On the Characterization and Correlation of Compositional, Antioxidant and Colour Profile of Common and Balsamic Vinegars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Standards and Solvents
2.2. Sampling
2.3. Determination of Total Phenolic Content (TPC)
2.4. Scavenging Activity on 2,2′-azino-bis-(3-Ethylbenzothiazoline-6-Sulfonic Acid) Radical (ABTS●+)
2.5. Ferric Reducing/Antioxidant Power Assay (FRAP)
2.6. Determination of Individual Phenolic Compounds by GC-MS
2.7. Colour Measurement
2.8. FT IR Spectroscopy
2.9. NMR Spectroscopy
2.9.1. Sample Preparation for NMR Analysis
2.9.2. NMR Measurements
2.9.3. NMR Data Reduction and Spectral Alignment
2.10. Statistical Analysis
2.10.1. Univariate Data Analysis
2.10.2. Multivariate Data Analysis
3. Results and Discussion
3.1. Properties of Bioactive Compounds of the Vinegars
3.2. Phenolic Compounds’ Profile of the Vinegars
3.3. Colour Parameters of the Vinegars
3.4. FTIR Vinegar Spectra Interpretation
3.5. 1H NMR Vinegar Spectra Interpretation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Budak, N.H.; Aykin, E.; Seydim, A.C.; Greene, A.K.; Guzel-Seydim, Z.B. Functional properties of vinegar. J. Food Sci. 2014, 79, 757–764. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Ogasawara, Y.; Endou, K.; Fujimori, S.; Koyama, M.; Akana, H. Phenolic compounds responsible for the superoxide dismutase-like activity in High-Brix apple vinegar. J. Agric. Food Chem. 2010, 50, 10124–10132. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Chen, T.; Giudici, P.; Chen, F. Vinegar functions on health: Constituents, sources, and formation mechanisms. Compr. Rev. Food Sci. Food Saf. 2016, 15, 1124–1138. [Google Scholar] [CrossRef]
- Nazıroğlu, M.; Güler, M.; Özgül, C.; Saydam, G.; Küçükayaz, M.; Sözbir, E. Apple cider vinegar modulates serum lipid profile, erythrocyte, kidney, and liver membrane oxidative stress in ovariectomized mice fed high cholesterol. J. Membr. Biol. 2014, 247, 667–673. [Google Scholar] [CrossRef]
- Wu, D.; Kimura, F.; Takashima, A.; Shimizu, Y.; Takebayashi, A.; Kita, N.; Zhang, G.; Murakami, T. Intake of vinegar beverage is associated with restoration of ovulatory function in women with polycystic ovary syndrome. Tohoku J. Exp. Med. 2013, 230, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Kelebek, H.; Kadiroğlu, P.; Demircan, N.B.; Selli, S. Screening of bioactive components in grape and apple vinegars: Antioxidant and antimicrobial potential. J. Inst. Brew. 2017, 123, 407–416. [Google Scholar] [CrossRef]
- Torrecilla, J.S.; Aroca-Santos, R.; Cancilla, J.C.; Matute, G. Linear and non-linear modeling to identify vinegars in blends through spectroscopic data. LWT-Food Sci. Technol. 2016, 65, 565–571. [Google Scholar] [CrossRef]
- De la Haba, M.-J.; Arias, M.; Ramírez, P.; Lopez, M.-I.; Sanchez, M.-T. Characterizing and authenticating Montilla-Moriles PDO vinegars using near infrared reflectance spectroscopy (NIRS) technology. Sensors 2014, 14, 3528–3542. [Google Scholar] [CrossRef] [PubMed]
