Berry Fruit Consumption and Metabolic Syndrome
Abstract
:1. Metabolic Syndrome: General Overview
2. The Role of Berries in the Modulation of Metabolic Syndrome
3. Blueberry
4. Bilberry
5. Cranberry
6. Raspberry
7. Chokeberry
8. Strawberry
9. Whortleberry
10. Berry Mix
11. Remarks and Conclusions
Conflicts of Interest
References
- Ma, X.; Zhu, S. Metabolic syndrome in the prevention of cardiovascular diseases and diabetes—Still a matter of debate? Eur. J. Clin. Nutr. 2013, 67, 518–521. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [PubMed]
- Samad, F.; Ruf, W. Inflammation, obesity, and thrombosis. Blood 2013, 122, 3415–3422. [Google Scholar] [CrossRef] [PubMed]
- Makki, K.; Froguel, P.; Wolowczuk, I. Adipose Tissue in Obesity-Related Inflammation and Insulin Resistance: Cells, Cytokines, and Chemokines. ISRN Inflamm. 2013, 2013, 139239. [Google Scholar] [CrossRef] [PubMed]
- Lafontan, M. Adipose tissue and adipocyte dysregulation. Diabetes Metab. 2014, 40, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Marti, C.N.; Gheorghiade, M.; Kalogeropoulos, A.P.; Georgiopoulou, V.V.; Quyyumi, A.A.; Butler, J. Endothelial dysfunction, arterial stiffness, and heart failure. J. Am. Coll. Cardiol. 2012, 60, 1455–1469. [Google Scholar] [CrossRef] [PubMed]
- Frueh, J.; Maimari, N.; Homma, T.; Bovens, S.M.; Pedrigi, R.M.; Towhidi, L.; Krams, R. Systems biology of the functional and dysfunctional endothelium. Cardiovasc. Res. 2013, 99, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Hamdy, O.; Ledbury, S.; Mullooly, C. Lifestyle modification improves endothelial function in obese subjects with the insulin resistance syndrome. Diabetes Care 2003, 26, 2119–2125. [Google Scholar] [CrossRef] [PubMed]
- Cardillo, C.; Campia, U.; Bryant, M.B.; Panza, J.A. Increased activity of endogenous endothelin in patients with type II diabetes mellitus. Circulation 2002, 106, 1783–1787. [Google Scholar] [CrossRef] [PubMed]
- Nile, S.H.; Park, S.W. Edible berries: Bioactive components and their effect on human health. Nutrition 2014, 30, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Szajdek, A.; Borowska, E.J. Bioactive compounds and health-promoting properties of berry fruits: A review. Plant Foods Hum. Nutr. 2008, 63, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Manganaris, G.A.; Goulas, V.; Vicente, A.R.; Terry, L.A. Berry antioxidants: Small fruits providing large benefits. J. Sci. Food Agric. 2014, 94, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Zanotti, I.; Dall’Asta, M.; Mena, P.; Mele, L.; Bruni, R.; Ray, S.; Del Rio, D. Atheroprotective effects of (poly)phenols: A focus on cell cholesterol metabolism. Food Funct. 2015, 6, 13–31. [Google Scholar] [CrossRef] [PubMed]
- Del Bo’, C.; Martini, D.; Porrini, M.; Klimis-Zacas, D.; Riso, P. Berries and oxidative stress markers: An overview of human intervention studies. Food Funct. 2015, 6, 2890–2917. [Google Scholar] [CrossRef] [PubMed]
- Blanch, N.; Clifton, P.M.; Keogh, J.B. A systematic review of vascular and endothelial function: Effects of fruit, vegetable and potassium intake. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 253–266. [Google Scholar] [CrossRef] [PubMed]
- Vendrame, S.; Klimis-Zacas, D. Anti-inflammatory effect of anthocyanins via modulation of nuclear factor-κB and mitogen-activated protein kinase signaling cascades. Nutr. Rev. 2015, 73, 348–358. [Google Scholar] [CrossRef] [PubMed]
- Hanhineva, K.; Lankinen, M.A.; Pedret, A.; Schwab, U.; Kolehmainen, M.; Paananen, J.; de Mello, V.; Sola, R.; Lehtonen, M.; Poutanen, K.; et al. Nontargeted metabolite profiling discriminates diet-specific biomarkers for consumption of whole grains, fatty fish, and bilberries in a randomized controlled trial. J. Nutr. 2015, 145, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Lankinen, M.; Schwab, U.; Kolehmainen, M.; Paananen, J.; Poutanen, K.; Mykkänen, H.; Seppänen-Laakso, T.; Gylling, H.; Uusitupa, M.; Orešič, M. Whole grain products, fish and bilberries alter glucose and lipid metabolism in a randomized, controlled trial: The Sysdimet study. PLoS ONE 2011, 6, e22646. [Google Scholar] [CrossRef] [PubMed]
- De Mello, V.D.; Schwab, U.; Kolehmainen, M.; Koenig, W.; Siloaho, M.; Poutanen, K.; Mykkänen, H.; Uusitupa, M. A diet high in fatty fish, bilberries and wholegrain products improves markers of endothelial function and inflammation in individuals with impaired glucose metabolism in a randomised controlled trial: The Sysdimet study. Diabetologia 2011, 54, 2755–2767. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Yazaki, Y.; Njike, V.Y.; Ma, Y.; Katz, D.L. Effect of fruit and vegetable concentrates on endothelial function in metabolic syndrome: A randomized controlled trial. Nutr. J. 2011, 10, 72. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.A.; Figueroa, A.; Navaei, N.; Wong, A.; Kalfon, R.; Ormsbee, L.T.; Feresin, R.G.; Elam, M.L.; Hooshmand, S.; Payton, M.E.; et al. Daily blueberry consumption improves blood pressure and arterial stiffness in postmenopausal women with pre- and stage 1-hypertension: A randomized, double-blind, placebo-controlled clinical trial. J. Acad. Nutr. Diet. 2015, 115, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Stull, A.J.; Cash, K.C.; Champagne, C.M.; Gupta, A.K.; Boston, R.; Beyl, R.A.; Johnson, W.D.; Cefalu, W.T. Blueberries improve endothelial function, but not blood pressure, in adults with metabolic syndrome: A randomized, double-blind, placebo-controlled clinical trial. Nutrients 2015, 7, 4107–4123. [Google Scholar] [CrossRef] [PubMed]
