in Male Infertility: An Updated Review of Literature. Arab J. Urol. 2018, 16, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Aitken, J. Impact of Oxidative Stress on Male and Female Germ Cells: Implications for Fertility. Reproduction 2020, 159, 189–201. [Google Scholar] [CrossRef]
- Herati, A.S.; Zhelyazkova, B.H.; Butler, P.R.; Lamb, D.J. Age-Related Alterations in the Genetics and Genomics of the Male Germ Line. Fertil. Steril. 2017, 107, 319–323. [Google Scholar] [CrossRef]
- Bui, A.D.; Sharma, R.; Henkel, R.; Agarwal, A. Reactive Oxygen Species Impact on Sperm DNA and Its Role in Male Infertility. Andrologia 2018, 50, e13012. [Google Scholar] [CrossRef]
- Jenkins, T.G.; James, E.R.; Alonso, D.F.; Hoidal, J.R.; Murphy, P.J.; Hotaling, J.M.; Cairns, B.R.; Carrell, D.T.; Aston, K.I. Cigarette Smoking Significantly Alters Sperm DNA Methylation Patterns. Andrology 2017, 5, 1089–1099. [Google Scholar] [CrossRef]
- Evans, J.P.; Wilson, A.J.; Pilastro, A.; Garcia-Gonzalez, F. Ejaculate-Mediated Paternal Effects: Evidence, Mechanisms and Evolutionary Implications. Reproduction 2019, 157, 109–126. [Google Scholar] [CrossRef]
- Lane, M.; McPherson, N.O.; Fullston, T.; Spillane, M.; Sandeman, L.; Kang, W.X.; Zander-Fox, D.L. Oxidative Stress in Mouse Sperm Impairs Embryo Development, Fetal Growth and Alters Adiposity and Glucose Regulation in Female Offspring. PLoS ONE 2014, 9, e100832. [Google Scholar] [CrossRef]
- Chabory, E.; Damon, C.; Lenoir, A.; Kauselmann, G.; Kern, H.; Zevnik, B.; Garrel, C.; Saez, F.; Cadet, R.; Henry-Berger, J.; et al. Epididymis Seleno-Independent Glutathione Peroxidase 5 Maintains Sperm DNA Integrity in Mice. J. Clin. Investig. 2009, 119, 2074–2085. [Google Scholar] [CrossRef]
- Chen, S.J.; Allam, J.P.; Duan, Y.G.; Haidl, G. Influence of Reactive Oxygen Species on Human Sperm Functions and Fertilizing Capacity Including Therapeutical Approaches. Arch. Gynecol. Obstet. 2013, 288, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Milekic, M.H.; Xin, Y.; O’Donnell, A.; Kumar, K.K.; Bradley-Moore, M.; Malaspina, D.; Moore, H.; Brunner, D.; Ge, Y.; Edwards, J.; et al. Age-Related Sperm DNA Methylation Changes Are Transmitted to Offspring and Associated with Abnormal Behavior and Dysregulated Gene Expression. Mol. Psychiatry 2015, 20, 995–1001. [Google Scholar] [CrossRef] [PubMed]
- Feinberg, J.I.; Bakulski, K.M.; Jaffe, A.E.; Tryggvadottir, R.; Brown, S.C.; Goldman, L.R.; Croen, L.A.; Hertz-Picciotto, I.; Newschaffer, C.J.; Daniele Fallin, M.; et al. Paternal Sperm DNA Methylation Associated with Early Signs of Autism Risk in an Autism-Enriched Cohort. Int. J. Epidemiol. 2015, 44, 1199–1210. [Google Scholar] [CrossRef] [PubMed]
- Menezo, Y.J.R.; Elder, K.; Dale, B. Link between Increased Prevalence of Autism Spectrum Disorder Syndromes and Oxidative Stress, DNA Methylation, and Imprinting: The Impact of the Environment. JAMA Pediatr. 2015, 169, 1066–1067. [Google Scholar] [CrossRef]
- Fernández-Gonzalez, R.; Moreira, P.N.; Pérez-Crespo, M.; Sánchez-Martín, M.; Ramirez, M.A.; Pericuesta, E.; Bilbao, A.; Bermejo-Alvarez, P.; Hourcade, J.D.D.; De Fonseca, F.R.; et al. Long-Term Effects of Mouse Intracytoplasmic Sperm Injection with DNA-Fragmented Sperm on Health and Behavior of Adult Offspring. Biol. Reprod. 2008, 78, 761–772. [Google Scholar] [CrossRef]