- Callejón, R.M.; Amigo, J.M.; Pairo, E.; Garmón, S.; Ocaña, J.A.; Morales, M.L. Classification of sherry vinegars by combining multidimensional fluorescence, parafac and different classification approaches. Talanta 2012, 88, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, J.; Kamal, G.M.; Jiang, B.; Sun, P.; Zhang, X.; Liu, M. Characterization and comparison of commercial Chinese cereal and European grape vinegars using 1H NMR spectroscopy combined with multivariate analysis. Chin. J. Chem. 2016, 34, 1183–1193. [Google Scholar] [CrossRef]
- Boffo, E.F.; Tavares, L.A.; Ferreira, M.M.; Ferreira, A.G. Classification of Brazilian vinegars according to their 1H NMR spectra by pattern recognition analysis. LWT-Food Sci. Technol. 2009, 42, 1455–1460. [Google Scholar] [CrossRef]
- Consonni, R.; Cagliani, L.R.; Benevelli, F.; Spraul, M.; Humpfer, E.; Stocchero, M. NMR and chemometric methods: A powerful combination for characterization of balsamic and traditional balsamic vinegar of Modena. Anal. Chim. Acta 2008, 611, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Grégrová, A.; Čížková, H.; Mazáč, J.; Voldřich, M. Hodnocení autenticity kvasného lihového octa (část II): Analýza vzorků z tržní sítě Authenticity Assessment of Spirit Vinegar (Part II): Analysis of Samples from Distribution Chain. Kvasny Prum. 2012, 58, 350–354. [Google Scholar] [CrossRef]
- Yu, Y.J.; Lu, Z.M.; Yu, N.H.; Xu, W.; Li, G.Q.; Shi, J.S.; Xu, Z.H. HS-SPME/GC-MS and chemometrics for volatile composition of Chinese traditional aromatic vinegar in the Zhenjiang region. J. Inst. Brew. 2012, 118, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Andreou, V.; Strati, I.F.; Fotakis, C.; Liouni, M.; Zoumpoulakis, P.; Sinanoglou, V.J. Herbal distillates: A new era of grape marc distillates with enriched antioxidant profile. Food Chem. 2018, 253, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Lantzouraki, D.Z.; Sinanoglou, V.J.; Zoumpoulakis, P.G.; Glamoclija, J.; Ciric, A.; Sokovic, M.; Heropoulos, G.; Proestos, C. Antiradical–antimicrobial activity and phenolic profile of pomegranate (Punica granatum L.) juices from different cultivars: A comparative study. RSC. Adv. 2015, 5, 2602–2614. [Google Scholar] [CrossRef]
- Lantzouraki, D.Z.; Sinanoglou, V.J.; Zoumpoulakis, P.; Proestos, C. Comparison of the Antioxidant and Antiradical Activity of Pomegranate (Punica granatum L.) by Ultrasound-Assisted and Classical Extraction. Anal. Lett. 2016, 49, 969–978. [Google Scholar] [CrossRef]
- Soleas, G.; Diamandis, E.; Karumanchiri, A.; Goldberg, D. A multiresidue derivatization gas chromatographic assay for fifteen phenolic constituents with mass selective detection. Anal. Chem. 1997, 69, 4405–4409. [Google Scholar] [CrossRef] [PubMed]