- Riso, P.; Klimis-Zacas, D.; del Bo’, C.; Martini, D.; Campolo, J.; Vendrame, S.; Møller, P.; Loft, S.; de Maria, R.; Porrini, M. Effect of a wild blueberry (Vaccinium angustifolium) drink intervention on markers of oxidative stress, inflammation and endothelial function in humans with cardiovascular risk factors. Eur. J. Nutr. 2013, 52, 949–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stull, A.J.; Cash, K.C.; Johnson, W.D.; Champagne, C.M.; Cefalu, W.T. Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women. J. Nutr. 2010, 140, 1764–1768. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Du, M.; Leyva, M.J.; Sanchez, K.; Betts, N.M.; Wu, M.; Aston, C.E.; Lyons, T.J. Blueberries decrease cardiovascular risk factors in obese men and women with metabolic syndrome. J. Nutr. 2010, 140, 1582–1587. [Google Scholar] [CrossRef] [PubMed]
- Kolehmainen, M.; Mykkänen, O.; Kirjavainen, P.V.; Leppänen, T.; Moilanen, E.; Adriaens, M.; Laaksonen, D.E.; Hallikainen, M.; Puupponen-Pimiä, R.; Pulkkinen, L.; et al. Bilberries reduce low-grade inflammation in individuals with features of metabolic syndrome. Mol. Nutr. Food Res. 2012, 56, 1501–1510. [Google Scholar] [CrossRef] [PubMed]
- Lehtonen, H.M.; Suomela, J.P.; Tahvonen, R.; Yang, B.; Venojärvi, M.; Viikari, J.; Kallio, H. Different berries and berry fractions have various but slightly positive effects on the associated variables of metabolic diseases on overweight and obese women. Eur. J. Clin. Nutr. 2011, 65, 394–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlsen, A.; Paur, I.; Bøhn, S.K.; Sakhi, A.K.; Borge, G.I.; Serafini, M.; Erlund, I.; Laake, P.; Tonstad, S.; Blomhoff, R. Bilberry juice modulates plasma concentration of NF-kB related inflammatory markers in subjects at increased risk of CVD. Eur. J. Nutr. 2010, 49, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Ruel, G.; Lapointe, A.; Pomerleau, S.; Couture, P.; Lemieux, S.; Lamarche, B.; Couillard, C. Evidence that cranberry juice may improve augmentation index in overweight men. Nutr. Res. 2013, 33, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Simão, T.N.; Lozovoy, M.A.; Simão, A.N.; Oliveira, S.R.; Venturini, D.; Morimoto, H.K.; Miglioranza, L.H.; Dichi, I. Reduced-energy cranberry juice increases folic acid and adiponectin and reduces homocysteine and oxidative stress in patients with the metabolic syndrome. Br. J. Nutr. 2013, 110, 1885–1894. [Google Scholar] [CrossRef] [PubMed]
- Shidfar, F.; Heydari, I.; Hajimiresmaiel, S.J.; Hosseini, S.; Shidfar, S.; Amiri, F. The effects of cranberry juice on serum glucose, apoB, apoA-I, Lp(a), and Paraoxonase-1 activity in type 2 diabetic male patients. J. Res. Med. Sci. 2012, 17, 355–360. [Google Scholar] [PubMed]
- Dohadwala, M.M.; Holbrook, M.; Hamburg, N.M.; Shenouda, S.M.; Chung, W.B.; Titas, M.; Kluge, M.A.; Wang, N.; Palmisano, J.; Milbury, P.E.; et al. Effects of cranberry juice consumption on vascular function in patients with coronary artery disease. Am. J. Clin. Nutr. 2011, 93, 934–940. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Betts, N.M.; Ortiz, J.; Simmons, B.; Wu, M.; Lyons, T.J. Low-energy cranberry juice decreases lipid oxidation and increases plasma antioxidant capacity in women with metabolic syndrome. Nutr. Res. 2011, 31, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.; Luebke, J.L.; Morcomb, E.F.; Carrell, E.J.; Leveranz, M.C.; Kobs, L.; Schmidt, T.P.; Limburg, P.J.; Vorsa, N.; Singh, A.P. Glycemic responses to sweetened dried and raw cranberries in humans with type 2 diabetes. J. Food Sci. 2010, 75, H218–H223. [Google Scholar] [CrossRef] [PubMed]
- Ruel, G.; Pomerleau, S.; Couture, P.; Lemieux, S.; Lamarche, B.; Couillard, C. Low-calorie cranberry juice supplementation reduces plasma oxidized LDL and cell adhesion molecule concentrations in men. Br. J. Nutr. 2008, 99, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.T.; Chan, Y.C.; Lin, C.W.; Lee, W.J.; Sheu, W.H. Effect of cranberry extracts on lipid profiles in subjects with Type 2 diabetes. Diabet. Med. 2008, 25, 1473–1477. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.; Meyers, S.L.; Singh, A.P.; Limburg, P.J.; Vorsa, N. Favorable glycemic response of type 2 diabetics to low-calorie cranberry juice. J. Food Sci. 2008, 73, H241–H245. [Google Scholar] [CrossRef] [PubMed]
- Ruel, G.; Pomerleau, S.; Couture, P.; Lemieux, S.; Lamarche, B.; Couillard, C. Favourable impact of low-calorie cranberry juice consumption on plasma HDL-cholesterol concentrations in men. Br. J. Nutr. 2006, 96, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Ruel, G.; Pomerleau, S.; Couture, P.; Lamarche, B.; Couillard, C. Changes in plasma antioxidant capacity and oxidized low-density lipoprotein levels in men after short-term cranberry juice consumption. Metabolism 2005, 54, 856–861. [Google Scholar] [CrossRef] [PubMed]
