Oxidative Stress in an African Ground Squirrel, a Case of Healthy Aging and Reproduction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Study Site
2.3. Study Species, Trapping, Body Condition, and Reproductive Determination
2.4. Blood Sample Collection and Storage
2.5. Reagents
2.6. TAC Assay
2.7. TOS Assay
2.8. OSI
2.9. Statistical Analysis
3. Results
3.1. Sex Differences in Oxidative Stress
3.2. Natal and Band Males
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dantas, M.R.T.; Souza-Junior, J.B.F.; Castelo, T.d.S.; Lago, A.E.d.A.; Silva, A.R. Understanding how environmental factors influence reproductive aspects of wild myomorphic and hystricomorphic rodents. Anim. Reprod. 2021, 18, e20200213. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.A.; Coste, C.F.; Li, X.Y.; Bourg, S.; Pavard, S. Are trade-offs really the key drivers of ageing and life span? Funct. Ecol. 2020, 34, 153–166. [Google Scholar] [CrossRef]
- Takeshita, R.S. A life for a (shorter) life: The reproduction–longevity trade-off. Proc. Natl. Acad. Sci. USA 2024, 121, e2405089121. [Google Scholar] [CrossRef]
- Audzijonyte, A.; Richards, S.A. The energetic cost of reproduction and its effect on optimal life-history strategies. Am. Nat. 2018, 192, E150–E162. [Google Scholar] [CrossRef]
- Lemaître, J.F.; Gaillard, J.M. Reproductive senescence: New perspectives in the wild. Biol. Rev. 2017, 92, 2182–2199. [Google Scholar] [CrossRef] [PubMed]
- Lemaître, J.-F.; Berger, V.; Bonenfant, C.; Douhard, M.; Gamelon, M.; Plard, F.; Gaillard, J.-M. Early-late life trade-offs and the evolution of ageing in the wild. Proc. R. Soc. B Biol. Sci. 2015, 282, 20150209. [Google Scholar] [CrossRef]
- Morano, S.; Stewart, K.M.; Sedinger, J.S.; Nicolai, C.A.; Vavra, M. Life-history strategies of North American elk: Trade-offs associated with reproduction and survival. J. Mammal. 2013, 94, 162–172. [Google Scholar] [CrossRef]
- Shilovsky, G.A.; Putyatina, T.S.; Markov, A.V. Evolution of longevity as a species-specific trait in mammals. Biochemistry 2022, 87, 1579–1599. [Google Scholar] [CrossRef] [PubMed]
- Covas, R.; Lardy, S.; Silva, L.R.; Rey, B.; Ferreira, A.C.; Theron, F.; Tognetti, A.; Faivre, B.; Doutrelant, C. The oxidative cost of helping and its minimization in a cooperative breeder. Behav. Ecol. 2022, 33, 504–517. [Google Scholar] [CrossRef]
- Lardy, S.; Rey, B.; Salin, K.; Voituron, Y.; Cohas, A. Beneficial effects of group size on oxidative balance in a wild cooperative breeder. Behav. Ecol. 2016, 27, arw114. [Google Scholar] [CrossRef]
- Kinahan, A.A.; Pillay, N. Dominance status influences female reproductive strategy in a territorial African rodent Rhabdomys pumilio. Behav. Ecol. Sociobiol. 2008, 62, 579–587. [Google Scholar] [CrossRef]
- Gross, M.R. Alternative reproductive strategies and tactics: Diversity within sexes. Trends Ecol. Evol. 1996, 11, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Koprowski, J.L. Behavioral tactics, dominance, and copulatory success among male fox squirrels. Ethol. Ecol. Evol. 1993, 5, 169–176. [Google Scholar] [CrossRef]
- Scantlebury, M.; Waterman, J.M.; Bennett, N.C. Alternative reproductive tactics in male Cape ground squirrels Xerus inauris. Physiol. Behav. 2008, 94, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Tomkins, J.L.; Brown, G.S. Population density drives the local evolution of a threshold dimorphism. Nature 2004, 431, 1099–1103. [Google Scholar] [CrossRef]