- Kaliora, A.C.; Kogiannou, D.A.A.; Kefalas, P.; Papassideri, I.S.; Kalogeropoulos, N. Phenolic profiles and antioxidant and anticarcinogenic activities of Greek herbal infusions; balancing delight and chemoprevention. Food Chem. 2014, 142, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Tomasi, G.; Van Den Berg, F.; Andersson, C. Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data. J. Chemom. 2004, 18, 231–241. [Google Scholar] [CrossRef]
- Trygg, J.; Holmes, E.; Lundstedt, T. Chemometrics in metabonomics. J. Proteome Res. 2007, 6, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, L.; Johansson, E.; Kettaneh-Wold, N.; Trygg, J.; Wikström, C.; Wold, S. Multi- and Megavariate Data Analysis, 2nd ed.; Umetrics AB: Umea, Sweden, 2006; ISBN 91-973730-5-2. [Google Scholar]
- Giudici, P.; Gullo, M.; Solieri, L.; Falcone, P.M. Technological and microbiological aspects of traditional balsamic vinegar and their influence on quality and sensorial properties. In Advances in Food and Nutrition Research; Elsevier Inc.: Burlington, MA, USA, 2009; Volume 58, pp. 137–182. ISSN 1043-4526. [Google Scholar]
- Tesfaye, W.; Morales, M.L.; Garcıa-Parrilla, M.C.; Troncoso, A.M. Wine vinegar: Technology, authenticity and quality evaluation. Trends Food Sci. Technol. 2002, 13, 12–21. [Google Scholar] [CrossRef]
- Almaraz-Abarca, N.; Campos, M.D.G.; Ávila-Reyes, J.A.; Naranjo-Jiménez, N.; Herrera-Corral, J.; González-Valdez, L.S. Variability of antioxidant activity among honeybee-collected pollen of different botanical origin. Interciencia 2004, 29, 574–578. [Google Scholar]
- Negi, B.; Dey, G. Comparative analysis of total phenolic content in sea buckthorn wine and other selected fruit wines. World Acad. Sci. Eng. Technol. 2009, 54, 99–102. [Google Scholar]
- Eccleston, C.; Baoru, Y.; Tahvonen, R.; Kallio, H.; Rimbach, G.H.; Minihane, A.M. Effects of an antioxidant-rich juice (sea buckthorn) on risk factors for coronary heart disease in humans. J. Nutr. Biochem. 2002, 13, 346–354. [Google Scholar] [CrossRef]
- Sakanaka, S.; Ishihara, Y. Comparison of antioxidant properties of persimmon vinegar and some other commercial vinegars in radical scavenging assays and on lipid oxidation in tuna homogenates. Food Chem. 2008, 107, 739–744. [Google Scholar] [CrossRef]
- Dávalos, A.; Bartolomé, B.; Gómez-Cordovés, C. Antioxidant properties of commercial grape juices and vinegars. Food Chem. 2005, 93, 325–330. [Google Scholar] [CrossRef]
- Ozturk, I.; Caliskan, O.Z.N.U.R.; Tornuk, F.; Ozcan, N.; Yalcin, H.; Baslar, M.; Sagdic, O. Antioxidant, antimicrobial, mineral, volatile, physicochemical and microbiological characteristics of traditional home-made Turkish vinegars. LWT-Food Sci. Technol. 2015, 63, 144–151. [Google Scholar] [CrossRef]
- Gil-Muñoz, R. Evolution of phenolic compounds during wine fermentation and post-fermentation: Influence of grape temperature. J. Food Compos. Anal. 1999, 12, 259–272. [Google Scholar] [CrossRef]
- Swiegers, J.H.; Bartowsky, E.J.; Henschke, P.A.; Pretorius, I.S. Yeast and bacterial modulation of wine aroma and flavor. Aust. J. Grape. Wine Res. 2005, 11, 139–173. [Google Scholar] [CrossRef]
