Chemical Analysis of Extracts from Newfoundland Berries and Potential Neuroprotective Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Chemicals
2.2. Extract Preparation
2.3. Standard and Calibration Curves
2.4. HPLC Analysis of the Extract Samples
2.5. Cell Culture
2.6. Cell Injury
2.7. Cell Counts and Statistical Analysis
3. Results
3.1. Analysis of Lingonberry (V. vitis-idaea) Extracts
3.2. Confirmation and Quantification of Cyanidin-3-Galactoside in Lingonberry Extracts
3.3. Analysis of Blueberry (V. angustifolium) Extracts
3.4. Analysis of Black Currant (R. lacustre) Extracts
3.5. Protective Effect of Lingonberry Extract Against Traumatic Injury
4. Discussion
4.1. Comparisons to Findings from Various Berry Species in Other Regions
4.2. Potential Bioactivities of the Analyzed Berry Species
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Battino, M.; Beekwilder, J.; Denoyes-Rothan, B.; Laimer, M.; McDougall, G.J.; Mezzetti, B. Bioactive compounds in berries relevant to human health. Nutr. Rev. 2009, 67, S145–S150. [Google Scholar] [CrossRef] [PubMed]
- Merken, H.M.; Beecher, G.R. Measurement of food flavonoids by high performance liquid chromatography: A review. J. Agric. Food Chem. 2000, 48, 577–599. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.J.; Howard, L.R.; Prior, R.L.; Clark, J.R. Flavonoid glycosides and antioxidant capacity of various black berry, blueberry and red grape genotypes determined by high-performance liquid chromatography/mass spectrometry. J. Sci. Food Agric. 2004, 84, 1771–1782. [Google Scholar] [CrossRef]
- Moyer, R.A.; Hummer, K.E.; Finn, C.E.; Frei, B.; Wrolstad, R.E. Anthocyanins, phenolics and antioxidant capacity in diverse small fruits: Vaccinium, Rubus and Ribes. J. Agric. Food Chem. 2002, 50, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Stintzing, F.C.; Stintzing, A.S.; Carle, R.; Frei, B.; Wrolstad, R.E. Color and antioxidant properties of cyanidin-based anthocyanin pigments. J. Agric. Food Chem. 2002, 50, 6172–6181. [Google Scholar] [CrossRef] [PubMed]
- Prior, R.L.; Wu, X. Anthocyanins: Structural characteristics that result in unique metabolic patterns and biological activities. Free Radic. Res. 2006, 40, 1014–1028. [Google Scholar] [CrossRef] [PubMed]
- Kalt, W.; Dufour, D. Heath functionality of blueberries. Hortic. Technol. 1997, 7, 216–221. [Google Scholar]
- Bravo, L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 1998, 56, 317–333. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Cao, G.; Prior, R.L. Oxygen radical absorbing capacity of anthocyanins. J. Agric. Food Chem. 1997, 45, 304–309. [Google Scholar] [CrossRef]
- Matsufuji, M.; Otsuki, T.; Takeda, T.; Chino, M.; Takeda, M. Identification of reaction products of acylated anthocyanins from red radish with peroxyl radicals. J. Agric. Food Chem. 2003, 51, 3157–3161. [Google Scholar] [CrossRef] [PubMed]
- Hertog, M.G.; Hollman, P.C.; Venema, D.P. Optimization of a quantitative HPLC determination of potentially anticarcinogenic flavonoids in vegetables and fruits. J. Agric. Food Chem. 1992, 40, 1591–1598. [Google Scholar] [CrossRef]
- Revilla, E.; Ryan, J.-M.; Martin-Ortega, G. Comparison of several procedures used for the extraction of anthocyanins from red grapes. J. Agric. Food Chem. 1998, 46, 4592–4597. [Google Scholar] [CrossRef]
- Chandra, A.; Rana, J.; Li, Y. Separation, identification, quantification, and method validation of anthocyanins in botanical supplement raw materials by HPLC and HPLC-MS. J. Agric. Food Chem. 2001, 49, 3515–3521. [Google Scholar] [CrossRef] [PubMed]