- Siracusa, E.R.; Higham, J.P.; Snyder-Mackler, N.; Brent, L.J. Social ageing: Exploring the drivers of late-life changes in social behaviour in mammals. Biol. Lett. 2022, 18, 20210643. [Google Scholar] [CrossRef]
- Muehlenbein, M.P.; Prall, S.P.; Nagao Peck, H. Immunity, hormones, and life history trade-offs. In The Arc of Life: Evolution and Health Across the Life Course; Springer: New York, NY, USA, 2017; pp. 99–120. [Google Scholar]
- Harshman, L.G.; Zera, A.J. The cost of reproduction: The devil in the details. Trends Ecol. Evol. 2007, 22, 80–86. [Google Scholar] [CrossRef]
- Costantini, D. Commentary: Oxidative stress as a cost of reproduction: Beyond the simplistic trade-off model. Front. Ecol. Evol. 2016, 4, 10. [Google Scholar] [CrossRef]
- Rubach, K.; Wu, M.; Abebe, A.; Dobson, F.S.; Murie, J.O.; Viblanc, V.A. Testing the reproductive and somatic trade-off in female Columbian ground squirrels. Ecol. Evol. 2016, 6, 7586–7595. [Google Scholar] [CrossRef]
- Speakman, J.R.; Garratt, M. Oxidative stress as a cost of reproduction: Beyond the simplistic trade-off model. BioEssays 2014, 36, 93–106. [Google Scholar] [CrossRef]
- Monaghan, P.; Metcalfe, N.B.; Torres, R. Oxidative stress as a mediator of life history trade-offs: Mechanisms, measurements and interpretation. Ecol. Lett. 2009, 12, 75–92. [Google Scholar] [CrossRef] [PubMed]
- Hood, W.; Zhang, Y.; Mowry, A.; Hyatt, H.; Kavazis, A. Life history trade-offs within the context of mitochondrial hormesis. Integr. Comp. Biol. 2018, 58, 567–577. [Google Scholar] [CrossRef]
- Viblanc, V.A.; Schull, Q.; Roth, J.D.; Rabdeau, J.; Saraux, C.; Uhlrich, P.; Criscuolo, F.; Dobson, F.S. Maternal oxidative stress and reproduction: Testing the constraint, cost and shielding hypotheses in a wild mammal. Funct. Ecol. 2017, 32, 722–735. [Google Scholar] [CrossRef]
- Costantini, D. Understanding diversity in oxidative status and oxidative stress: The opportunities and challenges ahead. J. Exp. Biol. 2019, 222, jeb194688. [Google Scholar] [CrossRef]
- Shields, H.J.; Traa, A.; Van Raamsdonk, J.M. Beneficial and detrimental effects of reactive oxygen species on lifespan: A comprehensive review of comparative and experimental studies. Front. Cell Dev. Biol. 2021, 9, 628157. [Google Scholar] [CrossRef]
- Yang, J.; Luo, J.; Tian, X.; Zhao, Y.; Li, Y.; Wu, X. Progress in Understanding Oxidative Stress, Aging, and Aging-Related Diseases. Antioxidants 2024, 13, 394. [Google Scholar] [CrossRef] [PubMed]
- Almansa-Ordonez, A.; Bellido, R.; Vassena, R.; Barragan, M.; Zambelli, F. Oxidative stress in reproduction: A mitochondrial perspective. Biology 2020, 9, 269. [Google Scholar] [CrossRef] [PubMed]
- Pisoschi, A.M.; Pop, A.; Iordache, F.; Stanca, L.; Predoi, G.; Serban, A.I. Oxidative stress mitigation by antioxidants-an overview on their chemistry and influences on health status. Eur. J. Med. Chem. 2021, 209, 112891. [Google Scholar] [CrossRef]
- Demirci-Cekic, S.; Özkan, G.; Avan, A.N.; Uzunboy, S.; Çapanoğlu, E.; Apak, R. Biomarkers of oxidative stress and antioxidant defense. J. Pharm. Biomed. Anal. 2022, 209, 114477. [Google Scholar] [CrossRef]
- Speakman, J.R. The physiological costs of reproduction in small mammals. Phil. Trans. R. Soc. B. 2008, 363, 375–398. [Google Scholar] [CrossRef]