- Nićiforović, N.; Abramovič, H. Sinapic acid and its derivatives: Natural sources and bioactivity. Compr. Rev. Food Sci. Food Saf. 2014, 13, 34–51. [Google Scholar] [CrossRef]
- Barnaba, C.; Dellacassa, E.; Nicolini, G.; Nardin, T.; Malacarne, M.; Larcher, R. Identification and quantification of 56 targeted phenols in wines, spirits, and vinegars by online solid-phase extraction–ultrahigh-performance liquid chromatography–quadrupole–orbitrap mass spectrometry. J. Chromatogr. A 2015, 1423, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Lo, Y.M.; Moon, B. Feasibility of using Hericium erinaceus as the substrate for vinegar fermentation. LWT-Food Sci. Technol. 2014, 55, 323–328. [Google Scholar] [CrossRef]
- Yildiz, H.; Sengul, M.; Celik, F.; Ercisli, S.; Duralija, B. Bioactive content of Sea Buckthorn (Hippophae rhamnoides L.) berries from Turkey. Agric. Conspec. Sci. (ACS) 2012, 77, 53–55. [Google Scholar]
- Cliff, M.A.; King, M.C.; Schlosser, J. Anthocyanin, phenolic composition, colour measurement and sensory analysis of BC commercial red wines. Food Res. Int. 2007, 40, 92–100. [Google Scholar] [CrossRef]
- Smith, B.C. Distinguishing Structural Isomers: Mono-and Disubstituted Benzene Rings. Spectroscopy 2016, 31, 36–39. [Google Scholar]
- Domínguez-Martínez, I.; Meza-Márquez, O.G.; Osorio-Revilla, G.; Proal-Nájera, J.; Gallardo-Velázquez, T. Determination of capsaicin, ascorbic acid, total phenolic compounds and antioxidant activity of capsicum annuum l. var. serrano by mid infrared spectroscopy (Mid-FTIR) and chemometric analysis. J Korean. Soc. Appl. Biol. Chem. 2014, 57, 133–142. [Google Scholar] [CrossRef]
- Ríos-Reina, R.; Callejón, R.M.; Oliver-Pozo, C.; Amigo, J.M.; García-González, D.L. ATR-FTIR as a potential tool for controlling high quality vinegar categories. Food Control 2017, 78, 230–237. [Google Scholar] [CrossRef]
- Sanarico, D.; Motta, S.; Bertolini, L.; Antonelli, A. HPLC determination of organic acids in traditional balsamic vinegar of Reggio Emilia. J. Liq. Chromatogr. Relat. Technol. 2003, 26, 2177–2187. [Google Scholar] [CrossRef]
- Theron, M.M.; Lues, J.R. Incidental and natural organic acid occurrence. In Organic Acids and Food Preservation; CRC Press: Boca Raton, FL, USA, 2010; Chapter 12; pp. 261–270. ISBN 9781420078428. [Google Scholar]
- Mato, I.; Huidobro, J.F.; Simal-Lozano, J.; Sancho, M.T. Significance of nonaromatic organic acids in honey. J. Food Prot. 2003, 66, 2371–2376. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, A.; Nascimento, R.A.A.; Ferretti, L.P.; Gonçalves, A.R. Determination of organic acids and ethanol in commercial vinegars. Braz. J. Food Technol. 2005, 5, 51–56. [Google Scholar]
- Murugesh, S.; Vino, P. Phytochemical constituents, antioxidant activity and FT-IR analysis of Pisonia grandis leaf extracts. Int. J. Pharmacogn. Phytochem. Res. 2017, 9, 933–938. [Google Scholar] [CrossRef]