- Kumar, D.; Upadhya, D.; Salian, S.R.; Rao, S.B.S.; Kalthur, G.; Kumar, P.; Adiga, S.K. The Extent of Paternal Sperm DNA Damage Influences Early Post-Natal Survival of First Generation Mouse Offspring. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013, 166, 164–167. [Google Scholar] [CrossRef]
- Fernández-Díez, C.; González-Rojo, S.; Lombó, M.; Herráez, M.P. Impact of Sperm DNA Damage and Oocyte-Repairing Capacity on Trout Development. Reproduction 2016, 152, 57–67. [Google Scholar] [CrossRef]
- Noguera, J.C. Sperm Oxidative Status Varies with the Level of Sperm Competition and Affects Male Reproductive Success. Anim. Behav. 2022, 189, 83–89. [Google Scholar] [CrossRef]
- Cant, M.A.; Nichols, H.J.; Thompson, F.J.; Vitikainen, E. Banded Mongooses: Demography, Life History, and Social Behavior. In Cooperative Breeding in Vertebrates: Studies of Ecology, Evolution, and Behavior; Cambridge University Press: Cambridge, UK, 2016; pp. 318–337. ISBN 9781107338357. [Google Scholar]
- Nichols, H.J.; Amos, W.; Cant, M.A.; Bell, M.B.V.; Hodge, S.J. Top Males Gain High Reproductive Success by Guarding More Successful Females in a Cooperatively Breeding Mongoose. Anim. Behav. 2010, 80, 649–657. [Google Scholar] [CrossRef]
- Birch, G.; Nichols, H.J.; Mwanguhya, F.; Cant, M.A.; Blount, J.D. Reproductive Restraint to Avoid the Costs of Reproductive Conflict in a Cooperatively Breeding Mammal. bioRxiv 2024. [Google Scholar] [CrossRef]
- Mitchell, J.; Kyabulima, S.; Businge, R.; Cant, M.A.; Nichols, H.J. Kin Discrimination via Odour in the Cooperatively Breeding Banded Mongoose. R. Soc. Open Sci. 2018, 5, 171798. [Google Scholar] [CrossRef] [PubMed]
- Nichols, H.J.; Arbuckle, K.; Sanderson, J.L.; Vitikainen, E.I.K.; Marshall, H.H.; Thompson, F.J.; Cant, M.A.; Wells, D.A. A Double Pedigree Reveals Genetic but Not Cultural Inheritance of Cooperative Personalities in Wild Banded Mongooses. Ecol. Lett. 2021, 24, 1966–1975. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, J.L.; Wang, J.; Vitikainen, E.I.K.; Michael, A. Banded Mongooses Avoid Inbreeding When Mating with Members of the Same Natal Group. Mol. Ecol. 2015, 24, 3738–3751. [Google Scholar] [CrossRef] [PubMed]
- Fasel, N.J.; Helfenstein, F.; Buff, S.; Richner, H. Electroejaculation and Semen Buffer Evaluation in the Microbat Carollia Perspicillata. Theriogenology 2015, 83, 904–910. [Google Scholar] [CrossRef] [PubMed]
- Nussey, D.H.; Pemberton, J.M.; Pilkington, J.G.; Blount, J.D. Life History Correlates of Oxidative Damage in a Free-Living Mammal Population. Funct. Ecol. 2009, 23, 809–817. [Google Scholar] [CrossRef]
- Gelman, A.; Rubin, D.B. Inference from Iterative Simulation Using Multiple Sequences. Stat. Sci. 1992, 7, 457–472. [Google Scholar] [CrossRef]
- Ord, T.J. Costs of Territoriality: A Review of Hypotheses, Meta-Analysis, and Field Study. Oecologia 2021, 197, 615–631. [Google Scholar] [CrossRef]
- Khazaei, M.; Aghaz, F. Reactive Oxygen Species Generation and Use of Antioxidants during in Vitro Maturation of Oocytes. Int. J. Fertil. Steril. 2017, 11, 63–70. [Google Scholar]
- Reznick, D.; Nunney, L.; Tessier, A. Big Houses, Big Cars, Superfleas and the Costs of Reproduction. Trends Ecol. Evol. 2000, 15, 421–425. [Google Scholar] [CrossRef]
- Preston, E.F.R.; Thompson, F.J.; Ellis, S.; Kyambulima, S.; Croft, D.P.; Cant, M.A. Network-Level Consequences of Outgroup Threats in Banded Mongooses: Grooming and Aggression between the Sexes. J. Anim. Ecol. 2021, 90, 153–167. [Google Scholar] [CrossRef]