- Edward, D.A.; Chapman, T. Mechanisms Underlying Costs of Reproduction; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Zhang, Y.; Hood, W.R. Current versus future reproduction and longevity: A re-evaluation of predictions and mechanisms. J. Exp. Biol. 2016, 219, 3177–3189. [Google Scholar] [CrossRef] [PubMed]
- Raha, S.; Robinson, B.H. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem. Sci. 2000, 25, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Metcalfe, N.B.; Monaghan, P. Does reproduction cause oxidative stress? An open question. Trend. Ecol. Evol. 2013, 28, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Aponte-Mellado, A.; Premkumar, B.J.; Shaman, A.; Gupta, S. The effects of oxidative stress on female reproduction: A review. Reprod. Biol. Endocrinol. 2012, 10, 49. [Google Scholar] [CrossRef]
- Garratt, M.; Vasilaki, A.; Stockley, P.; McArdle, F.; Jackson, M.; Hurst, J.L. Is oxidative stress a physiological cost of reproduction? An experimental test in house mice. P. Roy. Soc. B-Biol. Sci. 2010, 278, 1098–1106. [Google Scholar] [CrossRef]
- Alonso-Alvarez, C.; Bertrand, S.; Devevey, G.; Prost, J.; Faivre, B.; Sorci, G. Increased susceptibility to oxidative stress as a proximate cost of reproduction. Ecol. Lett. 2004, 7, 363–368. [Google Scholar] [CrossRef]
- Luo, J.; Mills, K.; le Cessie, S.; Noordam, R.; van Heemst, D. Ageing, age-related diseases and oxidative stress: What to do next? Ageing Res. Rev. 2020, 57, 100982. [Google Scholar] [CrossRef]
- Buffenstein, R.; Edrey, Y.H.; Yang, T.; Mele, J. The oxidative stress theory of aging: Embattled or invincible? Insights from non-traditional model organisms. Age 2008, 30, 99–109. [Google Scholar] [CrossRef]
- Finkel, T.; Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408, 239. [Google Scholar] [CrossRef]
- Rodriguez, K.A.; Wywial, E.; Perez, V.I.; Lambert, A.J.; Edrey, Y.H.; Lewis, K.N.; Grimes, K.; Lindsey, M.L.; Brand, M.D.; Buffenstein, R. Walking the oxidative stress tightrope: A perspective from the naked mole-rat, the longest-living rodent. Curr. Pharm. Des. 2011, 17, 2290–2307. [Google Scholar] [CrossRef]
- Zuo, W.; Tang, X.; Hou, C. Why Naked Mole-Rats Have High Oxidative Damage but Live a Long Life: A Simple Explanation Based on the Oxidative Stress Theory of Aging. Adv. Geriatr. Med. Res. 2020, 2, e200006. [Google Scholar]
- Dammann, P. Slow aging in mammals—Lessons from African mole-rats and bats. Semin. Cell Dev. Biol. 2017, 70, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Munro, D.; Baldy, C.; Pamenter, M.E.; Treberg, J.R. The exceptional longevity of the naked mole-rat may be explained by mitochondrial antioxidant defenses. Aging Cell 2019, 18, e12916. [Google Scholar] [CrossRef]
- Wilson, W.A.; O’Riain, M.J.; Hetem, R.S.; Fuller, A.; Fick, L.G. Winter body temperature patterns in free-ranging Cape ground squirrel, Xerus inauris: No evidence for torpor. J. Comp. Physiol. B. 2010, 180, 1099–1110. [Google Scholar] [CrossRef]
- Waterman, J.M. Reproductive biology of a tropical, non-hibernating ground squirrel. J. Mammal. 1996, 77, 134–146. [Google Scholar] [CrossRef]
- Waterman, J.M. The social organization of the Cape ground squirrel (Xerus inauris; Rodentia: Sciuridae). Ethology 1995, 101, 130–147. [Google Scholar] [CrossRef]