- Chambers, B.K.; Camire, M.E. Can cranberry supplementation benefit adults with Type 2 diabetes? Diabetes Care 2003, 26, 2695–2696. [Google Scholar] [CrossRef] [PubMed]
- Sardo, C.L.; Kitzmiller, J.P.; Apseloff, G.; Harris, R.B.; Roe, D.J.; Stoner, G.D.; Jacobs, E.T. An open-label randomized crossover trial of lyophilized black raspberries on postprandial inflammation in older overweight males: A pilot study. Am. J. Ther. 2016, 23, e86–e91. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.S.; Hong, S.J.; Lee, T.B.; Kwon, J.W.; Jeong, J.T.; Joo, H.J.; Park, J.H.; Ahn, C.M.; Yu, C.W.; Lim, D.S. Effects of black raspberry on lipid profiles and vascular endothelial function in patients with metabolic syndrome. Phytother. Res. 2014, 28, 1492–1498. [Google Scholar] [CrossRef] [PubMed]
- Kardum, N.; Milovanović, B.; Šavikin, K.; Zdunić, G.; Mutavdžin, S.; Gligorijević, T.; Spasić, S. Beneficial effects of polyphenol-rich chokeberry juice consumption on blood pressure level and lipid status in hypertensive subjects. J. Med. Food 2015, 18, 1231–1238. [Google Scholar] [CrossRef] [PubMed]
- Kardum, N.; Petrović-Oggiano, G.; Takic, M.; Glibetić, N.; Zec, M.; Debeljak-Martacic, J.; Konić-Ristić, A. Effects of glucomannan-enriched, aronia juice-based supplement on cellular antioxidant enzymes and membrane lipid status in subjects with abdominal obesity. Sci. World J. 2014, 2014, 869250. [Google Scholar] [CrossRef] [PubMed]
- Sikora, J.; Broncel, M.; Markowicz, M.; Chałubiński, M.; Wojdan, K.; Mikiciuk-Olasik, E. Short-term supplementation with Aronia melanocarpa extract improves platelet aggregation, clotting, and fibrinolysis in patients with metabolic syndrome. Eur. J. Nutr. 2012, 51, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Skoczyñska, A.; Jêdrychowska, I.; Porêba, R.; Affelska-Jercha, A.; Turczyn, B.; Wojakowska, A.; Andrzejak, R. Influence of chokeberry juice on arterial blood pressure and lipid parameters in men with mild hypercholesterolemia. Pharmacol. Rep. 2007, 59, 177–182. [Google Scholar]
- Park, E.; Edirisinghe, I.; Wei, H.; Vijayakumar, L.P.; Banaszewski, K.; Cappozzo, J.C.; Burton-Freeman, B. A dose-response evaluation of freeze-dried strawberries independent of fiber content on metabolic indices in abdominally obese individuals with insulin resistance in a randomized, single-blinded, diet-controlled crossover trial. Mol. Nutr. Food Res. 2016, 60, 1099–1109. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Betts, N.M.; Nguyen, A.; Newman, E.D.; Fu, D.; Lyons, T.J. Freeze-dried strawberries lower serum cholesterol and lipid peroxidation in adults with abdominal adiposity and elevated serum lipids. J. Nutr. 2014, 144, 830–837. [Google Scholar] [CrossRef] [PubMed]
- Amani, R.; Moazen, S.; Shahbazian, H.; Ahmadi, K.; Jalali, M.T. Flavonoid-rich beverage effects on lipid profile and blood pressure in diabetic patients. World J. Diabetes 2014, 5, 962–968. [Google Scholar] [CrossRef] [PubMed]
- Moazen, S.; Amani, R.; Homayouni Rad, A.; Shahbazian, H.; Ahmadi, K.; Taha Jalali, M. Effects of freeze-dried strawberry supplementation on metabolic biomarkers of atherosclerosis in subjects with type 2 diabetes: A randomized double-blind controlled trial. Ann. Nutr. Metab. 2013, 63, 256–264. [Google Scholar] [PubMed]
- Zunino, S.J.; Parelman, M.A.; Freytag, T.L.; Stephensen, C.B.; Kelley, D.S.; Mackey, B.E.; Woodhouse, L.R.; Bonnel, E.L. Effects of dietary strawberry powder on blood lipids and inflammatory markers in obese human subjects. Br. J. Nutr. 2012, 108, 900–909. [Google Scholar] [CrossRef] [PubMed]
- Edirisinghe, I.; Banaszewski, K.; Cappozzo, J.; Sandhya, K.; Ellis, C.L.; Tadapaneni, R.; Kappagoda, C.T.; Burton-Freeman, B.M. Strawberry anthocyanin and its association with postprandial inflammation and insulin. Br. J. Nutr. 2011, 106, 913–922. [Google Scholar] [CrossRef] [PubMed]
- Ellis, C.L.; Edirisinghe, I.; Kappagoda, T.; Burton-Freeman, B. Attenuation of meal-induced inflammatory and thrombotic responses in overweight men and women after 6-week daily strawberry (Fragaria) intake. A randomized placebo-controlled trial. J. Atheroscler. Thromb. 2011, 18, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Burton-Freeman, B.; Linares, A.; Hyson, D.; Kappagoda, T. Strawberry modulates LDL oxidation and postprandial lipemia in response to high-fat meal in overweight hyperlipidemic men and women. J. Am. Coll. Nutr. 2010, 29, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Fu, D.X.; Wilkinson, M.; Simmons, B.; Wu, M.; Betts, N.M.; Du, M.; Lyons, T.J. Strawberries decrease atherosclerotic markers in subjects with metabolic syndrome. Nutr. Res. 2010, 30, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Wilkinson, M.; Penugonda, K.; Simmons, B.; Betts, N.M.; Lyons, T.J. Freeze-dried strawberry powder improves lipid profile and lipid peroxidation in women with metabolic syndrome: Baseline and post intervention effects. Nutr. J. 2009, 8, 43. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.; Nguyen, T.H.; Kendall, C.W.; Faulkner, D.A.; Bashyam, B.; Kim, I.J.; Ireland, C.; Patel, D.; Vidgen, E.; Josse, A.R.; et al. The effect of strawberries in a cholesterol-lowering dietary portfolio. Metabolism 2008, 57, 1636–1644. [Google Scholar] [CrossRef] [PubMed]