- Green, P.A.; Thompson, F.J.; Cant, M.A. Fighting Force and Experience Combine to Determine Contest Success in a Warlike Mammal. Proc. Natl. Acad. Sci. USA 2022, 119, e2119176119. [Google Scholar] [CrossRef] [PubMed]
- Birch, G. The Reproductive Life-Histories of Male Banded Mongooses. Ph.D. Thesis, Exeter University, Cornwall, UK, August 2024. [Google Scholar]
- Liu, S.; Navarro, G.; Mauvais-Jarvis, F. Androgen Excess Produces Systemic Oxidative Stress and Predisposes to β-Cell Failure in Female Mice. PLoS ONE 2010, 5, e11302. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Alvarez, C.; Bertrand, S.; Faivre, B.; Chastel, O.; Sorci, G. Testosterone and Oxidative Stress: The Oxidation Handicap Hypothesis. Proc. R. Soc. B Biol. Sci. 2007, 274, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Chainy, G.B.N.; Samantaray, S.; Samanta, L. Testosterone-Induced Changes in Testicular Antioxidant System. Andrologia 1997, 29, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Huang, Y.; Ye, Z.; Yu, X.; Gu, W. Protection of Melatonin against Damage of Sperm Mitochondrial Function Induced by Reactive Oxygen Species. Zhonghua Nan Ke Xue 2004, 10, 604–607. [Google Scholar]
- Hussain, T.; Kandeel, M.; Metwally, E.; Murtaza, G.; Kalhoro, D.H.; Yin, Y.; Tan, B.; Chughtai, M.I.; Yaseen, A.; Afzal, A.; et al. Unraveling the Harmful Effect of Oxidative Stress on Male Fertility: A Mechanistic Insight. Front. Endocrinol. 2023, 14, 1070692. [Google Scholar] [CrossRef]
- Immler, S. The Sperm Factor: Paternal Impact beyond Genes. Heredity 2018, 121, 239–247. [Google Scholar] [CrossRef]
- Schneider, M.R.; Mangels, R.; Dean, M.D. The Molecular Basis and Reproductive Function(s) of Copulatory Plugs. Mol. Reprod. Dev. 2016, 83, 755–767. [Google Scholar] [CrossRef]
- Sebastián-Abad, B.; Llamas-López, P.J.; García-Vázquez, F.A. Relevance of the Ejaculate Fraction and Dilution Method on Boar Sperm Quality during Processing and Conservation of Seminal Doses. Vet. Sci. 2021, 8, 292. [Google Scholar] [CrossRef]
- Root Kustritz, M.V. The Value of Canine Semen Evaluation for Practitioners. Theriogenology 2007, 68, 329–337. [Google Scholar] [CrossRef]
- Zhu, J.; Xu, X.; Cosgrove, J.R.; Foxcroft, G.R. Effects of Semen Plasma from Different Fractions of Individual Ejaculates on IVF in Pigs. Theriogenology 2000, 54, 1443–1452. [Google Scholar] [CrossRef] [PubMed]
- Dziekońska, A.; Świader, K.; Koziorowska-Gilun, M.; Mietelska, K.; Zasiadczyk, L.; Kordan, W. Effect of Boar Ejaculate Fraction, Extender Type and Time of Storage on Quality of Spermatozoa. Pol. J. Vet. Sci. 2017, 20, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Hebles, M.; Dorado, M.; Gallardo, M.; González-Martínez, M.; Sánchez-Martín, P. Seminal Quality in the First Fraction of Ejaculate. Syst. Biol. Reprod. Med. 2015, 61, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Morrell, J.M.; Abraham, M.C. Semen Handling in South American Camelids: State of the Art. Front. Vet. Sci. 2020, 7, 586858. [Google Scholar] [CrossRef] [PubMed]
- Martan, J.; Shepherd, B.A. The Role of the Copulatory Plug in Reproduction of the Guinea Pig. J. Exp. Zool. 1976, 196, 79–83. [Google Scholar] [CrossRef]
- Mora, A.R.; Meniri, M.; Gning, O.; Glauser, G.; Vallat, A.; Helfenstein, F.; Mora, A.R.; Meniri, M. Antioxidant Allocation Modulates Sperm Quality across Changing Social Environments. PLoS ONE 2017, 12, e0176385. [Google Scholar] [CrossRef]
- Mendonça, R.; Vullioud, P.; Katlein, N.; Vallat, A.; Glauser, G.; Bennett, N.C.; Helfenstein, F. Oxidative Costs of Cooperation in Cooperatively Breeding Damaraland Mole-Rats. Proc. Biol. Sci. 2020, 287, 1023. [Google Scholar] [CrossRef]
- Peña, F.J.; Johannisson, A.; Wallgren, M.; Rodriguez Martinez, H. Antioxidant Supplementation in Vitro Improves Boar Sperm Motility and Mitochondrial Membrane Potential after Cryopreservation of Different Fractions of the Ejaculate. Anim. Reprod. Sci. 2003, 78, 85–98. [Google Scholar] [CrossRef]
- Strzezek, R.; Koziorowska-Gilun, M.; Kowalówka, M.; Strzezek, J. Characteristics of Antioxidant System in Dog Semen. Pol. J. Vet. Sci. 2009, 12, 55–60. [Google Scholar]
Model | Term | Effect | sd | 2.50% | 50% | 97.50% | Rhat | f | Overlap0 |
---|---|---|---|---|---|---|---|---|---|
a | Intercept | 1.30 | 0.24 | 0.85 | 1.29 | 1.79 | 1.02 | 1.00 | Yes |
Male status (MS) | −0.19 | 0.15 | −0.48 | −0.19 | 0.09 | 1.00 | 0.89 | Yes | |
Cells present | −0.05 | 0.20 | −0.41 | −0.04 | 0.37 | 1.01 | 0.57 | Yes | |
Cells not counted | −0.16 | 0.20 | −0.56 | −0.15 | 0.22 | 1.00 | 0.80 | Yes | |
Random effect | Group | Male.ID | Event | ||||||
sd | 0.038 | 0.079 | 0.084 | ||||||
b | Intercept | 1.23 | 0.23 | 0.78 | 1.23 | 1.73 | 1.02 | 1.00 | + |
Male status (MS) | −0.20 | 0.14 | −0.47 | −0.20 | 0.05 | 1.00 | 0.92 | Yes | |
Collection period (CP) | −0.11 | 0.15 | −0.39 | −0.11 | 0.16 | 1.00 | 0.78 | Yes | |
MS:CP | 0.55 | 0.18 | 0.23 | 0.55 | 0.89 | 1.00 | 1.00 | + | |
Cells present | −0.01 | 0.14 | −0.31 | −0.01 | 0.26 | 1.01 | 0.54 | Yes | |
Cells not counted | 0.01 | 0.10 | −0.20 | 0.01 | 0.18 | 1.01 | 0.56 | Yes | |
Random effect | Group | Male.ID | Event | ||||||
sd | 0.02 | 0.078 | 0.015 | ||||||
c | Intercept | −4.05 | 1.59 | −7.13 | −4 | −1.27 | 1.01 | 1 | - |
Age | 1.4 | 0.47 | 0.61 | 1.4 | 2.36 | 1.01 | 1 | + | |
Random effect | Group | Male.ID | Event | ||||||
sd | 0.08 | 0.11 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Birch, G.; Meniri, M.; Mitchell, C.; Mwanguhya, F.; Businge, R.; Ahabyona, S.; Nichols, H.J.; Cant, M.A.; Blount, J.D. Variation in Lipid Peroxidation in the Ejaculates of Wild Banded Mongooses (Mungos mungo): A Test of the Oxidative Shielding Hypothesis. Antioxidants 2024, 13, 1124. https://doi.org/10.3390/antiox13091124
Birch G, Meniri M, Mitchell C, Mwanguhya F, Businge R, Ahabyona S, Nichols HJ, Cant MA, Blount JD. Variation in Lipid Peroxidation in the Ejaculates of Wild Banded Mongooses (Mungos mungo): A Test of the Oxidative Shielding Hypothesis. Antioxidants. 2024; 13(9):1124. https://doi.org/10.3390/antiox13091124
Chicago/Turabian StyleBirch, Graham, Magali Meniri, Chris Mitchell, Francis Mwanguhya, Robert Businge, Solomon Ahabyona, Hazel J. Nichols, Michael A. Cant, and Jonathan D. Blount. 2024. "Variation in Lipid Peroxidation in the Ejaculates of Wild Banded Mongooses (Mungos mungo): A Test of the Oxidative Shielding Hypothesis" Antioxidants 13, no. 9: 1124. https://doi.org/10.3390/antiox13091124
APA StyleBirch, G., Meniri, M., Mitchell, C., Mwanguhya, F., Businge, R., Ahabyona, S., Nichols, H. J., Cant, M. A., & Blount, J. D. (2024). Variation in Lipid Peroxidation in the Ejaculates of Wild Banded Mongooses (Mungos mungo): A Test of the Oxidative Shielding Hypothesis. Antioxidants, 13(9), 1124. https://doi.org/10.3390/antiox13091124