- Pettitt, B.; Waterman, J.M. Reproductive delay in the female Cape ground squirrel (Xerus inauris). J. Mammal. 2011, 92, 378–386. [Google Scholar] [CrossRef]
- Manjerovic, M.B.; Waterman, J.M. “Failure to launch”: Is there a reproductive cost to males living at home? J. Mammal. 2015, 96, 144–150. [Google Scholar] [CrossRef]
- Manjerovic, M.B.; Hoffman, E.A.; Parkinson, C.L.; Waterman, J.M. Intraspecific variation in male mating strategies in an African ground squirrel (Xerus inauris). Ecol. Evol. 2022, 12, e9208. [Google Scholar] [CrossRef]
- Waterman, J.M. Delayed maturity, group fission and the limits of group size in female Cape ground squirrels (Sciuridae: Xerus inauris). J. Zool. 2002, 256, 113–120. [Google Scholar] [CrossRef]
- Waterman, J.M. Why do male Cape ground squirrels live in groups? Anim. Behav. 1997, 53, 809–817. [Google Scholar] [CrossRef]
- Warrington, M.H.; Beaulieu, S.; Jellicoe, R.; Vos, S.; Bennett, N.C.; Waterman, J.M. Lovers, not fighters: Docility influences reproductive fitness, but not survival, in male Cape ground squirrels, Xerus inauris. Behav. Ecol. and Sociobiol. 2024, 78, 6. [Google Scholar] [CrossRef] [PubMed]
- Waterman, J.M. Mating tactics of male Cape ground squirrels, Xerus inauris: Consequences of year-round breeding. Anim. Behav. 1998, 56, 459–466. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, K.A.; Waterman, J.M.; Anderson, W.G.; Bennett, N.C. Trade-offs between immunity and testosterone in male African ground squirrels. J. Exp. Biol. 2018, 221, jeb177683. [Google Scholar] [CrossRef] [PubMed]
- Tower, J.; Pomatto, L.C.; Davies, K.J. Sex differences in the response to oxidative and proteolytic stress. Redox Biol. 2020, 31, 101488. [Google Scholar] [CrossRef]
- Miller, A.A.; De Silva, T.M.; Jackman, K.A.; Sobey, C.G. Effect of gender and sex hormones on vascular oxidative stress. Clin. Exp. Pharmacol. Physiol. 2007, 34, 1037–1043. [Google Scholar] [CrossRef]
- Salmon, A.B.; Richardson, A.; Pérez, V.I. Update on the oxidative stress theory of aging: Does oxidative stress play a role in aging or healthy aging? Free Radic. Biol. Med. 2010, 48, 642–655. [Google Scholar] [CrossRef]
- Council, N.R. Guide for the Care and Use of Laboratory Animals; National Academies Press: Washington, DC, USA, 2010. [Google Scholar]
- Sikes, R.S.; The Animal Care and Use Committee of the American Society of Mammalogists. 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J. Mammal. 2016, 97, 663–688. [Google Scholar] [CrossRef]
- Van Zyl, H. The vegetation of the SA Lombard Nature Reserve and its utilisation by certain antelope. Afr. Zool. 1965, 1, 55–71. [Google Scholar]
- Schulte-Hostedde, A.I.; Zinner, B.; Millar, J.S.; Hickling, G.J. Restitution of mass–size residuals: Validating body condition indices. Ecology 2005, 86, 155–163. [Google Scholar] [CrossRef]
- O’Brien, K.A.; Waterman, J.M.; Bennett, N.C. Alternative tactics in male African ground squirrels: The impact of variable rainfall on condition and physiology. J. Mammal. 2021, 102, 283–295. [Google Scholar] [CrossRef]
- Koprowski, J.L. Handling tree squirrels with a safe and efficient restraint. Wildl. Soc. Bull. 2002, 30, 101–103. [Google Scholar]
- Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 2005, 38, 1103–1111. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R Foundation for Statistical Computing, Vienna. 2018. Available online: www.R-project.org (accessed on 10 October 2024).