- Baciu, A.; Ranga, F.; Fetea, F.; Zavoi, S.; Socaciu, C. Fingerprinting food supplements and their botanical ingredients by coupled UV/Vis/FTIR spectrometry. Bulletin of university of agricultural sciences and veterinary medicine Cluj-Napoca. Food Sci. Technol. 2013, 70, 8–15. [Google Scholar] [CrossRef]
- Oliveira, R.N.; Mancini, M.C.; Oliveira, F.C.S.D.; Passos, T.M.; Quilty, B.; Thiré, R.M.D.S.M.; McGuinness, G.B. FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. Matéria (Rio. De. Janeiro) 2016, 21, 767–779. [Google Scholar] [CrossRef] [Green Version]
- Pop, R.M.; Buzoianu, A.D.; Raţi, I.V.; Socaciu, C. Untargeted metabolomics for Sea buckthorn (Hippophae rhamnoides ssp. carpatica) berries and leaves: Fourier transform infrared spectroscopy as a rapid approach for Evaluation and discrimination. Not. Bot. Horti AgroboT. 2014, 42, 545–550. [Google Scholar] [CrossRef]
- Grassi, S.; Amigo, J.M.; Lyndgaard, C.B.; Foschino, R.; Casiraghi, E. Beer fermentation: Monitoring of process parameters by FT-NIR and multivariate data analysis. Food Chem. 2014, 155, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Schulz, H.; Baranska, M. Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib. Spectrosc. 2007, 43, 13–25. [Google Scholar] [CrossRef]
Category | Sample no | Vinegars | Brand Name | Acidity % |
---|---|---|---|---|
RGBV | BR1 | Balsamic red | TOP–Minerva | 6 |
BR2 | Balsamic red | Meteora (Agricultural Cooperative of Trikala) | 6 | |
BR3 | Balsamic red | Aceto Balamico di Modena from Atlanta S.A. | 6 | |
BR4 | Balsamic red | Modena | 6 | |
BR5 | Balsamic red | Aceto Balamico di Modena, Villa Lambrusco, Italy | 6 | |
BR6 | Balsamic red | Modena–Altis, Unilever | 6 | |
BR7 | Balsamic red | AB Vassilopoulos | 6 | |
BR8 | Balsamic red | Aceto Balamico di Modena, Villa Trebbiana, Italy | 6 | |
BR9 | Balsamic red | Pan | 6 | |
BR10 | Balsamic red | Ageing balsamic vinegar Aceto Botanico Adriani Gold Seal from Lazaridi | 6 | |
BR11 | Balsamic red Bio | Papadimitriou S.A. | 6 | |
BR12 | Balsamic red Bio | AB Vassilopoulos | 6 | |
RGBVH | BRH1 | Balsamic red with honey | TOP–Minerva | 6 |
BRH2 | Balsamic red with honey | Kaloudi–Angel Foods | 6 | |
BRH3 | Balsamic red with honey | AB Vassilopoulos | 6 | |
BRH4 | Balsamic red with honey | Pan | 6 | |
BRH5 | Balsamic red with honey | Oxymelo–Gaea | 6 | |
WGBV | BW1 | Balsamic white | Papadimitriou S.A. | 6 |
BW2 | Balsamic white | Contimento Bianco–Atlanta S.A. | 5.4 | |
BW3 | Balsamic white | Villa Grimelli, Italy | 5.4 | |
RGV | WR1 | Wine red | TOP–Minerva | 6 |
WR2 | Wine red | Pure vinegar from red wine from Galaxias | 7 | |
WR3 | Wine red | Fino–HAINA Greek Vinegar | 6 | |
WR4 | Wine red | Pan | 8 | |
WR5 | Wine red | Meteora (Agricultural Cooperative of Trikala) | 6 | |
WR6 | Wine red | Paros–Sifnaios K. & Co | 6 | |
WR7 | Wine red | AB Vassilopoulos | 7 | |
WR8 | Wine red | Bio red vinegar from Papadimitriou S.A. | 6 | |