- Harris, C.S.; Burt, A.J.; Saleem, A.; Le, P.M.; Martineau, L.C.; Haddad, P.S.; Bennett, S.A.; Arnason, J.T. A single HPLC-PAD-APCI/MS method for the quantitative comparison of phenolic compounds found in leaf, stem, root and fruit extracts of Vaccinium angustifolium. Phytochem. Anal. 2007, 18, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Hosseinian, F.S.; Beta, T. Saskatoon and wild blueberries have higher anthocyanin contents than other Manitoba berries. J. Agric. Food Chem. 2007, 55, 10832–10838. [Google Scholar] [CrossRef] [PubMed]
- Nicoue, E.E.; Savard, S.; Belkacemi, K. Anthocyanins in wild berries of Quebec: Extraction and identification. J. Agric. Food Chem. 2007, 55, 5626–5635. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wang, C.Y.; Wang, S.Y.; Zheng, W. Effect of high-oxygen atmospheres on blueberry phenolics, anthocyanins, and antioxidant capacity. J. Agric. Food Chem. 2003, 51, 7162–7169. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Kou, X.; Fugal, K.; McLaughlin, J. Comparision of HPLC methods for determination of anthocyanins and anthocyanidins in bilberry extracts. J. Agric. Food Chem. 2004, 52, 688–691. [Google Scholar] [CrossRef] [PubMed]
- Mikkonen, T.P.; Määttä, K.R.; Hukkanen, A.T.; Kokko, H.I.; Torronen, A.R.; Karenlampi, S.O.; Karjalainen, R.O. Flavonol Content Varies among Black Current Cultivars. J. Agric. Food Chem. 2001, 49, 3274–3277. [Google Scholar] [CrossRef] [PubMed]
- Nyman, N.A.; Kumpulainen, J.T. Determination of Anthocyanidins in berries and red wine by high performance liquid Chromatography. J. Agric. Food Chem. 2001, 4, 4183–4187. [Google Scholar] [CrossRef]
- Anttonen, M.J.; Karjalainen, R.O. High performance liquid chromatography analysis of black currant (Ribes nigrum L.) fruit phenolics grown either conventionally or organically. J. Agric. Food Chem. 2006, 54, 7530–7538. [Google Scholar] [CrossRef] [PubMed]
- Ek, S.; Kartimo, H.; Mattila, S.; Tolonen, A. Characterization of phenolic compounds from lingonberry. J. Agric. Food Chem. 2006, 54, 9834–9842. [Google Scholar] [CrossRef] [PubMed]
- Kylli, P.; Nohynek, L.; Puupponen-Pimiä, R.; Westerlund-Wikström, B.; Leppänen, T.; Welling, J.; Moilane, E.; Heinonen, M. Lingonberry (Vaccinium vitis-idaea) and European cranberry (Vaccinium microcarpon) proanthocyanidins: Isolation, identification, and bioactivities. J. Agric. Food Chem. 2011, 59, 3373–3384. [Google Scholar] [CrossRef] [PubMed]
- Nindo, C.I.; Tang, J. Refractance Window Technology: A novel contact drying method. Dry. Technol. 2007, 25, 37–48. [Google Scholar] [CrossRef]
- Omoba, O.S.; Obafaye, R.O.; Salawu, S.O.; Boligon, A.A.; Athayde, M.L. HPLC-DAD Phenolic Characterization and Antioxidant Activities of Ripe and Unripe Sweet Orange Peels. Antioxidants 2015, 4, 498–512. [Google Scholar] [CrossRef] [PubMed]
- Giuffrè, A.M. HPLC-DAD detection of changes in phenol content of red berry skins during grape ripening. Eur. Food Res. Technol. 2015, 237, 555–564. [Google Scholar] [CrossRef]
- Weber, J.T.; Lamont, M.; Chibrikova, L.; Fekkes, D.; Vlug, A.S.; Lorenz, P.; Kreutzmann, P.; Slemmer, J.E. Potential neuroprotective effects of oxyresveratrol against traumatic injury. Eur. J. Pharmacol. 2012, 680, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Vyas, P.; Kalidindi, S.; Chibrikova, L.; Igamberdiev, A.U.; Weber, J.T. Chemical Analysis and Effect of Blueberry and Lingonberry Fruits and Leaves against Glutamate-Mediated Excitotoxicity. J. Agric. Food Chem. 2013, 61, 7769–7776. [Google Scholar] [CrossRef] [PubMed]