- Wickham, H.; Chang, W.; Wickham, M.H. Package ‘ggplot2’. Creat. Elegant Data Vis. Using Gramm. Graph. Version 2016, 2, 1–189. [Google Scholar]
- Hamilton, M.L.; Van Remmen, H.; Drake, J.A.; Yang, H.; Guo, Z.M.; Kewitt, K.; Walter, C.A.; Richardson, A. Does oxidative damage to DNA increase with age? Proc. Natl. Acad. Sci. USA 2001, 98, 10469–10474. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.F.; Simão, S.; Nóbrega, C.; Bragança, J.; Castelo-Branco, P.; Araújo, I.M.; Consortium, A.S. Oxidative stress and aging: Synergies for age related diseases. FEBS Lett. 2024, 598, 2074–2091. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Liu, S.; Sun, Y.; Chen, C.; Yang, S.; Lin, M.; Long, J.; Yao, J.; Lin, Y.; Yi, F. Targeting oxidative stress as a preventive and therapeutic approach for cardiovascular disease. J. Transl. Med. 2023, 21, 519. [Google Scholar] [CrossRef]
- Jin, S.; Kang, P.M. A Systematic Review on Advances in Management of Oxidative Stress-Associated Cardiovascular Diseases. Antioxidants 2024, 13, 923. [Google Scholar] [CrossRef]
- López-Torres, M.; Barja, G. Mitochondrial free radical production and caloric restriction: Implications in vertebrate longevity and aging. In Oxidative Stress in Aging; Humana Press: Totowa, NJ, USA, 2008; pp. 149–162. [Google Scholar]
- Sohal, R.S.; Orr, W.C. The redox stress hypothesis of aging. Free Radic. Biol. Med. 2012, 52, 539–555. [Google Scholar] [CrossRef]
- Hasty, P.; Campisi, J.; Hoeijmakers, J.; Van Steeg, H.; Vijg, J. Aging and genome maintenance: Lessons from the mouse? Science 2003, 299, 1355–1359. [Google Scholar] [CrossRef]
- Marnett, L.J.; Riggins, J.N.; West, J.D. Endogenous generation of reactive oxidants and electrophiles and their reactions with DNA and protein. J. Clin. Investig. 2003, 111, 583–593. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.F.; Geihs, M.A.; França, T.F.; Moreira, D.C.; Hermes-Lima, M. Is “preparation for oxidative stress” a case of physiological conditioning hormesis? Front. Physiol. 2018, 9, 945. [Google Scholar] [CrossRef] [PubMed]
- Costantini, D. Oxidative Stress and Hormesis in Evolutionary Ecology and Physiology: A Marriage Between Mechanistic and Evolutionary Approaches; Springer: Berlin/Heidelberg, Geramny, 2014; p. 362. [Google Scholar]
- Descamps, S.; Boutin, S.; McAdam, A.G.; Berteaux, D.; Gaillard, J.-M. Survival costs of reproduction vary with age in North American red squirrels. Proc. R. Soc. B 2009, 276, 1129–1135. [Google Scholar] [CrossRef] [PubMed]
- Viblanc, V.A.; Criscuolo, F.; Sosa, S.; Schull, Q.; Boonstra, R.; Saraux, C.; Lejeune, M.; Roth, J.D.; Uhlrich, P.; Zahn, S. Telomere dynamics in female Columbian ground squirrels: Recovery after emergence and loss after reproduction. Oecologia 2022, 199, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Jankovic, A.; Kalezic, A.; Korac, A.; Buzadzic, B.; Storey, K.B.; Korac, B. Integrated Redox-Metabolic Orchestration Sustains Life in Hibernating Ground Squirrels. Antioxid. Redox Signal. 2024, 40, 345–368. [Google Scholar] [CrossRef]
- Coto-Montes, A.; Boga, J.A.; Tomás-Zapico, C.; Rodríguez-Colunga, M.a.J.; Martínez-Fraga, J.; Tolivia-Cadrecha, D.; Menéndez, G.; Hardeland, R.; Tolivia, D. Physiological oxidative stress model: Syrian hamster Harderian gland—Sex differences in antioxidant enzymes. Free Radic. Biol. Med. 2001, 30, 785–792. [Google Scholar]
