Antioxidant Activity and Anthocyanin Contents in Olives (cv Cellina di Nardò) during Ripening and after Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Samples Preparation
- Green olives, characterized by green peel and light green pulp (MI group 0, indicated as Stage 0);
- Partially green olives with slightly pigmented peel and green pulp (MI group 2, indicated as Stage 2);
- Olives with purple peel and yellow pulp (MI group 4, indicated as Stage 4);
- Black coloration of the peel and pulp identified (MI Group 7, indicated as Stage 7)
2.2. Chemicals
2.3. Total Phenolic Content (TPC)
2.4. Antioxidant Activity
2.5. HPLC ESI/MS-TOF Analysis of Olive Extracts
2.6. Statistical Analysis
3. Results
3.1. Total Phenolic Content during Maturation and after Fermentation Processes
3.2. Anthocyanin Quantification in CdN Olives
3.3. Antioxidant Activity of Olive Extracts
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Saponari, M.; Boscia, D.; Nigro, F.; Martelli, G.P. Identification of DNA sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (Southern Italy). J. Plant. Pathol. 2013, 95, 668. [Google Scholar]
- Luvisi, A.; Aprile, A.; Sabella, E.; Vergine, M.; Nicolì, F.; Nutricati, E.; Miceli, A.; Negro, C.; De Bellis, L. Xylella fastidiosa subsp. pauca (CoDiRO strain) infection in four olive (Olea europaea L.) cultivars: Profile of phenolic compounds in leaves and progression of leaf scorch symptoms. Phytopathol. Mediterr. 2017, 56, 259–273. [Google Scholar]
- Martelli, G.P. The current status of the quick decline syndrome of olive in Southern Italy. Phytoparasitica 2016, 44, 1–10. [Google Scholar] [CrossRef]
- Sabella, E.; Luvisi, A.; Aprile, A.; Negro, C.; Vergine, M.; Nicolì, F.; Miceli, A.; De Bellis, L. Xylella fastidiosa induces differential expression of lignification related-genes and lignin accumulation in tolerant olive trees cv. Leccino. J. Plant Physiol. 2018, 220, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Ryan, D.; Robards, K. Phenolic compounds in olives. Analyst 1998, 123, 31–44. [Google Scholar] [CrossRef]
- Baiano, A.; Gambacorta, G.; Terracone, C.; Previtali, M.A.; Lamacchia, C.; La Notte, E. Changes in Phenolic Content and Antioxidant Activity of Italian Extra-Virgin Olive Oils during Storage. J. Food Sci. 2009, 74, 177–183. [Google Scholar] [CrossRef]
- Garrido Fernandez, A.; Adams, M.R.; Fernandez-Diez, M.J. Table Olives, 1st ed.; Springer: New York, NY, USA, 1997; pp. 67–109. [Google Scholar]
- Cioffi, G.; Pesca, M.S.; De Caprariis, P.; Braca, A.; Severino, L.; De Tommasi, N. Phenolic compounds in olive oil and olive pomace from Cilento (Campania, Italy) and their antioxidant activity. Food Chem. 2010, 121, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Amiot, M.J.; Fleuriet, A.; Macheix, J.J. Importance and evolution of phenolic compounds in olive during growth and maturation. J. Agr. Food Chem. 1986, 34, 823–826. [Google Scholar] [CrossRef]
- Servili, M.; Baldioli, M.; Selvaggini, R.; Macchioni, A.; Montedoro, G.F. Phenolic Compounds of Olive Fruit: One- and Two-Dimensional Nuclear Magnetic Resonance Characterization of Nüzhenide and Its Distribution in the Constitutive Parts of Fruit. J. Agr. Food Chem. 1999, 47, 12–18. [Google Scholar] [CrossRef]
- Ryan, D.; Antolovich, M.; Prenzler, P.; Robards, K.; Lavee, S. Biotransformations of phenolic compounds in Olea europaea L. Scie. Horticult. 2002, 92, 147–176. [Google Scholar] [CrossRef]
- Bouaziz, M.; Grayer, R.J.; Simmonds, M.S.J.; Damak, M.; Sayadi, S. Identification and Antioxidant Potential of Flavonoids and Low Molecular Weight Phenols in Olive Cultivar Chemlali Growing in Tunisia. J. Agr. Food Chem. 2005, 53, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Vlahov, G. Flavonoids in three olive (Olea europaea) fruit varieties during maturation. J. Sci. Food Agricul. 1992, 58, 157–159. [Google Scholar] [CrossRef]
- Cicerale, S.; Lucas, L.; Keast, R. Biological activities of phenolic compounds present in virgin olive oil. Int. J. Mol. Sci. 2010, 11, 458–479. [Google Scholar] [CrossRef]
- Omar, S.H. Oleuropein in olive and its pharmacological effects. