Nutritional Qualities, Metabolite Contents, and Antioxidant Capacities of Yardlong Beans (Vigna unguiculata subsp. sesquipedalis) of Different Pod and Seed Colors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material Collection and Sample Preparation
2.3. Analysis of Nutritional Components
2.4. Analysis of Total Metabolite Contents
2.5. Analysis of Antioxidant Capacities
2.6. Antioxidant Index
2.7. Statistical Analysis
3. Results
3.1. Nutritional Components
3.1.1. Crude Protein, Total Fat, Crude Fiber, and Dietary Fiber Contents
3.1.2. Vitamin C Content
3.1.3. Individual and Total Fatty Acid Contents
3.2. Total Metabolite Contents
3.3. Antioxidant Activities
3.4. Cluster, Principal Components, and Correlation Analyses
4. Discussion
4.1. Variations in Biochemical Components
4.2. Effects of Pod Color and Seed Color Differences
4.3. Multivariate Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suma, A.; Latha, M.; John, J.K.; Aswathi, P.V.; Pandey, C.D.; Ajinkya, A. Yard-long bean. In The Beans and the Peas: From Orphan to Mainstream Crops; Pratap, A., Gupta, S., Eds.; Woodhead Publishing: Sawston, UK, 2021; pp. 153–172. [Google Scholar]
- Xia, Q.; Pan, L.; Zhang, R.; Ni, X.; Wang, Y.; Dong, X.; Gao, Y.; Zhang, Z.; Kui, L.; Li, Y.; et al. The genome assembly of asparagus bean, Vigna unguiculata ssp. sesquipedialis. Sci. Data 2019, 6, 124. [Google Scholar] [CrossRef]
- Perchuk, I.; Shelenga, T.; Gurkina, M.; Miroshnichenko, E.; Burlyaeva, M. Composition of primary and secondary metabolite compounds in seeds and pods of asparagus bean (Vigna unguiculata (L.) Walp.) from China. Molecules 2020, 25, 3778. [Google Scholar] [CrossRef] [PubMed]
- Brito, M.; Fernández-Rodríguez, T.; Garrido, M.J.; Mejías, A.; Romano, M.; Marys, E. First report of cowpea mild mottle carlavirus on yardlong bean (Vigna unguiculata subsp. sesquipedalis) in venezuela. Viruses 2012, 4, 3804–3811. [Google Scholar] [CrossRef] [PubMed]
- Quamruzzaman, A.K.M.; Islam, F.; Akter, L.; Khatun, A.; Mallick, S.R.; Gaber, A.; Laing, A.; Brestic, M.; Hossain, A. Evaluation of the Quality of Yard-Long Bean (Vigna unguiculata sub sp. sesquipedalis L.) Cultivars to Meet the Nutritional Security of Increasing Population. Agronomy 2022, 12, 2195. [Google Scholar] [CrossRef]
- Onwuliri, V.A.; Obu, J.A. Lipids and other constituents of Vigna unguiculata and Phaseolus vulgaris grown in northern Nigeria. Food Chem. 2002, 78, 1–7. [Google Scholar] [CrossRef]
- Bai, Z.; Huang, X.; Meng, J.; Kan, L.; Nie, S. A comparative study on nutritive peculiarities of 24 Chinese cowpea cultivars. Food Chem. Toxicol. 2020, 146, 111841. [Google Scholar] [CrossRef]
- Kumar, D.K.; Mathew, D.; Nazeem, P.A.; Abida, P.S.; Thomas, C.G. A comparative proteome assay on the quality of yardlong bean pods as influenced by the organic and inorganic nourishment systems. Acta Physiol. Plant. 2017, 39, 265. [Google Scholar] [CrossRef]
- Bai, Y.; Chang, J.; Xu, Y.; Cheng, D.; Liu, H.; Zhao, Y.; Yu, Z. Antioxidant and myocardial preservation activities of natural phytochemicals from mung bean (Vigna radiata L.) seeds. J. Agric. Food Chem. 2016, 64, 4648–4655. [Google Scholar] [CrossRef]
- Moloto, M.R.; Phan, A.D.T.; Shai, J.L.; Sultanbawa, Y.; Sivakumar, D. Comparison of Phenolic Compounds, Carotenoids, Amino Acid Composition, In Vitro Antioxidant and Anti-Diabetic Activities in the Leaves of Seven Cowpea (Vigna unguiculata) Cultivars. Foods 2020, 9, 1285. [Google Scholar] [CrossRef]
- Davies, H.V.; Shepherd, L.V.T.; Stewart, D.; Frank, T.; Röhlig, R.M.; Engel, K.H. Metabolome variability in crop plant species—When, where, how much and so what? Regul. Toxicol. Pharmacol. 2010, 58, S54–S61. [Google Scholar] [CrossRef]
- Sarkar, S.; Khatun, M.; Era, F.M.; Islam, A.K.M.M.; Anwar, M.P.; Danish, S.; Datta, R.; Islam, A.K.M.A. Abiotic stresses: Alteration of composition and grain quality in food legumes. Agronomy 2021, 11, 2238. [Google Scholar] [CrossRef]
- Ntatsi, G.; Gutiérrez-Cortines, M.E.; Karapanos, I.; Barros, A.; Weiss, J.; Balliu, A.; dos Santos Rosa, E.A.; Savvas, D. The quality of leguminous vegetables as influenced by preharvest factors. Sci. Hortic. 2018, 232, 191–205. [Google Scholar] [CrossRef]
- Karim, M.N.; Sani, M.N.H.; Uddain, J.; Azad, M.O.K.; Kabir, M.S.; Rahman, M.S.; Choi, K.Y.; Naznin, M.T. Stimulatory effect of seed priming as pretreatment factors on germination and yield performance of yard long bean (Vigna unguiculata). Horticulturae 2020, 6, 104. [Google Scholar] [CrossRef]
- Shubha, K.; Choudhary, A.K.; Eram, A.; Mukherjee, A.; Kumar, U.; Dubey, A.K. Screening of Yardlong bean (Vigna unguiculata (L.) Walp.ssp. unguiculata cv.-gr. sesquipedalis) genotypes for seed, yield and disease resistance traits. Genet. Resour. Crop Evol. 2022, 69, 2307–2317. [Google Scholar] [CrossRef]
- Mekonnen, T.W.; Gerrano, A.S.; Mbuma, N.W.; Labuschagne, M.T. Breeding of Vegetable Cowpea for Nutrition and Climate Resilience in Sub-Saharan Africa: Progress, Opportunities, and Challenges. Plants 2022, 11, 1583. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, W.; Chen, H.; Chen, J.; Liu, X.; Chen, X.; Yang, S. Transcriptomic analysis of salt tolerance-associated genes and diversity analysis using indel markers in yardlong bean (Vigna unguiculata ssp. sesquipedialis). BMC Genom. Data 2021, 22, 34. [Google Scholar] [CrossRef]
- Huynh, B.L.; Dahlquist-Willard, R.M.; Ploeg, A.T.; Yang, M.; Thaoxaochay, L.; Kanter, J.; Brar, S.; Paz, J.; Qaderi, S.; Singh, H.; et al. Registration of four pest-resistant long bean germplasm lines. J. Plant Regist. 2024, 18, 415–425. [Google Scholar] [CrossRef]
- Ozaktan, H.; Uzun, S.; Uzun, O.; Yasar Ciftci, C. Change in Chemical Composition and Morphological Traits of Chickpea (Cicer arietinum L.) Genotypes Grown Under Natural Conditions. Gesunde Pflanz. 2023, 75, 1385–1400. [Google Scholar] [CrossRef]
- Phansak, P.; Taylor, P.W.J.; Mongkolporn, O. Genetic diversity in yardlong bean (Vigna unguiculata ssp. sesquipedalis) and related Vigna species using sequence tagged microsatellite site analysis. Sci. Hortic. 2005, 106, 137–146. [Google Scholar] [CrossRef]
- Tae, J.H.; Lee, M.H.; Park, C.H.; Pae, S.B.; Shim, K.B.O.; Ko, J.M.; Shin, S.O.; Baek, I.N.Y.; Park, K.Y. Identification and characterization of anthocyanins in Yard-Long beans (Vigna unguiculata ssp. sesquipedalis L.) by High-Performance liquid chromatography with diode array detection and electrospray lonization/mass spectrometry (HPLC-DAD-ESI/MS) analysis. J. Agric. Food Chem. 2010, 58, 2571–2576. [Google Scholar]
- Flyman, M.V.; Afolayan, A.J. Effect of plant maturity on the mineral content of the leaves of Momordica balsamina L. and Vigna unguiculata subsp. Sesquipedalis (l.) Verdc. J. Food Qual. 2008, 31, 661–671. [Google Scholar] [CrossRef]
- Choi, Y.M.; Yoon, H.; Shin, M.J.; Lee, S.; Yi, J.; Jeon, Y.A.; Wang, X.; Desta, K.T. Multivariate Analysis of Biochemical Properties Reveals Diversity among Yardlong Beans of Different Origins. Antioxidants 2024, 13, 463. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Seguin, P.; Kim, J.J.; Moon, H.I.; Ro, H.M.; Kim, E.H.; Seo, S.H.; Kang, E.Y.; Ahn, J.K.; Chung, I.M. Isoflavones in Korean soybeans differing in seed coat and cotyledon color. J. Food Compos. Anal. 2010, 23, 160–165. [Google Scholar] [CrossRef]
- Tantasawat, P.; Trongchuen, J.; Prajongjai, T.; Seehalak, W.; Jittayasothorn, Y. Variety identification and comparative analysis of genetic diversity in yardlong bean (Vigna unguiculata spp. sesquipedalis) using morphological characters, SSR and ISSR analysis. Sci. Hortic. 2010, 124, 204–216. [Google Scholar] [CrossRef]
- Pidigam, S.; Munnam, S.B.; Nimmarajula, S.; Gonela, N.; Adimulam, S.S.; Yadla, H.; Bandari, L.; Amarapalli, G. Assessment of genetic diversity in yardlong bean (Vigna unguiculata (L.) Walp subsp. sesquipedalis Verdc.) germplasm from India using RAPD markers. Genet. Resour. Crop Evol. 2019, 66, 1231–1242. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Tilami, S.K.; Kouřimská, L. Assessment of the Nutritional Quality of Plant Lipids Using Atherogenicity and Thrombogenicity Indices. Nutrients 2022, 14, 3795. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Ng, Z.X.; Samsuri, S.N.; Yong, P.H. The antioxidant index and chemometric analysis of tannin, flavonoid, and total phenolic extracted from medicinal plant foods with the solvents of different polarities. J. Food Process. Preserv. 2020, 44, e14680. [Google Scholar] [CrossRef]
- Dwivedi, S.L.; Chapman, M.A.; Abberton, M.T.; Akpojotor, U.L.; Ortiz, R. Exploiting genetic and genomic resources to enhance productivity and abiotic stress adaptation of underutilized pulses. Front. Genet. 2023, 14, 1193780. [Google Scholar] [CrossRef]
- Lazaridi, E.; Bebeli, P.J. Cowpea Constraints and Breeding in Europe. Plants 2023, 12, 1339. [Google Scholar] [CrossRef]
- Salgado, V.d.S.C.N.; Zago, L.; Fonseca, E.N.d.; Calderari, M.R.d.C.M.; Citelli, M.; Miyahira, R.F. Chemical Composition, Fatty Acid Profile, Phenolic Compounds, and Antioxidant Activity of Raw and Germinated Chia (Salvia hispanica L.) Seeds. Plant Foods Hum. Nutr. 2023, 78, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Tungmunnithum, D.; Drouet, S.; Lorenzo, J.M.; Hano, C. Characterization of bioactive phenolics and antioxidant capacity of edible bean extracts of 50 fabaceae populations grown in Thailand. Foods 2021, 10, 3118. [Google Scholar] [CrossRef] [PubMed]
- Sombie, P.A.E.D.; Compaoré, M.; Coulibaly, A.Y.; Ouédraogo, J.T.; De La Salle Tignégré, J.B.; Kiendrébéogo, M. Antioxidant and Phytochemical Studies of 31 Cowpeas (Vigna unguiculata (L. Walp.)) Genotypes from Burkina Faso. Foods 2018, 7, 143. [Google Scholar] [CrossRef]
- Carvalho, M.; Gouvinhas, I.; Castro, I.; Matos, M.; Rosa, E.; Carnide, V.; Barros, A. Drought stress effect on polyphenolic content and antioxidant capacity of cowpea pods and seeds. J. Agron. Crop Sci. 2021, 207, 197–207. [Google Scholar] [CrossRef]
- Razgonova, M.P.; Burlyaeva, M.O.; Zinchenko, Y.N.; Krylova, E.A.; Chunikhina, O.A.; Ivanova, N.M.; Zakharenko, A.M.; Golokhvast, K.S. Identification and Spatial Distribution of Bioactive Compounds in Seeds Vigna unguiculata (L.) Walp. by Laser Microscopy and Tandem Mass Spectrometry. Plants 2022, 11, 2147. [Google Scholar] [CrossRef]
- Kanner, J. Food Polyphenols as Preventive Medicine. Antioxidants 2023, 12, 2103. [Google Scholar] [CrossRef]
- Cho, K.M.; Ha, T.J.; Lee, Y.B.; Seo, W.D.; Kim, J.Y.; Ryu, H.W.; Jeong, S.H.; Kang, Y.M.; Lee, J.H. Soluble phenolics and antioxidant properties of soybean (Glycine max L.) cultivars with varying seed coat colours. J. Funct. Foods 2013, 5, 1065–1076. [Google Scholar] [CrossRef]
- Lee, J.; Hwang, Y.S.; Kim, S.T.; Yoon, W.B.; Han, W.Y.; Kang, I.K.; Choung, M.G. Seed coat color and seed weight contribute differential responses of targeted metabolites in soybean seeds. Food Chem. 2017, 214, 248–258. [Google Scholar] [CrossRef]
- Desta, K.T.; Hur, O.S.; Lee, S.; Yoon, H.; Shin, M.-J.; Yi, J.; Lee, Y.; Ro, N.Y.; Wang, X.; Choi, Y.-M. Origin and seed coat color differently affect the concentrations of metabolites and antioxidant activities in soybean (Glycine max (L.) Merrill) seeds. Food Chem. 2022, 381, 132249. [Google Scholar] [CrossRef]
- Zhao, H.; Tang, J.; Yang, Q. Effects of geographical origin, variety, harvest season, and their interactions on multi-elements in cereal, tuber, and legume crops for authenticity. J. Food Compos. Anal. 2021, 100, 103900. [Google Scholar] [CrossRef]
- Devi, J.; Sanwal, S.K.; Koley, T.K.; Mishra, G.P.; Karmakar, P.; Singh, P.M.; Singh, B. Variations in the total phenolics and antioxidant activities among garden pea (Pisum sativum L.) genotypes differing for maturity duration, seed and flower traits and their association with the yield. Sci. Hortic. 2019, 244, 141–150. [Google Scholar] [CrossRef]
- Lim, Y.J.; Kwon, S.J.; Qu, S.; Kim, D.G.; Eom, S.H. Antioxidant contributors in seed, seed coat, and cotyledon of γ-ray-induced soybean mutant lines with different seed coat colors. Antioxidants 2021, 10, 353. [Google Scholar] [CrossRef] [PubMed]
- Nagao, N.; Sakuma, Y.; Funakoshi, T.; Itani, T. Variation in antioxidant capacity of the seven azuki bean (Vigna angularis) varieties with different seed coat color. Plant Prod. Sci. 2023, 26, 164–173. [Google Scholar] [CrossRef]
- Tzanova, M.T.; Stoilova, T.D.; Todorova, M.H.; Memdueva, N.Y.; Gerdzhikova, M.A.; Grozeva, N.H. Antioxidant Potentials of Different Genotypes of Cowpea (Vigna unguiculata L.Walp.) Cultivated in Bulgaria, Southern Europe. Agronomy 2023, 13, 1684. [Google Scholar] [CrossRef]
- Lee, K.W.; Lee, H.J.; Cho, H.Y.; Kim, Y.J. Role of the conjugated linoleic acid in the prevention of cancer. Crit. Rev. Food Sci. Nutr. 2005, 45, 135–144. [Google Scholar] [CrossRef]
Pod Color | Seed Color | Accessions | Palmitic Acid (%) | Stearic Acid (%) | Oleic Acid (%) | Linoleic Acid (%) | Linolenic Acid (%) | ω6:ω3 | IA | IT |
---|---|---|---|---|---|---|---|---|---|---|
Green | Brown | YLB3 | 28.87 ± 0.01 i | 3.91 ± 0.02 de | 13.65 ± 0.04 bc | 37.27 ± 0.05 bc | 16.30 ± 0.05 e | 2.29 | 0.43 | 0.44 |
YLB5 | 29.24 ± 0.60 g | 3.69 ± 0.00 f | 11.47 ± 0.07 de | 37.95 ± 0.05 b | 17.66 ± 0.06 cd | 2.15 | 0.44 | 0.47 | ||