WR9 | Wine red | Tripodakis | 6 | |
WR10 | Wine red | Kriteli–Union of agricultural cooperatives of Heraklion | 6 | |
WGV | WW1 | Wine white | TOP–Minerva | 7 |
WW2 | Wine white | Fino–HAINA Greek Vinegar | 6 | |
WW3 | Wine white | Meteora (Agricultural Cooperative of Trikala) | 6 | |
WW4 | Wine white | Paros–Sifnaios K. & Co | 6 | |
WW5 | Wine white | MESSINO OREGANO Papadeas D. & Co | 6 | |
WW6 | Wine white | MESSINO BASIL Papadeas D. & Co | 6 | |
WW7 | Wine white with rosemary & thyme | Pan | 6 | |
WW8 | Champagne wine | La Marne–Champagne Ardenne Vinegar Charbonneaux Brabant S.A. | 7 | |
FV | F1 | Apple | TOP–Minerva | 6 |
F2 | Apple | Paros–Sifnaios K. & Co | 6 | |
F3 | Apple | Olympos–Viofresko | 6 | |
F4 | Pomegranate | Ayanoglou S.A. | 6 | |
F5 | Sea Buckthorn | Berryland | 6 |
Vinegars | Mean | S.D. | Median | S.E.M. | Minimum | Maximum |
---|---|---|---|---|---|---|
Total phenolic content (TPC) as mg of gallic acid equivalents/L | ||||||
RGBV a | 1556.86a | 586.81 | 1418.50 | 169.39 | 853.50 | 2867.33 |
RGBVH b | 721.85b | 103.62 | 734.00 | 46.34 | 560.70 | 847.33 |
WGBV c | 145.85c | 8.38 | 146.83 | 4.84 | 137.03 | 153.70 |
RGV d | 239.32d | 77.90 | 227.73 | 24.63 | 134.70 | 382.73 |
WGV e | 109.04c | 56.95 | 116.65 | 20.13 | 29.75 | 185.75 |
FV f | 139.12c | 164.18 | 82.70 | 73.42 | 17.88 | 428.37 |
Radical scavenging activity as mg of trolox equivalents/L | ||||||
RGBV a | 1862.84a | 981.84 | 1557.79 | 283.43 | 1014.41 | 4417.44 |
RGBVH b | 1055.21a | 164.30 | 980.39 | 73.47 | 908.56 | 1267.11 |
WGBV c | 187.97c | 106.80 | 143.59 | 61.66 | 110.52 | 309.82 |
RGV d | 554.30d | 230.50 | 542.18 | 72.89 | 247.16 | 966.38 |
WGV e | 135.59c | 96.16 | 99.12 | 33.99 | 30.63 | 305.03 |
FV f | 190.34c | 184.32 | 127.93 | 82.43 | 46.12 | 496.49 |
Antioxidant activity as mg of FeSO4·7H2O equivalents/L | ||||||
RGBV a | 13897.40a | 5663.38 | 11971.62 | 1634.87 | 7689.42 | 26,293.23 |
RGBVH b | 9060.96a | 3313.93 | 9921.26 | 1482.04 | 3635.04 | 11,674.30 |
WGBV c | 2102.64b | 1025.68 | 1571.32 | 592.18 | 1451.62 | 3284.97 |
RGV d | 3356.99b | 1205.68 | 3090.74 | 381.27 | 1994.42 | 5497.76 |
WGV e | 947.16c | 528.34 | 836.00 | 186.79 | 292.31 | 1873.95 |
FV f | 946.45c | 830.57 | 652.59 | 371.44 | 350.50 | 2409.87 |
Variables | ABTS | FRAP | L* | a* | b* | h | CD | CT |
---|---|---|---|---|---|---|---|---|
TPC | 0.980 | 0.960 | −0.874 | −0.750 | 0.344 | 0.916 | 0.918 | −0.009 |
ABTS | 0.983 | −0.847 | -0.698 | 0.390 | 0.889 | 0.909 | −0.022 | |
FRAP | −0.842 | −0.711 | 0.392 | 0.872 | 0.892 | 0.050 | ||
L* | 0.781 | −0.413 | −0.902 | −0.873 | −0.016 | |||
a* | −0.016 | −0.774 | −0.719 | −0.474 | ||||
b* | 0.473 | 0.496 | −0.260 | |||||
h | 0.947 | 0.025 | ||||||
CD | −0.017 |
Vinegars | L* | a* | b* | h | CD | CT |
---|---|---|---|---|---|---|
RGBV a | 12.00 ± 0.92a | −0.94 ± 0.16a | 3.07 ± 0.30a | 106.86 ± 4.50a | 35.42 ± 11.46a | 2.68 ± 0.35a |