- Wolf, H.K.; Buslei, R.; Schmidt-Kastner, R.; Schmidt-Kastner, P.K.; Pietsch, T.; Wiestler, O.D.; Blümcke, I. NeuN: A useful neuronal marker for diagnostic histopathology. J. Histochem. Cytochem. 1996, 44, 1167–1171. [Google Scholar] [CrossRef] [PubMed]
- Ellis, E.F.; McKinney, J.S.; Willoughby, K.A.; Liang, S.; Povlishock, J.T. A new model for rapid stretch-induced injury of cells in culture: Characterization of the model using astrocytes. J. Neurotrauma 1995, 12, 325–339. [Google Scholar] [CrossRef] [PubMed]
- Slemmer, J.E.; Matser, E.J.; De Zeeuw, C.I.; Weber, J.T. Repeated mild injury causes cumulative damage to hippocampal cells. Brain 2002, 125, 2699–2709. [Google Scholar] [CrossRef] [PubMed]
- Lehtonen, H.M.; Rantala, M.; Suomela, J.P.; Viitanen, M.; Kallio, H. Urinary excretion of the main anthocyanin in lingonberry (Vaccinium. vitis-idaea), cyanidin 3-O-galactoside, and its metabolites. J. Agric. Food Chem. 2009, 57, 4447–4451. [Google Scholar] [CrossRef] [PubMed]
- De Rosso, V.V.; Morán Vieyra, F.E.; Mercadante, A.Z.; Borsarelli, C.D. Singlet oxygen quenching by anthocyanin’s flavylium cations. Free Radic. Res. 2008, 42, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Slimestad, R.; Solheim, H. Anthocyanins from black currants (Ribes nigrum L.). J. Agric. Food Chem. 2002, 50, 3228–3231. [Google Scholar] [CrossRef] [PubMed]
- Määttä, K.R.; Kamal-Eldin, A.; Törrönen, A.R. High-performance liquid chromatography (HPLC) analysis of phenolic compounds in berries with diode array and electrospray ionization mass spectrometric (MS) detection: Ribes species. J. Agric. Food Chem. 2003, 51, 6736–6744. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Lipton, S.A. Preventing Ca2+-mediated nitrosative stress in neurodegenerative diseases: Possible pharmacological strategies. Cell Calcium 2010, 47, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Lau, F.C.; Shukitt-Hale, B.; Joseph, J.A. The beneficial effects of fruit polyphenols on brain aging. Neurobiol. Aging 2005, 26, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Slemmer. J.E.; Shacka, J.J.; Sweeney, M.I.; Weber, J.T. Antioxidants and free radical scavengers for the treatment of stroke, traumatic brain injury and aging. Curr. Med. Chem. 2008, 15, 404–414. [Google Scholar]
- Slemmer, J.E.; Weber, J.T. Assessing Antioxidant Capacity in Brain Tissue: Methodologies and Limitations in Neuroprotective Strategies. Antioxidants 2014, 3, 636–648. [Google Scholar] [CrossRef] [PubMed]
- Ieri, F.; Martini, S.; Innocenti, M.; Mulinacci, N. Phenolic Distribution in Liquid Preparations of Vaccinium myrtillus L. and Vaccinium vitis idaea L. Phytochem. Anal. 2013, 24, 467–475. [Google Scholar] [CrossRef] [PubMed]
No. | HPLC RT (min) | Identification | m/z Values | m/z Values in Literature 1 | |
---|---|---|---|---|---|
[M−H]− | [M+H]+ | [M+H]+ | |||
1 | 16.18 | Cyanidin-3-glucoside | 447.1 | 449.1 | 449 |
2 | 17.70 | Cyanidin-3-galactoside | 449.1 | 449 | |
3 | 18.54 | Cyanidin-3-arabinoside | 419.1 | 419 |
No. | HPLC RT (min) | Identification | m/z Value | m/z Value in Literature 1 |
---|---|---|---|---|
Anthocyanins | [M+H]+ | [M+H]+ | ||
1 | 25.62 | Cyanidin-3-glucoside | 449.2 | 449 |
2 | 25.92 | Cyanidin-3-galactoside | 449.1 | 449 |
3 | 27.49 | Proanthocyanidin A | 577.1 | 577 |
4 | 31.34 | Quercetin-3-glucoside | 465.1 | 465 |