YLB6 | 29.25 ± 0.60 g | 3.75 ± 0.02 def | 11.89 ± 0.01 de | 37.20 ± 0.10 bc | 17.92 ± 0.04 c | 2.08 | 0.44 | 0.48 | ||
YLB8 | 31.36 ± 0.02 a | 4.22 ± 0.02 c | 12.74 ± 0.07 cd | 36.05 ± 0.07 cde | 15.63 ± 0.04 f | 2.30 | 0.49 | 0.43 | ||
YLB9 | 31.07 ± 0.11 b | 3.56 ± 0.02 ef | 7.26 ± 0.06 g | 41.06 ± 0.08 a | 17.05 ± 0.01 e | 2.39 | 0.48 | 0.42 | ||
YLB10 | 30.30 ± 0.05 d | 3.17 ± 0.03 g | 14.39 ± 0.03 abc | 33.28 ± 0.06 f | 18.87 ± 0.08 b | 1.76 | 0.46 | 0.57 | ||
Black | YLB4 | 29.52 ± 0.70 f | 3.83 ± 0.02 def | 10.50 ± 0.02 ef | 39.83 ± 0.05 a | 16.32 ± 0.04 e | 2.44 | 0.44 | 0.41 | |
YLB14 | 30.93 ± 0.08 c | 4.44 ± 0.01 b | 9.09 ± 0.05 fg | 40.39 ± 0.06 a | 15.15 ± 0.05 fg | 2.67 | 0.48 | 0.38 | ||
Light green | Brown | YLB2 | 28.99 ± 0.05 hi | 4.20 ± 0.02 c | 14.90 ± 0.08 ab | 36.97 ± 0.04 bc | 14.93 ± 0.06 g | 2.48 | 0.43 | 0.40 |
YLB11 | 29.78 ± 0.03 e | 4.65 ± 0.01 a | 13.59 ± 0.05 bc | 36.54 ± 0.03 bcd | 15.44 ± 0.05 f | 2.37 | 0.45 | 0.42 | ||
YLB12 | 30.31 ± 0.03 d | 3.63 ± 0.02 f | 11.89 ± 0.07 de | 34.48 ± 0.05 ef | 19.69 ± 0.10 a | 1.75 | 0.46 | 0.57 | ||
YLB13 | 29.09 ± 0.03 h | 4.26 ± 0.01 bc | 15.87 ± 0.08 a | 35.35 ± 0.07 de | 15.44 ± 0.03 f | 2.29 | 0.44 | 0.44 | ||
Black | YLB1 | 29.87 ± 0.12 e | 3.91 ± 0.01 de | 11.40 ± 0.26 de | 37.53 ± 0.17 bc | 17.28 ± 0.09 d | 2.17 | 0.45 | 0.46 | |
YLB7 | 31.05 ± 0.50 bc | 3.94 ± 0.02 d | 11.37 ± 0.03 de | 36.11 ± 0.09 cd | 17.52 ± 0.07 cd | 2.06 | 0.48 | 0.49 | ||
Total | Min | 28.87 | 3.17 | 7.26 | 33.28 | 14.93 | 1.75 | 0.43 | 0.38 | |
Max | 31.36 | 4.65 | 15.87 | 41.06 | 19.69 | 2.67 | 0.49 | 0.57 | ||
Mean | 29.97 | 3.94 | 12.14 | 37.14 | 16.80 | 2.23 | 0.46 | 0.46 | ||
CV (%) | 2.78 | 9.44 | 18.26 | 5.66 | 8.30 | 10.81 | 4.15 | 11.71 |
Pod Color | Seed Color | Accession | Total Phenol (mg GAE/g) | Total Tannin (mg CE/g) | Total Saponin (mg DE/g) | DPPH (mg AAE/g) | ABTS (mg TE/g) | RP (mg AAE/g) | AI |
---|---|---|---|---|---|---|---|---|---|
Green | Brown | YLB3 | 5.83 ± 0.26 c | 49.65 ± 1.42 de | 39.84 ± 1.90 def | 3.94 ± 0.38 cd | 7.96 ± 0.80 c | 4.38 ± 0.42 cd | 54.61 |
YLB5 | 4.84 ± 0.32 def | 40.97 ± 2. 19 fg | 34.38 ± 1.03 f | 2.82 ± 0.37 efg | 6.05 ± 0.63 d | 2.70 ± 0.44 f | 42.65 | ||
YLB6 | 5.64 ± 0.37 cd | 42.36 ± 1.71 efg | 31.80 ± 1.72 f | 3.51 ± 0.21 de | 7.02 ± 0.66 cd | 3.47 ± 0.27 ef | 47.47 | ||
YLB8 | 4.84 ± 0.09 def | 39.69 ± 1.41 fg | 40.83 ± 1.53 def | 2.26 ± 0.09 gh | 6.37 ± 0.13 d | 3.46 ± 0.17 ef | 44.82 | ||
YLB9 | 5.18 ± 0.24 c–f | 44.66 ± 1. 86 d–g | 54.98 ± 0.64 abc | 3.42 ± 0.16 de | 8.39 ± 0.38 c | 4.45 ± 0.40 cd | 56.02 | ||
YLB10 | 5.23 ± 0.42 c–f | 45.90 ± 3.39 def | 48.67 ± 6.80 bcd | 2.73 ± 0.31 efg | 6.93 ± 0.63 cd | 3.70 ± 0.32 de | 5068 | ||
