Oxidative Stress in Reproduction of Mammals

A special issue of Antioxidants (ISSN 2076-3921). This special issue belongs to the section "Health Outcomes of Antioxidants and Oxidative Stress".

Deadline for manuscript submissions: 30 November 2024 | Viewed by 3498

Special Issue Editors


E-Mail Website
Guest Editor
Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
Interests: reproduction; reproductive supression; mole-rat; ecophysiology; eusociality

E-Mail
Guest Editor
Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
Interests: oxidative stress; ecophysiology; climate change; hyperthermia; reproduction

Special Issue Information

Dear Colleagues,

Reproduction is a crucial component of life history theory, which in turn examines how organisms allocate resources into the growth, reproduction, and survival of a species. Life history theory posits that organisms face trade-offs in allocating limited resources to various biological functions. Reproduction is one of the most resource-intensive processes, which significantly influences an organism's life history strategy, but despite this, there remains a large controversy over the potential oxidative costs associated with reproduction.

This Special Issue in Antioxidants journal will explore the multifaceted relationship between oxidative stress and mammalian reproduction cost and/or effort through direct or indirect means. Relationships mediating reproduction and oxidative stress of interest include ecological, environmental, and physiological factors, as well as mitigation (e.g., through antioxidant supplementation) and induction (e.g., indirectly as a consequence of lipopolysaccharide inflammation) strategies.

Prof. Dr. Nigel Bennett
Dr. Paul Juan Jacobs
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antioxidants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • infertility
  • antioxidants
  • supplementation
  • diet
  • reproductive function
  • oxidative balance
  • hormonal
  • inflammation
  • pollution
  • temperature

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 1855 KiB  
Article
Treatment with Pterostilbene Ameliorates the Antioxidant Status of Bovine Spermatozoa and Modulates Cell Death Pathways
by Christos Chavas, Vasiliki G. Sapanidou, Konstantinos Feidantsis, Sophia N. Lavrentiadou, Despoina Mavrogianni, Ioanna Zarogoulidou, Dimitrios J. Fletouris and Maria P. Tsantarliotou
Antioxidants 2024, 13(12), 1437; https://doi.org/10.3390/antiox13121437 - 22 Nov 2024
Abstract
Reactive Oxygen Species (ROS) play an important role in sperm physiology. They are required in processes such as capacitation and fertilization. However, the exposure of spermatozoa to ROS generated from internal or external sources may create a potentially detrimental redox imbalance. Antioxidant supplementation [...] Read more.
Reactive Oxygen Species (ROS) play an important role in sperm physiology. They are required in processes such as capacitation and fertilization. However, the exposure of spermatozoa to ROS generated from internal or external sources may create a potentially detrimental redox imbalance. Antioxidant supplementation in semen is now a rather common approach to protect spermatozoa from oxidative stress (OS) during their handling and/or cryopreservation. Supplementation with pterostilbene, a potent antioxidant, protects spermatozoa from OS and ameliorates their post-thawing characteristics and viability. In the present study, we used freezing/thawing as a model of natural ROS overproduction and investigated the molecular mechanisms modulated by pterostilbene. Specifically, bovine frozen/thawed spermatozoa were incubated with 10 or 25 μM pterostilbene for 60 min. Results have shown that in a dose-independent manner, pterostilbene decreased lipid peroxidation and increased intracellular GSH levels. Moreover, pterostilbene ameliorated energy production, as ATP and AMP/ATP levels were restored, and increased autophagy levels through AMP-activated protein kinase (AMPK) activation, which finally resulted in the inhibition of apoptotic cell death in bovine spermatozoa when exposed to OS. This study sheds light on spermatozoa redox state, the crosstalk between apoptotic and autophagic pathways, and its role in determining the beneficial or detrimental effect of ROS in spermatozoa. Full article
(This article belongs to the Special Issue Oxidative Stress in Reproduction of Mammals)
Show Figures