5 | 32.28 | Quercetin-3-O-α arabinoside | 435.1 | 435 |
No. | HPLC RT(min) | Identification | m/z Value | m/z Value in Literature 1,2 |
---|---|---|---|---|
Anthocyanins | [M]+ | [M]+ | ||
1 | 10.08 | Delphinidin-3-galactoside | 465.1 | 465 |
2 | 10.52 | Delphinidin-3-glucoside | 465.1 | 465 |
3 | 10.88 | Cyanidin-3-galactoside | 449.1 | 449 |
4 | 11.19 | Delphinidin-3-arabinoside | 435.1 | 435 |
5 | 12.19 | Petunidin-3-glucoside | 479.1 | 479 |
6 | 13.48 | Malvidin-3-glucoside | 493.1 | 493 |
7 | 14.14 | Peonidin-3-glucoside | 463.1 | 463 |
No. | HPLC RT(min) | Identification | m/z Value | m/z Value in Literature 1,2 |
---|---|---|---|---|
Anthocyanins | [M]+ | [M]+ | ||
1 | 22.68 | Delphinidin-3-galactoside | 465.1 | 465 |
2 | 23.71 | Delphinidin-3-arabinoside | 435.1 | 435 |
3 | 24.70 | Cyanidin-3-galactoside | 449.1 | 449 |
4 | 25.90 | Petunidin-3-galactoside | 479.1 | 479 |
5 | 30.24 | Malvidin-3-galactoside | 493.1 | 493 |
6 | 33.15 | Peonidin-3-glucoside | 463.1 | 463 |
Flavonols | [M]− | [M]− | ||
7 | 20.50 | Myricetin-3-rhamnoside | 463.0 | 463 |
8 | 22.20 | Quercetin-3-galactoside | 463.0 | 463 |
No. | HPLC RT(min) | Identification | m/z Values [M]+ or [M+H]+ | m/z Values in Literature1,2 [M]− or [M−H]− |
---|---|---|---|---|
1 | 1.55 | chlorogenic acid | 353.0 | 353 |
2 | 10.48 | myricetin-3-rhamnoside | 463.1 | 463 |
3 | 11.05 | quercetin-3-rutinoside | 609.2 | 609 |
4 | 12.03 | kaempferol rutinoside | 595.2 | 595 |
No. | HPLC RT(min) | Identification | m/z Values [M]+ or [M+H]+ | m/z Values in Literature 1,2 [M]− or [M−H]− |
---|---|---|---|---|
1 | 1.45 | chlorogenic acid | 353.0 | 353 |
2 | 7.45 | quercetin glucoside | 465.1 | 465 |
3 | 8.57 | kaempferol glucoside | 449.1 | 449 |
Compounds | Blueberry V. angustifolium | Black Currant R. lacustre | Lingonberry V. vitis-idaea |
---|---|---|---|
Delphinidin-3-galactoside | X | ||
Delphinidin-3-glucoside | X | ||
Delphinidin-3-arabinoside | X | ||
Cyanidin-3-galactoside | X | X | |
Cyanidin-3-glucoside | X | ||
Cyanidin-3-arabinoside | X | ||
Petunidin-3-galactoside | X | ||
Petunidin-3-glucoside | X | ||
Peonidin-3-glucoside | X | ||
Malvidin-3-galactoside | X | ||
Malvidin-3-glucoside | X | ||
Chlorogenic acid | X | ||
Myrecitin-3-rhamnoside | X | X | |
Quercetin-3-galactoside | X | ||
Quercetin-3-rutinoside | X | ||
Kaempferol rutinoside | X | ||
Quercetin glucoside | X | ||
Kaempferol glucoside | X | ||
Proanthocyanidin A | X | ||
Quercetin-3-glucoside | X | ||
Quercetin-3-O-α arabinoside | X |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossain, M.Z.; Shea, E.; Daneshtalab, M.; Weber, J.T. Chemical Analysis of Extracts from Newfoundland Berries and Potential Neuroprotective Effects. Antioxidants 2016, 5, 36. https://doi.org/10.3390/antiox5040036
Hossain MZ, Shea E, Daneshtalab M, Weber JT. Chemical Analysis of Extracts from Newfoundland Berries and Potential Neuroprotective Effects. Antioxidants. 2016; 5(4):36. https://doi.org/10.3390/antiox5040036
Chicago/Turabian StyleHossain, Mohammad Z., Emily Shea, Mohsen Daneshtalab, and John T. Weber. 2016. "Chemical Analysis of Extracts from Newfoundland Berries and Potential Neuroprotective Effects" Antioxidants 5, no. 4: 36. https://doi.org/10.3390/antiox5040036
APA StyleHossain, M. Z., Shea, E., Daneshtalab, M., & Weber, J. T. (2016). Chemical Analysis of Extracts from Newfoundland Berries and Potential Neuroprotective Effects. Antioxidants, 5(4), 36. https://doi.org/10.3390/antiox5040036