Black | YLB4 | 7.86 ± 0.19 a | 90.76 ± 2.08 a | 62.52 ± 3.55 a | 9.51 ± 0.45 a | 16.76 ± 0.63 a | 9.48 ± 0.28 a | 100.00 | |
YLB14 | 7.00 ± 0.41 b | 44.90 ± 3.49 d–g | 51.84 ± 9.11 bc | 4.32 ± 0.75 bc | 11.29 ± 1.15 b | 6.92 ± 0.45 b | 67.88 | ||
Light green | Brown | YLB2 | 4.42 ± 0.52 fg | 58.59 ± 7.08 c | 35.73 ± 2.26 f | 2.85 ± 0.44 efg | 7.09 ± 0.62 cd | 4.14 ± 0.42 cde | 48.98 |
YLB11 | 4.64 ± 0.34 efg | 52.11 ± 2.69 cd | 56.58 ± 7.59 ab | 2.48 ± 0.19 fgh | 7.17 ± 0.31 cd | 3.33 ± 0.35 eg | 51.83 | ||
YLB12 | 5.69 ± 0.46 c | 36.94 ± 6.58 g | 46.25 ± 1.02 cde | 1.86 ± 0.32 h | 8.00 ± 1.06 c | 4.44 ± 0.33 cd | 5020 | ||
YLB13 | 3.99 ± 0.54 g | 38.07 ± 2.64 fg | 46.72 ± 3.94 cde | 2.45 ± 0.27 fgh | 7.38 ± 0.84 cd | 4.28 ± 0.44 cd | 47.08 | ||
Black | YLB1 | 4.43 ± 0.20 fg | 58.82 ± 2.03 c | 37.83 ± 0.80 ef | 3.14 ± 0.27 ef | 8.47 ± 0.60 c | 4.75 ± 0.29 c | 52.56 | |
YLB7 | 5.29 ± 0.30 cde | 67.38 ± 4.77 b | 61.80 ± 0.43 a | 4.86 ± 0.19 b | 10.05 ± 0.28 b | 6.55 ± 0.28 b | 70.10 | ||
Total | Min | 3.99 | 36.94 | 31.80 | 1.86 | 6.05 | 2.70 | 42.65 | |
Max | 7.86 | 90.76 | 62.52 | 9.51 | 16.76 | 9.48 | 100.00 | ||
Mean | 5.35 | 50.77 | 46.41 | 3.58 | 8.50 | 4.72 | 56.06 | ||
CV (%) | 18.74 | 27.56 | 20.98 | 51.01 | 31.32 | 36.62 | 25.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y.-M.; Shin, M.-J.; Yoon, H.; Lee, S.; Yi, J.; Wang, X.; Desta, K.T. Nutritional Qualities, Metabolite Contents, and Antioxidant Capacities of Yardlong Beans (Vigna unguiculata subsp. sesquipedalis) of Different Pod and Seed Colors. Antioxidants 2024, 13, 1134. https://doi.org/10.3390/antiox13091134
Choi Y-M, Shin M-J, Yoon H, Lee S, Yi J, Wang X, Desta KT. Nutritional Qualities, Metabolite Contents, and Antioxidant Capacities of Yardlong Beans (Vigna unguiculata subsp. sesquipedalis) of Different Pod and Seed Colors. Antioxidants. 2024; 13(9):1134. https://doi.org/10.3390/antiox13091134
Chicago/Turabian StyleChoi, Yu-Mi, Myoung-Jae Shin, Hyemyeong Yoon, Sukyeung Lee, Jungyoon Yi, Xiaohan Wang, and Kebede Taye Desta. 2024. "Nutritional Qualities, Metabolite Contents, and Antioxidant Capacities of Yardlong Beans (Vigna unguiculata subsp. sesquipedalis) of Different Pod and Seed Colors" Antioxidants 13, no. 9: 1134. https://doi.org/10.3390/antiox13091134
APA StyleChoi, Y. -M., Shin, M. -J., Yoon, H., Lee, S., Yi, J., Wang, X., & Desta, K. T. (2024). Nutritional Qualities, Metabolite Contents, and Antioxidant Capacities of Yardlong Beans (Vigna unguiculata subsp. sesquipedalis) of Different Pod and Seed Colors. Antioxidants, 13(9), 1134. https://doi.org/10.3390/antiox13091134