- Vina, J.; Gambini, J.; Lopez-Grueso, R.; Abdelaziz, K.M.; Jove, M.; Borras, C. Females live longer than males: Role of oxidative stress. Curr. Pharm. Des. 2011, 17, 3959–3965. [Google Scholar] [CrossRef]
- Strehlow, K.; Rotter, S.; Wassmann, S.; Adam, O.; Grohé, C.; Laufs, K.; Böhm, M.; Nickenig, G. Modulation of antioxidant enzyme expression and function by estrogen. Circ. Res. 2003, 93, 170–177. [Google Scholar] [CrossRef]
- Voss, M.R.; Stallone, J.N.; Li, M.; Cornelussen, R.N.; Knuefermann, P.; Knowlton, A.A. Gender differences in the expression of heat shock proteins: The effect of estrogen. Am. J. Physiol. Heart Circ. Physiol. 2003, 285, H687–H692. [Google Scholar]
- Miller, A.A.; Drummond, G.R.; Mast, A.E.; Schmidt, H.H.; Sobey, C.G. Effect of gender on NADPH-oxidase activity, expression, and function in the cerebral circulation: Role of estrogen. Stroke 2007, 38, 2142–2149. [Google Scholar] [CrossRef]
- Borrás, C.; Sastre, J.; García-Sala, D.; Lloret, A.; Pallardó, F.V.; Viña, J. Mitochondria from females exhibit higher antioxidant gene expression and lower oxidative damage than males. Free Radic. Biol. Med. 2003, 34, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Kayali, R.; Çakatay, U.; Tekeli, F. Male rats exhibit higher oxidative protein damage than females of the same chronological age. Mech. Ageing Dev. 2007, 128, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, P.J.; Hart, D.W.; Bennett, N.C. Plasma oxidative stress in reproduction of two eusocial African mole-rat species, the naked mole-rat and the Damaraland mole-rat. Front. Zool. 2021, 18, 1–9. [Google Scholar] [CrossRef]
- Jacobs, P.J.; Finn, K.T.; van Vuuren, A.K.J.; Suess, T.; Hart, D.W.; Bennett, N.C. Defining the link between oxidative stress, behavioural reproductive suppression and heterothermy in the Natal mole-rat (Cryptomys hottentotus natalensis). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2022, 261, 110753. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, P.J.; Hart, D.W.; Suess, T.; Janse van Vuuren, A.K.; Bennett, N.C. The Cost of Reproduction in a Cooperatively Breeding Mammal: Consequences of Seasonal Variation in Rainfall, Reproduction, and Reproductive Suppression. Front. Phys. 2021, 12, 780490. [Google Scholar] [CrossRef]
- Lee, B.; Smith, M.; Buffenstein, R.; Harries, L. Negligible senescence in naked mole rats may be a consequence of well-maintained splicing regulation. GeroScience 2020, 42, 633–651. [Google Scholar] [CrossRef]
- Lewis, K.N.; Andziak, B.; Yang, T.; Buffenstein, R. The naked mole-rat response to oxidative stress: Just deal with it. Antioxid. Redox. Sign. 2013, 19, 1388–1399. [Google Scholar] [CrossRef]
- Evdokimov, A.; Kutuzov, M.; Petruseva, I.; Lukjanchikova, N.; Kashina, E.; Kolova, E.; Zemerova, T.; Romanenko, S.; Perelman, P.; Prokopov, D. Naked mole rat cells display more efficient excision repair than mouse cells. Aging 2018, 10, 1454. [Google Scholar] [CrossRef]
- Puertollano, M.A.; Puertollano, E.; de Cienfuegos, G.A.; de Pablo, M.A. Dietary antioxidants: Immunity and host defense. Curr. Top. Med. Chem. 2011, 11, 1752–1766. [Google Scholar] [CrossRef]
- Barja, G. The mitochondrial free radical theory of aging. Prog. Mol. Biol. Transl. Sci. 2014, 127, 1–27. [Google Scholar]