- Soltani, R.; Hakimi, M.; Asgary, S.; Ghanadian, S.M.; Keshvari, M.; Sarrafzadegan, N. Evaluation of the effects of Vaccinium arctostaphylos L. fruit extract on serum lipids and hs-CRP levels and oxidative stress in adult patients with hyperlipidemia: A randomized, double-blind, placebo-controlled clinical trial. Evid. Based Complement. Altern. Med. 2014, 2014, 217451. [Google Scholar] [CrossRef] [PubMed]
- Tjelle, T.E.; Holtung, L.; Bøhn, S.K.; Aaby, K.; Thoresen, M.; Wiik, S.Å.; Paur, I.; Karlsen, A.S.; Retterstøl, K.; Iversen, P.O.; et al. Polyphenol-rich juices reduce blood pressure measures in a randomized controlled trial in high normal and hypertensive volunteers. Br. J. Nutr. 2015, 114, 1054–1063. [Google Scholar] [CrossRef] [PubMed]
- Puupponen-Pimiä, R.; Seppänen-Laakso, T.; Kankainen, M.; Maukonen, J.; Törrönen, R.; Kolehmainen, M.; Leppänen, T.; Moilanen, E.; Nohynek, L.; Aura, A.M.; et al. Effects of ellagitannin-rich berries on blood lipids, gut microbiota, and urolithin production in human subjects with symptoms of metabolic syndrome. Mol. Nutr. Food Res. 2013, 57, 2258–2263. [Google Scholar] [CrossRef] [PubMed]
- Lehtonen, H.M.; Suomela, J.P.; Tahvonen, R.; Vaarno, J.; Venojärvi, M.; Viikari, J.; Kallio, H. Berry meals and risk factors associated with metabolic syndrome. Eur. J. Clin. Nutr. 2010, 64, 614–621. [Google Scholar] [CrossRef] [PubMed]
- Zaho, Y. Berry Fruit: Value-Added Products for Health Promotion; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Beattie, J.; Crozier, A.; Duthie, G.G. Potential health benefits of berries. Curr. Nutr. Food Sci. 2005, 1, 71–86. [Google Scholar] [CrossRef]
- Beltrán-Sánchez, H.; Harhay, M.O.; Harhay, M.M.; McElligott, S. Prevalence and trends of Metabolic Syndrome in the adult US population, 1999–2010. J. Am. Coll. Cardiol. 2013, 62, 697–703. [Google Scholar] [CrossRef] [PubMed]
Berry | Intervention | Participants | Dose | Main findings | References |
---|---|---|---|---|---|
Blueberry | 8-week, randomized, double-blind, placebo-controlled, parallel intervention | Forty-eight postmenopausal women (Blueberry group: BMI 30.1 ± 5.94 kg/m2; age 59.7 ± 4.58 year; Control group: BMI 32.7 ± 6.79 kg/m2; age 57.3 ± 4.76 year) with pre- and stage 1-hypertension | Blueberry group: 480 mL blueberry drink (22 g freeze-dried blueberry powder corresponding to 1 fresh cup blueberries) Control group: 480 mL placebo drink | ↓systolic, diastolic blood pressure and brachial-ankle pulse wave velocity ↑NO plasma levels ↑superoxide dismutase activity after blueberry and control group =weight, waist circumference, CRP | Johnson et al. [21] |
6-week randomized, double-blind, placebo-controlled, parallel intervention | Forty-four subjects with metabolic syndrome (Blueberry group: BMI 35.2 ± 0.8 kg/m2; age 55 ± 2 year; Control group: BMI 36.0 ± 1.1 kg/m2; age 59 ± 2 year) | Blueberry group: Smoothie prepared with 45 g blueberry powder Control group: identical smoothie without blueberry bioactives | ↑endothelial function =blood pressure and insulin sensitivity | Stull et al. [22] | |
6-week, randomized, placebo-controlled, crossover intervention | Eighteen male (BMI 24.8 ± 2.6 kg/m2; age 47.8 ± 9.7 year) with CVD risk factors | Wild blueberry group: 250 mL blueberry drink (25 g WB powder, equivalent to 148 g fresh WB) Control group: 250 mL water with sensory characteristics similar to the WB drink | ↓Endogenous and oxidatively-induced DNA damage in PBMCs =lipid profile, weight, markers of inflammation and endothelial function, dietary markers, DNA repair activity | Riso et al. [23] | |
6-week, randomized, double-blinded, placebo-controlled, parallel intervention | Twenty-seven (BMI between 32 and 45 kg/m2; age > 20 year) obese, insulin-resistant subjects | Blueberry group: smoothie prepared with 45 g of blueberry powder (22.5 g twice a day) (equivalent to 2 cups of fresh blueberries) Control group: identical smoothie without blueberry bioactives | ↑insulin sensitivity =markers of inflammation, lipid profile and blood pressure | Stull et al. [24] | |
8-week, randomized, single-blinded, controlled parallel intervention | Forty-eight subjects with metabolic syndrome (4 males and 44 females; BMI 37.8 ± 2.3 kg/m2; age 50.0 ± 3.0 year) | Blueberry group: 480 mL blueberry drink (50 g freeze-dried blueberries corresponding to 350 g fresh berries) Control group: 480 mL water | ↓systolic and diastolic blood pressure ↓plasma ox-LDL, MDA and HNE levels =lipid profile, weight, waist circumference, inflammation markers | Basu et al. [25] | |
Bilberry | 8-week, randomized, controlled, parallel intervention | Twenty-seven subjects (Bilberry group: BMI 31.4 ± 4.7 kg/m2; age 53 ± 6 year; Control group: 32.9 ± 3.4 year; age 50 ± 7 year) with metabolic syndrome | Bilberry group: 200 g of bilberry purée and 40 g of dried bilberries (eq. 200 g of fresh bilberries) Control group: habitual diet. The use of berries was allowed at maximum of 1 dL/day (corresponding to 80 g/day). | ↓serum levels of hs-CRP, IL-6, IL-12 and inflammation score. ↓expression of MMD and CCR2 transcripts associated with monocyte and macrophage function associated genes =body weight, glucose, and lipid profile | Kolehmainen et al. [26] |
5-week, randomized, cross-over intervention | Eighty overweight and obese women (BMI 29.6 ± 2.1 kg/m2; age 44.2 ± 6.2 year; 21 subjects meeting metabolic syndrome criteria) | Bilberry group: 100 g fresh bilberries Sea buckthorn group: Sea buckthorn (SB), SB fractions or SB oils (equivalent to 100 g of berries) Control group: none | ↓body weight, waist circumference, VCAM-1, TNF-α, adiponectin ↑insulin, GHbA1C =fat percent, blood pressure, fasting plasma cholesterol, triacylglycerol, ALAT and IL-6 serum levels | Lehtonen et al. [27] | |
4-week, randomized, controlled, parallel intervention | Sixty-two subjects (Bilberry group: BMI range 19.9–31.7 kg/m2; age range 34–68 year; Control group: BMI range 17.8–31.5 kg/m2; age range 30–68 year) with CVD risk factors | Bilberry group: 330 mL bilberry juice/day (diluted to 1 L using tap water) Control group: 1 L of water | ↓serum levels of CRP, IL-6, IL-15, TNF-α, MIG =markers of antioxidants status and oxidative stress | Karlsen et al. [28] | |
Cranberry | 4-week, placebo-controlled double-blind, crossover intervention | Thirty-five abdominally obese men (age 45 ± 10 year, BMI 28.3 ± 2.4 kg/m2 and a waist circumference ≥90 cm) with metabolic (n = 13) and without metabolic syndrome (n = 22) | Cranberry group: 500 mL/day of either low-calorie juice (27% juice) Control group: 500 mL/day placebo juice | ↓arterial stiffness and global endothelial function =blood pressure, markers of endothelial function | Ruel et al. [29] |
60 days, parallel intervention | Fifty-six subjects (cranberry group: BMI 30.9 kg/m2 median, age 51.0 year median; control group: BMI 34.0 kg/m2 median, age 48.5 year median) with metabolic syndrome | Cranberry group: 700 mL/day reduced-energy cranberry juice Control group: usual diet | ↓serum homocysteine levels, lipoperoxidation, protein oxidation ↑serum folic acid levels =metabolic and inflammatory biomarkers C-reactive protein, TNF-α, IL-1 and IL-6 | Simão et al. [30] | |
12-week, randomized, double-blind, parallel intervention | Fifty-eight (BMI 28.8 ± 3.6 kg/m2, age 54.8 ± 9.1 year) Type II diabetic subjects | Cranberry group: 240 mL/day cranberry juice Control group: 240 mL/day placebo juice | ↓glucose, ApoB ↑ApoA-1, PON-1 activity =lipoprotein(a) | Shidfar et al. [31] | |
Post-prandial 4-week, randomized, placebo-controlled, cross-over intervention | Fifteen (BMI not reported, age 62 ± 8 year, 13% female) subjects with coronary artery diseases Forty-seven subjects with coronary artery diseases (cranberry group: BMI 30 ± 5 kg/m2, age 61 ± 11 year; Control group: BMI 29 ± 4 kg/m2, age 63 ± 9 year) | Cranberry group: 480 mL cranberry juice Control group: None Cranberry group: 480 mL/day cranberry juice Control group: 480 mL/day placebo juice | ↑flow mediated dilation and lnPAT score as markers of endothelial function =blood pressure, heart rate, brachial diameter, hyperemic flow ↓carotid-femoral pulse wave velocity (a measure of central aortic stiffness). and HDL-cholesterol after cranberry juice =lipid profile, glucose, insulin, HOMA-IR, C-reactive protein, ICAM-1 serum levels, brachial artery flow-mediated dilation, digital pulse amplitude tonometry, blood pressure, and carotid-radial pulse wave velocity | Dohadwala et al. [32] | |
8-week, randomized double-blind, placebo-controlled, parallel intervention | Thirty-one (BMI 40.0 ± 7.7 kg/m2, age 52.0 ± 8.0 year) female with metabolic syndrome | Cranberry group: 480 mL/day cranberry juice Control group: 480 mL/day placebo drink | ↓ox-LDL, MDA & HNE plasma/serum levels ↑Total plasma antioxidant capacity =blood pressure, glucose, plasma lipoprotein-lipid, markers of inflammation | Basu et al. [33] | |
Post-prandial cross-over intervention | Thirteen (6 female and 7 male) noninsulin-dependent subjects (age 61.6 ± 2.3 year, BMI 33.25 ± 1.22 kg/m2) | Cranberry group: Group 1: raw cranberry (55 g, 21 cal, 1 g fiber) Group 2: sweetened dried cranberry (40 g, 138 cal; 2.1 g fiber) Group 3: sweetened dried cranberries-less sugars group (40 g; 113 cal; 1.8 g fiber + 10 g polydextrose) Control group: white bread (57 g, 160 cal; 1 g fiber) | ↓glycemic and insulinemic response following SDC-LS | Wilson et al. [34] | |
12-week intervention (three 4-week intervention with 125, 250 and 500 mL/day cranberry juice) | Thirty (BMI 27.8 ± 3.2 kg/m2, age 51 ± 10 year; 9 subjects with metabolic syndrome and 21 without metabolic syndrome) abdominally obese men | Cranberry group: 125, 250 and 500 mL/day cranberry juice Control group: none | ↓ox-LDL following 250 and 500 mL cranberry juice ↓systolic blood pressure, s-VCAM, ICAM plasma levels following 500 mL cranberry juice ↓ox-LDL, ICAM plasma levels in subjects with metabolic syndrome following 12-week intervention ↑HDL cholesterol following 250 and 500 mL cranberry juice =Total, LDL Apo B cholesterol, triglycerides, diastolic blood pressure, heart beat, E-selectin plasma levels | Ruel et al. [35] | |
