Evaluation of the Protective Role of Vitamin E against ROS-Driven Lipid Oxidation in Model Cell Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Liposomes Preparation
2.3. Fluorescence Analysis
2.4. Size and Zeta Potential Measurements
2.5. GUV Preparation
2.6. Fourier Transform Infrared (FTIR) Analysis
2.7. Electrophysiological Measurements
2.8. Data Acquisition and Analysis
3. Results and Discussion
3.1. Characterization of Liposomes in the Presence of ROS and Vitamin E
3.1.1. Size and Zeta Potential Measurements
3.1.2. Molecular Analysis of Liposomes
3.1.3. Liposomal Stability Analysis
3.2. Morphological Analysis of Model Cell Membranes
3.3. Electrophysiological Analysis of Lipid Membranes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Moloney, J.N.; Cotter, T.G. ROS Signalling in the Biology of Cancer. Semin. Cell Dev. Biol. 2018, 80, 50–64. [Google Scholar] [CrossRef] [PubMed]
- Andrés, C.M.C.; Pérez de la Lastra, J.M.; Juan, C.A.; Plou, F.J.; Pérez-Lebeña, E. Chemistry of Hydrogen Peroxide Formation and Elimination in Mammalian Cells, and Its Role in Various Pathologies. Stresses 2022, 2, 256–274. [Google Scholar] [CrossRef]
- Park, C.; Kim, D.H.; Kim, T.H.; Jeong, S.U.; Yoon, J.H.; Moon, S.K.; Kwon, C.Y.; Park, S.H.; Hong, S.H.; Shim, J.H.; et al. Improvement of Oxidative Stress-Induced Cytotoxicity of Angelica Keiskei (Miq.) Koidz. Leaves Extract through Activation of Heme Oxygenase-1 in C2C12 Murine Myoblasts. Biotechnol. Bioprocess Eng. 2023, 28, 51–62. [Google Scholar] [CrossRef]
- Zhu, Y.; Cheng, Y.; Ma, L. Circ_0005280 Protects Human Lens Epithelial Cells against H2O2-Induced Apoptosis and Oxidative Stress Though MiR-326/PLCD3 Axis. Biotechnol. Bioprocess Eng. 2023, 28, 101–111. [Google Scholar] [CrossRef]
- Mohd Mutalip, S.S.; Ab-Rahim, S.; Rajikin, M.H. Vitamin E as an Antioxidant in Female Reproductive Health. Antioxidants 2018, 7, 22. [Google Scholar] [CrossRef]
- Brigelius-Flohé, R.; Traber, M.G. Vitamin E: Function and Metabolism. FASEB J. 1999, 13, 1145–1155. [Google Scholar] [CrossRef]
- Chen, Z.L.; Yang, L.H.; Tong, L.L.; Wang, Y.; Liu, M.Z.; Guo, D.S. Improvement of Lipid and Terpenoid Yield in Thraustochytrids Using Chemical Regulators: A Review. Biotechnol. Bioprocess Eng. 2023, 28, 720–733. [Google Scholar] [CrossRef]
- Gohil, K.; Vasu, V.T.; Cross, C.E. Dietary α-Tocopherol and Neuromuscular Health: Search for Optimal Dose and Molecular Mechanisms Continues! Mol. Nutr. Food Res. 2010, 54, 693–709. [Google Scholar] [CrossRef]
- Evans, H.M.; ScottBishop, K. On the Existence of a Hitherto Unrecognized Dietary Factor Essential for Reproduction1. Science 1922, 1, 650–651. [Google Scholar] [CrossRef]
- Dröge, W. Free Radicals in the Physiological Control of Cell Function. Physiol. Rev. 2002, 82, 47–95. [Google Scholar] [CrossRef]
- Sohal, R.S.; Mockett, R.J.; Orr, W.C. Mechanisms of aging: An appraisal of the oxidative stress hypothesis. Free Radic. Biol. Med. 2002, 33, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Borst, J.W.; Visser, N.V.; Kouptsova, O.; Visser, A.J.W.G. Oxidation of Unsaturated Phospholipids in Membrane Bilayer Mixtures Is Accompanied by Membrane Fuidity Changes. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2000, 1487, 61–73. [Google Scholar]
- Runas, K.A.; Acharya, S.J.; Schmidt, J.J.; Malmstadt, N. Addition of Cleaved Tail Fragments during Lipid Oxidation Stabilizes Membrane Permeability Behavior. Langmuir 2016, 32, 779–786. [Google Scholar] [CrossRef]
- Bour, A.; Kruglik, S.G.; Chabanon, M.; Rangamani, P.; Puff, N.; Bonneau, S. Lipid Unsaturation Properties Govern the Sensitivity of Membranes to Photoinduced Oxidative Stress. Biophys. J. 2019, 116, 910–920. [Google Scholar] [CrossRef] [PubMed]
- Sakaya, A.; Bacellar, I.O.L.; Fonseca, J.L.; Durantini, A.M.; McCain, J.; Xu, L.; Vignoni, M.; Thomas, A.H.; Baptista, M.S.; Cosa, G. Singlet Oxygen Flux, Associated Lipid Photooxidation, and Membrane Expansion Dynamics Visualized on Giant Unilamellar Vesicles. Langmuir 2023, 39, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Ouchi, Y.; Unoura, K.; Nabika, H. Role of Oxidized Lipids in Permeation of H2O2 Through a Lipid Membrane: Molecular Mechanism of an Inhibitor to Promoter Switch. Sci. Rep. 2019, 9, 12497. [Google Scholar] [CrossRef]
- Ravandeh, M.; Kahlert, H.; Jablonowski, H.; Lackmann, J.W.; Striesow, J.; Agmo Hernández, V.; Wende, K. A Combination of Electrochemistry and Mass Spectrometry to Monitor the Interaction of Reactive Species with Supported Lipid Bilayers. Sci. Rep. 2020, 10, 18683. [Google Scholar] [CrossRef]
- Yoon, J.H.; Lee, S.; Kang, J.H. Reaction of Ferritin with Hydrogen Peroxide Induces Lipid Peroxidation. BMB Rep. 2010, 43, 219–224. [Google Scholar] [CrossRef]
- Jung, S.H.; Jang, H.; Lim, M.C.; Kim, J.H.; Shin, K.S.; Kim, S.M.; Kim, H.Y.; Kim, Y.R.; Jeon, T.J. Chromatic Biosensor for Detection of Phosphinothricin Acetyltransferase by Use of Polydiacetylene Vesicles Encapsulated within Automatically Generated Immunohydrogel Beads. Anal. Chem. 2015, 87, 2072–2078. [Google Scholar] [CrossRef]
- Fuwad, A.; Ryu, H.; Lee, J.H.; Kim, D.; Yoo, Y.E.; Kim, Y.R.; Kim, S.M.; Jeon, T.J. An Electrokinetic Approach to Fabricating Aquaporin Biomimetic Membranes for Water Purification. Desalination 2019, 452, 9–16. [Google Scholar] [CrossRef]
- Peruzzi, J.; Gutierrez, M.G.; Mansfield, K.; Malmstadt, N. Dynamics of Hydrogel-Assisted Giant Unilamellar Vesicle Formation from Unsaturated Lipid Systems. Langmuir 2016, 32, 12702–12709. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Song, S.; Cho, G.; Dalle Ore, L.C.; Malmstadt, N.; Fuwad, A.; Kim, S.M.; Jeon, T.J. Elucidating the Molecular Interactions between Lipids and Lysozyme: Evaporation Resistance and Bacterial Barriers for Dry Eye Disease. Nano Lett. 2023, 23, 9451–9460. [Google Scholar] [CrossRef]
- Mueller, P.; Rudin, D.O.; Ti Tien, H.; Wescott, W.C. Reconstitution of Cell Membrane Structure in Vitro and Its Transformation. Nature 1962, 194, 979–980. [Google Scholar] [CrossRef]
- Ryu, H.; Lee, H.; Iwata, S.; Choi, S.; Kim, M.K.; Kim, Y.R.; Maruta, S.; Kim, S.M.; Jeon, T.J. Investigation of Ion Channel Activities of Gramicidin A in the Presence of Ionic Liquids Using Model Cell Membranes. Sci. Rep. 2015, 5, 11935. [Google Scholar] [CrossRef] [PubMed]
- Ryu, H.; Fuwad, A.; Kim, S.M.; Jeon, T.J. Multilayered Film for the Controlled Formation of Freestanding Lipid Bilayers. Colloids Surf. B Biointerfaces 2021, 199, 111552. [Google Scholar] [CrossRef]
- Choi, W.; Ryu, H.; Fuwad, A.; Goh, S.; Zhou, C.; Shim, J.; Takagi, M.; Kwon, S.; Kim, S.; Jeon, T. Quantitative Analysis of the Membrane Affinity of Local Anesthetics Using a Model Cell Membrane. Membranes 2021, 11, 579. [Google Scholar] [CrossRef] [PubMed]
- Dols-Perez, A.; Gramse, G.; Calò, A.; Gomila, G.; Fumagalli, L. Nanoscale Electric Polarizability of Ultrathin Biolayers on Insulating Substrates by Electrostatic Force Microscopy. Nanoscale 2015, 7, 18327–18336. [Google Scholar] [CrossRef] [PubMed]
- Velikonja, A.; Kramar, P.; Miklavčič, D.; Maček Lebar, A. Specific Electrical Capacitance and Voltage Breakdown as a Function of Temperature for Different Planar Lipid Bilayers. Bioelectrochemistry 2016, 112, 132–137. [Google Scholar] [CrossRef]
- Schwarzott, M.; Lasch, P.; Baurecht, D.; Naumann, D.; Fringeli, U.P. Electric Field-Induced Changes in Lipids Investigated by Modulated Excitation FTIR Spectroscopy. Biophys. J. 2004, 86, 285–295. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, G.; Li, R.; Guan, M.; Wang, X.; Zou, T.; Zhang, Y.; Wang, C.; Shu, C.; Hong, H.; et al. Biodegradable, Hydrogen Peroxide, and Glutathione Dual Responsive Nanoparticles for Potential Programmable Paclitaxel Release. J. Am. Chem. Soc. 2018, 140, 7373–7376. [Google Scholar] [CrossRef]
- Cho, G.; Lee, D.; Kim, S.M.; Jeon, T.J. Elucidation of the Interactions of Reactive Oxygen Species and Antioxidants in Model Membranes Mimicking Cancer Cells and Normal Cells. Membranes 2022, 12, 286. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Song, S.; Kim, S.; Lee, M.; Kim, E.; Yoon, S.; Kim, H.U.; Son, S.; Jung, H.S.; Huh, Y.S.; et al. Multicomponent-Loaded Vesosomal Drug Carrier for Controlled and Sustained Compound Release. Biomacromolecules 2023, 24, 3898–3907. [Google Scholar] [CrossRef] [PubMed]
- Haluska, C.K.; Baptista, M.S.; Fernandes, A.U.; Schroder, A.P.; Marques, C.M.; Itri, R. Photo-Activated Phase Separation in Giant Vesicles Made from Different Lipid Mixtures. Biochim. Biophys. Acta Biomembr. 2012, 1818, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Dipasquale, M.; Nguyen, M.H.L.; Pabst, G.; Marquardt, D. Partial Volumes of Phosphatidylcholines and Vitamin E: α-Tocopherol Prefers Disordered Membranes. J. Phys. Chem. B 2022, 126, 6691–6699. [Google Scholar] [CrossRef]
- Dipasquale, M.; Gbadamosi, O.; Nguyen, M.H.L.; Castillo, S.R.; Rickeard, B.W.; Kelley, E.G.; Nagao, M.; Marquardt, D. A Mechanical Mechanism for Vitamin e Acetate in E-Cigarette/Vaping-Associated Lung Injury. Chem. Res. Toxicol. 2020, 33, 2432–2440. [Google Scholar] [CrossRef]
- Marquardt, D.; Kučerka, N.; Katsaras, J.; Harroun, T.A. α-Tocopherols Location in Membranes Is Not Affected by Their Composition. Langmuir 2015, 31, 4464–4472. [Google Scholar] [CrossRef]
- Marquardt, D.; Williams, J.A.; Kinnun, J.J.; Kučerka, N.; Atkinson, J.; Wassall, S.R.; Katsaras, J.; Harroun, T.A. Dimyristoyl Phosphatidylcholine: A Remarkable Exception to α-Tocopherol’s Membrane Presence. J. Am. Chem. Soc. 2014, 136, 203–210. [Google Scholar] [CrossRef]
- Traber, M.G.; Stevens, J.F. Vitamins C and E: Beneficial Effects from a Mechanistic Perspective. Free Radic. Biol. Med. 2011, 51, 1000–1013. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.; Gu, J.; Zhang, R.; Zhang, Y.; Tan, H.; McClements, D.J. Vitamin e Encapsulation in Plant-Based Nanoemulsions Fabricated Using Dual-Channel Microfluidization: Formation, Stability, and Bioaccessibility. J. Agric. Food Chem. 2018, 66, 10532–10542. [Google Scholar] [CrossRef]
- Sharif, H.R.; Sharif, M.K.; Zhong, F. Preparation, Characterization and Rheological Properties of Vitamin E Enriched Nanoemulsion. Pak. J. Food Sci. 2017, 27, 7–14. [Google Scholar]
- Zhang, Y.P.; Lewis, R.N.A.H.; McElhaney, R.N. Calorimetric and Spectroscopic Studies of the Thermotropic Phase Behavior of the N-Saturated 1,2-Diacylphosphatidylglycerols. Biophys. J. 1997, 72, 779–793. [Google Scholar] [CrossRef] [PubMed]
- Lewis, R.N.A.H.; McElhaney, R.N. Membrane Lipid Phase Transitions and Phase Organization Studied by Fourier Transform Infrared Spectroscopy. Biochim. Biophys. Acta Biomembr. 2013, 1828, 2347–2358. [Google Scholar] [CrossRef] [PubMed]
- Mendelsohn, R.; Moore, D.J. Vibrational Spectroscopic Studies of Lipid Domains in Biomembranes and Model Systems. Chem. Phys. Lipids 1998, 96, 141–157. [Google Scholar] [CrossRef] [PubMed]
- Hü, W.; Blume, A. Interactions at the Lipid-Water Interface. Chem. Phys. Lipids 1998, 96, 99–123. [Google Scholar]
- Devarajan, A.; Kim, Y.C.; Isakovic, A.F.; Gater, D.L. Effect of Cholecalciferol on Unsaturated Model Membranes. Chem. Phys. Lipids 2021, 235, 105058. [Google Scholar] [CrossRef]
- Andrés Juan, C.; Manuel Pérez de la Lastra, J.; Plou, F.J.; Pérez-Lebeña, E.; Reinbothe, S. Molecular Sciences the Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Endale, H.T.; Tesfaye, W.; Mengstie, T.A. ROS Induced Lipid Peroxidation and Their Role in Ferroptosis. Front. Cell Dev. Biol. 2023, 11. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, Y.; Liu, X.; Bai, Q.; Liu, H.; Wang, J.; Zhang, P.; Lu, L.; Yuan, X. Influence of Reactive Oxygen Species Concentration and Ambient Temperature on the Evolution of Chemical Bonds during Plasma Cleaning: A Molecular Dynamics Simulation. RSC Adv. 2022, 12, 30754–30763. [Google Scholar] [CrossRef]
- Collin, F. Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases. Int. J. Mol. Sci. 2019, 20, 2407. [Google Scholar] [CrossRef]
- Hübner, W.; Mantsch, H.H. Orientation of Specifically 13C=O Labeled Phosphatidylcholine Multilayers from Polarized Attenuated Total Reflection FT-IR Spectroscopy. Biophys. J. 1991, 59, 1261–1272. [Google Scholar] [CrossRef]
- Lewis, R.N.A.H.; Pohle, W.; McElhaney, R.N. The Interfacial Structure of Phospholipid Bilayers: Differential Scanning Calorimetry and Fourier Transform Infrared Spectroscopic Studies of 1,2-Dipalmitoyl-Sn-Glycero-3-Phosphorylcholine and Its Dialkyl and Acyl-Alkyl Analogs. Biophys. J. 1996, 70, 2736–2746. [Google Scholar] [CrossRef] [PubMed]
- Amaro, M.; Filipe, H.A.L.; Prates Ramalho, J.P.; Hof, M.; Loura, L.M.S. Fluorescence of Nitrobenzoxadiazole (NBD)-Labeled Lipids in Model Membranes Is Connected Not to Lipid Mobility but to Probe Location. Phys. Chem. Chem. Phys. 2016, 18, 7042–7054. [Google Scholar] [CrossRef]
- Ammendolia, D.A.; Bement, W.M.; Brumell, J.H. Plasma Membrane Integrity: Implications for Health and Disease. BMC Biol. 2021, 19, 71. [Google Scholar] [CrossRef] [PubMed]
- Leng, X.; Kinnun, J.J.; Marquardt, D.; Ghefli, M.; Kučerka, N.; Katsaras, J.; Atkinson, J.; Harroun, T.A.; Feller, S.E.; Wassall, S.R. α-Tocopherol Is Well Designed to Protect Polyunsaturated Phospholipids: MD Simulations. Biophys. J. 2015, 109, 1608–1618. [Google Scholar] [CrossRef]
- Marquardt, D.; Williams, J.A.; Kučerka, N.; Atkinson, J.; Wassall, S.R.; Katsaras, J.; Harroun, T.A. Tocopherol Activity Correlates with Its Location in a Membrane: A New Perspective on the Antioxidant Vitamin e. J. Am. Chem. Soc. 2013, 135, 7523–7533. [Google Scholar] [CrossRef] [PubMed]
- Luo, K.; Jeong, K.B.; Oh, J.M.; Choi, S.J.; Jeon, T.J.; Kim, Y.R. Investigation of Membrane Condensation Induced by CaCO3 Nanoparticles and Its Effect on Membrane Protein Function. RSC Adv. 2017, 7, 49858–49862. [Google Scholar] [CrossRef]
- Agmon, E.; Solon, J.; Bassereau, P.; Stockwell, B.R. Modeling the Effects of Lipid Peroxidation during Ferroptosis on Membrane Properties. Sci. Rep. 2018, 8, 5155. [Google Scholar] [CrossRef]
- Oliveira, M.C.; Yusupov, M.; Bogaerts, A.; Cordeiro, R.M. Lipid Oxidation: Role of Membrane Phase-Separated Domains. J. Chem. Inf. Model. 2021, 61, 2857–2868. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kilicarslan You, D.; Fuwad, A.; Lee, K.H.; Kim, H.K.; Kang, L.; Kim, S.M.; Jeon, T.-J. Evaluation of the Protective Role of Vitamin E against ROS-Driven Lipid Oxidation in Model Cell Membranes. Antioxidants 2024, 13, 1135. https://doi.org/10.3390/antiox13091135
Kilicarslan You D, Fuwad A, Lee KH, Kim HK, Kang L, Kim SM, Jeon T-J. Evaluation of the Protective Role of Vitamin E against ROS-Driven Lipid Oxidation in Model Cell Membranes. Antioxidants. 2024; 13(9):1135. https://doi.org/10.3390/antiox13091135
Chicago/Turabian StyleKilicarslan You, Dilara, Ahmed Fuwad, Ki Hyok Lee, Hyung Kyo Kim, Lifeng Kang, Sun Min Kim, and Tae-Joon Jeon. 2024. "Evaluation of the Protective Role of Vitamin E against ROS-Driven Lipid Oxidation in Model Cell Membranes" Antioxidants 13, no. 9: 1135. https://doi.org/10.3390/antiox13091135
APA StyleKilicarslan You, D., Fuwad, A., Lee, K. H., Kim, H. K., Kang, L., Kim, S. M., & Jeon, T. -J. (2024). Evaluation of the Protective Role of Vitamin E against ROS-Driven Lipid Oxidation in Model Cell Membranes. Antioxidants, 13(9), 1135. https://doi.org/10.3390/antiox13091135