Figure 1

15 pages, 2045 KiB  
Article
Oxidative Stress in an African Ground Squirrel, a Case of Healthy Aging and Reproduction
by Paul Juan Jacobs, Sjoerd Vos, Chelsea E. Bishop, Daniel William Hart, Nigel Charles Bennett and Jane M. Waterman
Antioxidants 2024, 13(11), 1401; https://doi.org/10.3390/antiox13111401 - 15 Nov 2024
Viewed by 296
Abstract
Oxidative stress plays a crucial role in mediating life-history processes, where it can compromise survival and reproduction through harmful alterations to DNA, lipids, and proteins. In this study, we investigated oxidative stress in Cape ground squirrels (Xerus inauris), a longer-lived African [...] Read more.
Oxidative stress plays a crucial role in mediating life-history processes, where it can compromise survival and reproduction through harmful alterations to DNA, lipids, and proteins. In this study, we investigated oxidative stress in Cape ground squirrels (Xerus inauris), a longer-lived African ground squirrel species with a high reproductive skew and unique life history strategies. We measured oxidative stress as total antioxidant capacity (TAC), total oxidant status (TOS), and an oxidative stress index (OSI) in blood plasma from individuals of approximately known ages. Our results reveal a distinct pattern of decreasing oxidative stress with age, consistent across both sexes. Females exhibited lower OSI and TOS levels than males. Males employing different life-history strategies, namely natal (staying at home), had significantly lower oxidative stress compared to the band (roaming male groups), likely due to variations in metabolic rate, activity, and feeding rates. However, both strategies exhibited reduced oxidative stress with age, though the underlying mechanisms require further investigation. We propose that selection pressures favoring survival contributed to the observed reduction in oxidative stress with age, potentially maximizing lifetime reproductive success in this species. Full article
(This article belongs to the Special Issue Oxidative Stress in Reproduction of Mammals)
Show Figures

Figure 1

9 pages, 918 KiB  
Article
One-Year Impact of Occupational Exposure to Polycyclic Aromatic Hydrocarbons on Sperm Quality
by Mª Victoria Peña-García, Mª José Moyano-Gallego, Sara Gómez-Melero, Rafael Molero-Payán, Fernando Rodríguez-Cantalejo and Javier Caballero-Villarraso
Antioxidants 2024, 13(10), 1181; https://doi.org/10.3390/antiox13101181 - 29 Sep 2024
Viewed by 715
Abstract
Background: Polycyclic aromatic hydrocarbons (PAHs) have toxic potential, especially as carcinogens, neurotoxins, and endocrine disruptors. The objective of this study is to know the impact of exposure to PAHs on the reproductive health of male workers who operate in solar thermal plants. Methods: [...] Read more.
Background: Polycyclic aromatic hydrocarbons (PAHs) have toxic potential, especially as carcinogens, neurotoxins, and endocrine disruptors. The objective of this study is to know the impact of exposure to PAHs on the reproductive health of male workers who operate in solar thermal plants. Methods: Case–control study. A total of 61 men were included: 32 workers exposed to PAH at a solar thermal plant and 29 unexposed people. Seminal quality was studied both at the cellular level (quantity and quality of sperm) and at the biochemical level (magnitudes of oxidative stress in seminal plasma). Results: In exposure to PAHs, a significantly higher seminal leukocyte infiltration was observed, as well as lower activity in seminal plasma of superoxide dismutase (SOD) and a reduced glutathione/oxidised glutathione (GSH/GSSG) ratio. The oxidative stress parameters of seminal plasma did not show a relationship with sperm cellularity, neither in those exposed nor in those not exposed to PAH. Conclusion: One year of exposure to PAH in a solar thermal plant does not have a negative impact on the sperm cellularity of the worker, either quantitatively (sperm count) or qualitatively (motility, vitality, morphology, or cellular DNA fragmentation). However, PAH exposure is associated with lower antioxidant capacity and higher leukocyte infiltration in seminal plasma. Full article
(This article belongs to the Special Issue Oxidative Stress in Reproduction of Mammals)
Show Figures