12-week, randomized, placebo-controlled, double-blind, parallel intervention | Thirty (16 males and 14 females) Type II diabetic subjects (Cranberry group: 9/6 male/female, BMI 26.2 ± 0.7 kg/m2, age 65 ± 2 year; Control group: 7/8 male/female, BMI 25.9 ± 1.0 kg/m2, age 66 ± 2 year) | Cranberry group: 500 mg/capsule cranberry powder extract, three times a day Control group: 500 mg/capsule placebo | ↓Total cholesterol, Total: HDL cholesterol ratio, LDL cholesterol =waist circumference, BMI, fasting serum glucose, insulin, HbA1c, HOMA insulin resistance, C-reactive protein, blood pressure, ox-LDL, triglyceride, HDL-cholesterol levels, uric acid | Lee et al. [36] | |
Post-prandial intervention | Twelve (6 male and 6 female) type II diabetic subjects (age 65.3 ± 2.3 year, BMI 34.7 ± 1.6 kg/m2 | Cranberry group: Group 1: normal calorie cranberry juice (NCCBJ; 27% cranberry juice, v/v; 130 Cal/240 mL) Group 2: unsweetened low-calorie cranberry juice (LCCBJ; 27%, v/v CBJ; 19 Cal/240 mL) Control group: Group 1: normal calorie control (NCC; 140 Cal/240 mL) made with dextrose Group 2: low-calorie control (LCC; 19 Cal/240 mL) | ↓plasma insulin and glycemic response following LCCBJ | Wilson et al. [37] | |
12-week intervention (three 4-week intervention with 125, 250, and 500 mL/day cranberry juice) | Thirty (BMI 27.8 ± 3.3 kg/m2, age 51 ± 10 year) abdominally obese men | Cranberry group: 125, 250 and 500 mL/day cranberry juice Control group: none | ↓body weight, BMI, waist circumference, waist-to-hip ratio, total:HDL cholesterol apo B, after intervention with 250 and 500 mL cranberry juice ↑plasma nitrite/nitrate following intervention with 500 mL ↑plasma antioxidant capacity following 250 and 500 mL cranberry juice ↑HDL cholesterol following 250 mL cranberry juice =Total, LDL and VLDL cholesterol | Ruel et al. [38] | |
2-week intervention | Twenty-one (BMI 26.9 ± 3.8 kg/m2, age 38 ± 8 year) abdominally obese-dyslipidemic men | Cranberry group: 7 mL/kg BW (range 460–760 mL/day cranberry juice) Control group: none | ↓BMI, plasma ox-LDL levels ↑Total plasma antioxidant capacity =waist and hip circumference, waist/hip ratio, blood pressure, plasma lipoprotein-lipid, inflammation markers | Ruel et al. [39] | |
12-week randomized, controlled, parallel intervention | Twenty-seven Type II diabetic subjects (cranberry group: 14 subjects, 6 women and 8 men, BMI not reported, age 57.9 ± 10.6 year; placebo group: 13 subjects 6 women and 7 men, BMI not reported, age 52.6 ± 13.7 year) | Cranberry group: 6 capsules (equivalent to 240 mL cranberry juice) containing cranberry juice concentrate powder Control group: 6 capsules containing placebo powder | ↑insulin levels after placebo treatment =fasting serum glucose, HbA1c, fructosamine, triglyceride, HDL, LDL-cholesterol levels | Chambers & Camire [40] | |
Raspberry | 14-day (4-day black-raspberry intake, post-prandial, randomized, cross-over intervention, wash-out and 4-day black-raspberry intake) | Ten older overweight and obese (BMI, 31.4 ± 2.7 kg/m2, age 64.7 ± 6.9 year) males | Berry group: 45 g/day of lyophilized black raspberry powder for 4 days + high fat meal post prandial Control group: No black raspberry + high fat meal post prandial | ↓serum IL-6 levels =TNF-α, CRP | Sardo et al. [41] |
12-week, randomized, controlled, parallel intervention | Seventy-seven subjects (berry group: BMI, 26.3 ± 4.3 kg/m2, age 58.0 ± 9.2 year; control group: BMI, 25.1 ± 4.0 kg/m2, age 60.1 ± 9.5 year) with metabolic syndrome | Berry group: 750 mg/day of black raspberry powder as capsules Control group: 750 mg/day of cellulose, isomalto, and corn powder as capsules | ↓total cholesterol level total cholesterol/HDL ratio IL-6, TNF-α ↑flow mediated dilation, adiponectin =serum lipid profile, CRP, ICAM and VCAM | Jeong et al. [42] | |
Chokeberry | 4-week intervention | Twenty-three subjects (BMI, not reported, age 47.5 ± 10.4 year) with hypertension | Berry group: 200 mL/day of polyphenol-rich organic chokeberry juice Control group: none | ↓systolic and diastolic blood pressure, heart rate high-frequency power, heart rate very low frequency, standard deviation of normal RR intervals Holter ECG =lipid profile, glucose, CRP, urea, creatinine, Ac. uricum, AST, ALT, markers related to short term heart rate and Holter ECG | Kardum et al. [43] |
4-week intervention | Twenty women (BMI, 36.1 ± 4.4 kg/m2; age 53.0 ± 5.4 year) with abdominal obesity | Berry group: 100 mL/day glucomannan-enriched (2 g), chokeberry juice-based Control group: none | ↓BMI, waist circumference, systolic blood pressure, serum HDL cholesterol, erythrocytes monounsaturated fatty acids, n6/n3 ratio ↑erythrocytes n3 polyunsaturated fatty acids =erythrocytes saturated and n6 polyunsaturated fatty acids, unsaturation index, diastolic blood pressure, lipid profile, glucose and enzymatic activity (SOD, CAT, GPx) | Kardum et al. [44] | |