RGBVH b | 13.83 ± 0.33b | −0.54 ± 0.09b | 3.86 ± 0.17b | 90.78 ± 11.29b | 18.49 ± 3.18b | 2.72 ± 0.36a |
WGBV c | 16.90 ± 0.78c | −0.21 ± 0.03c | 1.87 ± 0.17c | 72.09 ± 4.07c | 0.73 ± 0.05c | 5.64 ± 0.87b |
RGV d | 16.79 ± 0.81c | 1.13 ± 0.32d | 3.73 ± 0.78ab | 77.92 ± 6.97c | 0.95 ± 0.12d | 1.98 ± 0.34c |
WGV e | 18.44 ± 0.53d | 0.48 ± 0.09e | 1.42 ± 0.27d | 63.41 ± 5.42d | 0.29 ± 0.02e | 3.57 ± 0.59d |
F1-F3 f | 18.52 ± 0.37d | 0.54 ± 0.03e | 1.39 ± 0.24d | 64.08 ± 5.16d | 0.50 ± 0.02f | 3.87 ± 0.36d |
F4-F5 g | 17.34 ± 1.40cd | 1.66 ± 0.53d | 4.94 ± 0.46e | 80.29 ± 3.65b | 2.49 ± 0.34g | 1.52 ± 0.62c |
Sample | Ethanol (% vol) | Acetic acid (g/L) | Malic acid (g/L) | Citric acid (g/L) | Lactic acid (g/L) | Tartaric acid (g/L) | Glycerol (g/L) | Fructose (g/L) | Glucose (g/L) | Sucrose (g/L) |
---|---|---|---|---|---|---|---|---|---|---|
RGBV a | 0.49 ± 0.06a | 20.16 ± 0.60a | 39.02 ± 1.12a | 0.77 ± 0.27a | 0.07 ± 0.01a | 7.37 ± 1.83a | 4.37 ± 2.14 | 113.44 ± 9.15a | 34.04 ± 0.24a | 0.94 ± 0.26a |
RGBVH b | 0.69 ± 0.08b | 14.01 ± 2.63b | 25.63 ± 1.28b | 7.56 ± 1.24b | 0.22 ± 0.02b | 4.06 ± 0.52b | 3.52 ± 2.85 | 170.21 ± 18.95b | 28.12 ± 0.46b | 7.05 ± 2.32b |
WGBV c | 0.53 ± 0.05a | 20.58 ± 0.40a | 37.54 ± 1.02a | - | - | 7.98 ± 1.10a | 4.31 ± 1.30 | 96.39 ± 5.34c | 7.79 ± 0.11c | 1.06 ± 0.64a |
RGV d | 0.72 ± 0.09b | 21.78 ± 0.81c | 41.39 ± 2.20c | - | - | 5.91 ± 0.79c | 1.20 ± 1.78 | - | - | - |
WGV e | 0.69 ± 0.11b | 19.71 ± 0.93a | 38.04 ± 1.62a | - | - | 5.25 ± 0.86c | 0.45 ± 0.67 | - | - | - |
FV f | 1.21 ± 0.27c | 11.97 ± 4.80d | 22.87 ± 5.41b | 1.80 ± 1.16a | 0.12 ± 0.02c | 3.17 ± 1.07d | 1.78 ± 2.35 | 0.09 ± 0.07d | - | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinanoglou, V.J.; Zoumpoulakis, P.; Fotakis, C.; Kalogeropoulos, N.; Sakellari, A.; Karavoltsos, S.; Strati, I.F. On the Characterization and Correlation of Compositional, Antioxidant and Colour Profile of Common and Balsamic Vinegars. Antioxidants 2018, 7, 139. https://doi.org/10.3390/antiox7100139
Sinanoglou VJ, Zoumpoulakis P, Fotakis C, Kalogeropoulos N, Sakellari A, Karavoltsos S, Strati IF. On the Characterization and Correlation of Compositional, Antioxidant and Colour Profile of Common and Balsamic Vinegars. Antioxidants. 2018; 7(10):139. https://doi.org/10.3390/antiox7100139
Chicago/Turabian StyleSinanoglou, Vassilia J., Panagiotis Zoumpoulakis, Charalambos Fotakis, Nick Kalogeropoulos, Aikaterini Sakellari, Sotirios Karavoltsos, and Irini F. Strati. 2018. "On the Characterization and Correlation of Compositional, Antioxidant and Colour Profile of Common and Balsamic Vinegars" Antioxidants 7, no. 10: 139. https://doi.org/10.3390/antiox7100139
APA StyleSinanoglou, V. J., Zoumpoulakis, P., Fotakis, C., Kalogeropoulos, N., Sakellari, A., Karavoltsos, S., & Strati, I. F. (2018). On the Characterization and Correlation of Compositional, Antioxidant and Colour Profile of Common and Balsamic Vinegars. Antioxidants, 7(10), 139. https://doi.org/10.3390/antiox7100139