Figure 1

13 pages, 727 KiB  
Article
Variation in Lipid Peroxidation in the Ejaculates of Wild Banded Mongooses (Mungos mungo): A Test of the Oxidative Shielding Hypothesis
by Graham Birch, Magali Meniri, Chris Mitchell, Francis Mwanguhya, Robert Businge, Solomon Ahabyona, Hazel J. Nichols, Michael A. Cant and Jonathan D. Blount
Antioxidants 2024, 13(9), 1124; https://doi.org/10.3390/antiox13091124 - 18 Sep 2024
Viewed by 903
Abstract
Reproductive activity is costly in terms of future reproduction and survival. Oxidative stress has been identified as a likely mechanism underlying this cost of reproduction. However, empirical studies have yielded the paradoxical observation that breeders often sustain lower levels of oxidative damage than [...] Read more.
Reproductive activity is costly in terms of future reproduction and survival. Oxidative stress has been identified as a likely mechanism underlying this cost of reproduction. However, empirical studies have yielded the paradoxical observation that breeders often sustain lower levels of oxidative damage than non-breeders. The oxidative shielding hypothesis attempts to explain such data, and posits that breeders pre-emptively reduce levels of oxidative damage in order to protect their germ cells, and any resultant offspring, from harm caused by exposure to oxidative damage. While there is some empirical evidence of oxidative shielding in females, there have been no explicit tests of this hypothesis in males, despite evidence of the oxidative costs to the male reproductive effort and the vulnerability of sperm cells to oxidative damage. In this study, we assess lipid oxidative damage (malondialdehyde, MDA) in the ejaculates of reproducing and non-reproducing wild banded mongooses. We found that, among breeding males, ejaculate MDA levels were lower during mate competition compared to 2 months later, when individuals were not mating, which is consistent with the oxidative shielding hypothesis, and similar to findings in females. However, ejaculate MDA levels did not differ significantly between breeding and non-breeding individuals at the time of mating, contrary to expectation. The finding that ejaculate MDA was not higher in non-breeders may reflect individual differences in quality and hence oxidative stress. In particular, breeders were significantly older than non-breeders, which may obscure differences in oxidative damage due to reproductive investment. Further research is needed to establish the causal relationship between reproductive investment and oxidative damage in ejaculates, and the consequences for offspring development in banded mongooses and other species. Full article
(This article belongs to the Special Issue Oxidative Stress in Reproduction of Mammals)
Show Figures

Figure 1

11 pages, 584 KiB  
Article
Dietary Supplementation with 25-Hydroxyvitamin D3 on Reproductive Performance and Placental Oxidative Stress in Primiparous Sows during Mid-to-Late Gestation
by Jing Li, Qingyue Bi, Yu Pi, Xianren Jiang, Yanpin Li and Xilong Li
Antioxidants 2024, 13(9), 1090; https://doi.org/10.3390/antiox13091090 - 6 Sep 2024
Viewed by 943
Abstract
The placenta plays a crucial role in nutrient transport and waste exchange between the dam and fetus, sustaining fetal growth. While the positive effects of 25-hydroxyvitamin D3 (25-OH-D3) on animal performance have been reported, its impact on placental function remains [...] Read more.
The placenta plays a crucial role in nutrient transport and waste exchange between the dam and fetus, sustaining fetal growth. While the positive effects of 25-hydroxyvitamin D3 (25-OH-D3) on animal performance have been reported, its impact on placental function remains largely unknown. Therefore, this study aimed to investigate the effects of supplementing 25-OH-D3 in the diet of primiparous sows on reproductive performance, antioxidant capacity, placental oxidative stress, nutrient transport, and inflammatory response during mid-to-late gestation. A total of 45 healthy Landrace × Yorkshire primiparous sows on day 60 of gestation were selected and randomly allocated to three treatment groups based on body weight and backfat thickness: the control group (corn-soybean meal basal diet), the VD3 group (basal diet + 2000 IU VD3), and the 25-OH-D3 group (basal diet + 50 μg/kg 25-OH-D3). The results demonstrated that supplementation with 25-OH-D3 in the diet enhanced sows’ average litter weight and birth weight during mid-to-late gestation. Additionally, plasma malondialdehyde (MDA) concentrations in sows significantly decreased in the VD3 and 25-OH-D3 groups (p < 0.05). Furthermore, lower gene expressions of placental HO-1, GPX2, IL-8, and IL-6 were found in the VD3 or 25-OH-D3 groups (p < 0.05 or p < 0.10), while higher gene expressions of GLUT1 and SNAT2 in the placenta of sows were observed in the VD3 and 25-OH-D3 groups, respectively (p < 0.05). These findings indicate that the supplementation of VD3 and 25-OH-D3 in the diet of sows can improve their plasma oxidative stress status, enhance placental antioxidant capacity and nutrient transport, and reduce placental inflammatory responses, with more pronounced improvements in sow performance observed in sows fed diets supplemented with 25-OH-D3. Full article
(This article belongs to the Special Issue Oxidative Stress in Reproduction of Mammals)
Show Figures

Figure 1

Back to TopTop