8-week intervention | Fifty-two subjects (42–65 years old; berry group: 38 subjects, BMI 31.1 ± 3.3 kg/m2; control group: 14 healthy subjects; BMI 24.4 ± 1.5 kg/m2) with metabolic syndrome | Berry group: 300 mg/day chokeberry extract Control group: No intervention | ↓serum total and LDL cholesterol, triglycerides, coagulation and platelet aggregation parameters =BMI, waist circumference, serum HDL cholesterol | Sikora et al. [45] | |
18-week (6-week intervention + 6-week wash-out + 6 week intervention) intervention | Fifty-eight men (BMI 27.7 ± 2.9 kg/m2; age 54.1 ± 5.6 year) with mild hypercholesterolemia | Berry group: 150 mL/day chokeberry juice Control group: none | ↓serum total and LDL cholesterol, triglycerides, glucose, homocysteine and fibrinogen, blood pressure ↑serum HDL2 cholesterol =serum HDL and HDL3 cholesterol, hs-CRP, lipid peroxides, uric acid | Skoczyñska et al. [46] | |
Strawberry | Post-prandial, randomized, controlled, 4-arm, crossover intervention | Twenty-one (BMI 40.2 ± 7.2 kg/m2; age 39.8 ± 13.8 year) subjects with abdominal obesity and insulin-resistance | Berry group: Group 1: 10 g freeze-dried whole strawberry powder FDS Group 2: 20 g FDS Group 3: 40 g FDS Control group: 0 g FDS | ↓plasma insulin, insulin: incremental increase, glucose: incremental increase, insulin: glucose ratio after 40 g FDS consumption =plasma glucose, TG, ox-LDL, IL-6 | Park et al. [47] |
12-week, randomized, controlled, parallel intervention | Sixty volunteers with CVD risk factors LD-FDS: 15 subjects (14 females/1 male; BMI, 34.5 ± 4.4 kg/m2; age, 50 ± 10 year) HD-FDS: 15 subjects (13 females/2 males; BMI, 38.0 ± 7.1 kg/m2; age, 49 ± 11 year) LD-C: 15 subjects (14 females/1 male; BMI, 37.0 ± 4.4 kg/m2; age, 48 ± 10 year) HD-C: 15 subjects (14 females/2 male; BMI, 35.0 ± 5.2 kg/m2; age 48 ± 10 year) | Berry group: Group 1: low dose freeze-dried strawberries (LD-FDS): 25 g of freeze-dried powder reconstituted in 2 cups (474 mL/day) of water daily (corresponding to 250 g of fresh strawberries); Group 2: high dose freeze-dried strawberries (HD-FDS): 50 g of freeze-dried powder reconstitute in 2 cups (474 mL/day) of water (corresponding to 500 g of fresh strawberries) Control group: Group 1: Low-dose calorie- and fiber-matched control (LD-C) Group 2: high-dose calorie- and fiber-matched control (HD-C) | ↓serum total and LDL-cholesterol, derived small LDL particles, MDA and HNE levels following HD-FDS intervention. ↓MDA and HNE following LD-FDS intervention =serum glucose, HbA1c, insulin, HDL, VLDL-cholesterol, HOMA-IR, TG, VACM-1, ICAM-1, hs-CRP | Basu et al. [48] | |
6-week, randomized, double-blind, controlled, parallel intervention | Thirty-six diabetic subjects (berry group: n = 19; BMI, 27.36 ± 4.23 kg/m2; age 51.9 ± 8.2 year; control group: n = 17; BMI, 28.58 ± 4.7 kg/m2; age 51.1 ± 13.8 year) | Berry group: 2 cups freeze-dried strawberry (50 g/day) Control group: 2 cups iso-caloric drink with strawberry flavoring | ↓diastolic blood pressure =serum TG, total cholesterol, ratio total cholesterol/HDL-cholesterol, systolic blood pressure, anthropometric indices | Amani et al. [49] | |
6-week, randomized double-blind controlled intervention | Thirty-six subjects (23 females/13 males) with type 2 diabetes (berry group: 19 diabetic subjects; BMI, 27.32 ± 3.26 kg/m2; age, 51.88 ± 8.26 year; control group: 17 diabetic subjects; BMI, 28.70 ± 4.24 kg/m2, age, 51.17 ± 13.88 year) | Berry group: 50 g/day freeze-dried strawberry (equivalent to 500 g fresh strawberries) Control group: Placebo powder | ↓MDA, HbA1c and hs-CRP serum levels ↑total serum antioxidant status =serum glucose levels | Moazen et al. [50] | |
7-week double-blind, randomized, cross-over intervention | Twenty obese subjects (BMI between 30 and 40 kg/m2, age between 20 and 50 year) | Berry group: Strawberry powder (amount no reported) equivalent to 320 g/day of frozen strawberries. Two servings of strawberry powder mixed as a milkshake, in yogurt, cream cheese, or water-based, sweetened beverage Control group: Milkshake, yogurt, cream cheese, or water-based, sweetened beverage | ↓Serum total cholesterol, small HDL particles, LDL size, fibrinogen =serum lipid profile, lipid particle concentrations and size, inflammatory markers and oxidative stress | Zunino et al. [51] | |
Post-prandial, randomized, single-blind, placebo-controlled, cross-over intervention | Twenty-six overweight subjects (BMI, 29.2 ± 2.3 kg/m2; age, 50.9 ± 15.0 year) | Berry group: High-carbohydrate, moderate-fat meal + strawberry drink (10 g strawberry powder) Control group: High-carbohydrate, moderate-fat meal + placebo drink | ↓serum hs-CRP, IL-6 and insulin levels =serum levels of PAI-1, IL-1β, TNF-α, glucose | Ederisinghe et al. [52] | |
6-week, randomized, single-blind, placebo-controlled, parallel intervention + post-prandial high carbohydrates fat meal | Twenty-four overweight and obese subjects (BMI, 29.2 ± 2.3 kg/m2; age, 50.9 ± 15.0 year) | Berry group: 10 g/day strawberry powder in 305 mL water Control group: 10 g/day placebo powder in 305 mL water | =serum levels of glucose, insulin, hs-CRP, IL-6, PAI-1, IL-1β, TNF-α after 6-week intervention ↓serum PAI-1, IL-1β levels following 6-week + post-prandial intervention =serum levels of glucose, insulin, hs-CRP, IL-6, TNF-α after 6-week + post-prandial intervention | Ellis et al. [53] | |