- Barja, G. Rate of generation of oxidative stress-related damage and animal longevity. Free Radic. Biol. Med. 2002, 33, 1167–1172. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.L. Exercise at old age: Does it increase or alleviate oxidative stress? Ann. N.Y. Acad. Sci. 2001, 928, 236–247. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.L. Exercise and oxidative stress: Role of the cellular antioxidant systems. Exerc. Sport Sci. Rev. 1995, 23, 135–166. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.L.; Fu, R. Responses of glutathione system and antioxidant enzymes to exhaustive exercise and hydroperoxide. J. Appl. Physiol. 1992, 72, 549–554. [Google Scholar] [CrossRef]
Initial Model | Variables Kept After Backward Selection | Estimate | Standard Error | Statistic | p-Value |
---|---|---|---|---|---|
TOS~Sex * body condition * Age, family = Gamma (link = “identity”) | Intercept | 6.54726 | 0.42692 | 15.336 | *** |
Sex Male | 1.40032 | 0.32581 | 4.298 | *** | |
Age | −0.40856 | 0.07558 | −5.405 | *** | |
TAC~Sex * Age * body condition, family = Gaussian (link = “inverse”) | Intercept | 6.15444315 | 0.15386392 | 39.999 | *** |
Sex Male | −0.09345367 | 0.18039687 | −0.518 | ns | |
Age | 0.01212761 | 0.03155852 | 0.384 | ns | |
body condition | 0.00003935 | 0.00209290 | 0.019 | ns | |
Sex Male * Age | 0.00864730 | 0.04158859 | 0.208 | ns | |
Sex Male * body condition | 0.00097065 | 0.00246685 | 0.393 | ns | |
Age * body condition | 0.00019369 | 0.00037647 | 0.514 | ns | |
Sex Male * Age * body condition | 0.00041114 | 0.00055699 | −0.738 | ns | |
OSI~Sex * Age * body condition, family = Gamma (link = “identity”) | Intercept | 1.07161 | 0.07580 | 14.14 | *** |
Sex Male | 0.23510 | 0.05791 | 0.05791 | *** | |
Age | −0.06815 | 0.01336 | −5.10 | *** |
Initial Model | Variables Kept After Backward Selection | Estimate | Standard Error | Statistic (t Value) | p-Value |
---|---|---|---|---|---|
TOS~Male State * Age * body condition, family = Gamma (link = “identity”) | Intercept | 8.6543 | 0.7614 | 11.366 | *** |
Male State Natal | −1.0468 | −1.0468 | −2.151 | * | |
Age | −0.4404 | 0.1484 | −2.969 | ** | |
TAC~Male State * Age * body condition, family = Gaussian (link = “identity”) | Intercept | 6.25230 | 0.16555 | 37.767 | *** |
Male State Natal | −0.42375 | −0.42375 | −1.902 | ns | |
Age | −0.02071 | 0.03613 | −0.573 | ns | |
Male State Natal * Age | 0.12071 | 0.06233 | 1.937 | ns | |
OSI~Male State * Age * body condition, family = Gamma (link = “identity”) | Intercept | 1.43497 | 0.15288 | 9.386 | *** |
Male State Natal | −0.16921 | 0.09748 | −1.736 | ns | |
Age | −0.07723 | 0.02966 | −2.604 | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacobs, P.J.; Vos, S.; Bishop, C.E.; Hart, D.W.; Bennett, N.C.; Waterman, J.M. Oxidative Stress in an African Ground Squirrel, a Case of Healthy Aging and Reproduction. Antioxidants 2024, 13, 1401. https://doi.org/10.3390/antiox13111401
Jacobs PJ, Vos S, Bishop CE, Hart DW, Bennett NC, Waterman JM. Oxidative Stress in an African Ground Squirrel, a Case of Healthy Aging and Reproduction. Antioxidants. 2024; 13(11):1401. https://doi.org/10.3390/antiox13111401
Chicago/Turabian StyleJacobs, Paul Juan, Sjoerd Vos, Chelsea E. Bishop, Daniel William Hart, Nigel Charles Bennett, and Jane M. Waterman. 2024. "Oxidative Stress in an African Ground Squirrel, a Case of Healthy Aging and Reproduction" Antioxidants 13, no. 11: 1401. https://doi.org/10.3390/antiox13111401
APA StyleJacobs, P. J., Vos, S., Bishop, C. E., Hart, D. W., Bennett, N. C., & Waterman, J. M. (2024). Oxidative Stress in an African Ground Squirrel, a Case of Healthy Aging and Reproduction. Antioxidants, 13(11), 1401. https://doi.org/10.3390/antiox13111401