6-week, randomized, single-blind, placebo-controlled, crossover intervention After 6 weeks subjects consumed a high fat meal (post-prandial) | Twenty-four hyperlipidemic subjects (14 female, 10 male; BMI, 29.2 ± 2.3 kg/m2, age 50.9 ± 15 year) | Berry group: Drinks containing 10 g/serving of freeze-dried strawberry (equivalent to 110 g/day of fresh strawberries) Control group: Placebo drink | ↓serum total, LDL and HDL cholesterol, TG after 6 weeks =ox-LDL plasma levels after 6 weeks ↓LDL and HDL cholesterol, TG and ox-LDL plasma levels after post-prandial compared to control group =serum total cholesterol after post-prandial | Burton-Freeman et al. [54] | |
8-week intervention | Twenty-seven subjects (BMI: 37.5 ± 2.15 kg/m2; age: 47.0 ± 3.0 year) with metabolic syndrome | Berry group: Four cups of strawberry drink per day (each cup containing 25 g of freeze-dried strawberry powder) Control group: Four cups of water | ↓total and LDL-cholesterol, small LDL particles, VCAM-1 =glucose, triglycerides, HDL-cholesterol, lipoprotein particle size and concentrations, blood pressure, and waist circumference, ICAM-1. | Basu et al. [55] | |
4-week intervention | Sixteen female (mean BMI, 38.6 ± 2.3 kg/m2; range age, 39–71 year) with metabolic syndrome | Berry group: Two cups of strawberry drink per day (each cup containing 25 g of freeze-dried strawberry powder) Control group: None | ↓serum total and LDL-cholesterol, MDA and HNE levels =serum HDL, TG, HDL, VLDL-cholesterol, hs-CRP, adiponectin, glucose, ox-LDL plasma levels, blood pressure, body weight, waist circumference | Basu et al. [56] | |
4-week, randomized, controlled, cross-over intervention | Twenty-eight hyperlipidemic subjects (range BMI, 19.8–32.3 kg/m2; range age, 38–75 years) | Berry group: 454 g/day strawberries Control group: 65 g/day oat bran bread | ↓MDA plasma absolute concentration and molar ration of LDL-cholesterol at 4 weeks compared to placebo ↑protein thiols concentration for both the treatments compared to each baseline =plasma levels of conjugated dienes, lipid profile, C-reactive protein, blood pressure, body weight | Jenkins et al. [57] | |
Whortleberry | 4-week, randomized, double-blind, placebo-controlled, parallel intervention | Fifty hyperlipidemic subjects (berry group: twenty-five, 15 females/10 males; BMI, 25.40 ± 1.75 kg/m2; age, 48.08 ± 16.39 year; control group: twenty-five hyperlipidemic subjects, 15 females/10 males; BMI, 25.21 ± 2.01 kg/m2; age, 46.36 ± 16.59 year) | Berry group: 2 capsules/day whortleberry capsules Control group: 2 capsules/day placebo capsules | ↓serum total, LDL-cholesterol, TG and plasma MDA levels =serum HDL-cholesterol levels, hs-CRP and BMI | Soltani et al. [58] |
Berry mix | 12-week, randomized, double-blinded, placebo-controlled intervention | One hundred and thirty-three hypertensive subjects (BMI, 26 ± 3 kg/m2, age 62 ± 6 year) | 1 Berry group: 500 mL/day (MANA Blue juice: red grapes, cherries, chokeberries and bilberries) 2 Berry group: 500 mL/day (Optijuice: MANA + polyphenol-rich extract from blackcurrant press-residue) 3 Control group: 500 mL/day placebo | ↓blood pressure | Tjelle et al. [59] |
12-week, randomized, controlled, parallel intervention | Twenty subjects (berry group: BMI, 31.8 ± 4.4 kg/m2, age 53.0 ± 6.5 year; control group: BMI, 32.9 ± 3.4 kg/m2, age 49.8 ± 7.1 year) with symptoms of metabolic syndrome | Berry group: 300 g/day fresh berries comprising of 100 g of strawberry purée, 100 g of frozen raspberries, and 100 g of frozen cloudberries Control group: Usual diet | ↓serum leptin levels ↑microbiota in both the groups =blood pressure, serum lipid profile, 8-isoprostanes, resistin, TRAP assay | Puupponen-Pimiä et al. [60] | |
20-week, randomized, controlled, parallel intervention | Sixty-one female subjects 35–52 years (berry group: BMI 29.3 ± 2.2 kg/m2, control group: BMI 29.5 ± 1.8 kg/m2) with metabolic syndrome | Berry group: 163 g/day mix of northern berries (lingonberry, sea buckthorn berry, bilberry and black currant) Control group: Usual diet | ↓plasma ALT levels ↑plasma adiponectin levels =blood pressure, lipid profile, glucose, inflammatory markers, antioxidant capacity | Lehtonen et al. [61] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vendrame, S.; Del Bo’, C.; Ciappellano, S.; Riso, P.; Klimis-Zacas, D. Berry Fruit Consumption and Metabolic Syndrome. Antioxidants 2016, 5, 34. https://doi.org/10.3390/antiox5040034
Vendrame S, Del Bo’ C, Ciappellano S, Riso P, Klimis-Zacas D. Berry Fruit Consumption and Metabolic Syndrome. Antioxidants. 2016; 5(4):34. https://doi.org/10.3390/antiox5040034
Chicago/Turabian StyleVendrame, Stefano, Cristian Del Bo’, Salvatore Ciappellano, Patrizia Riso, and Dorothy Klimis-Zacas. 2016. "Berry Fruit Consumption and Metabolic Syndrome" Antioxidants 5, no. 4: 34. https://doi.org/10.3390/antiox5040034
APA StyleVendrame, S., Del Bo’, C., Ciappellano, S., Riso, P., & Klimis-Zacas, D. (2016). Berry Fruit Consumption and Metabolic Syndrome. Antioxidants, 5(4), 34. https://doi.org/10.3390/antiox5040034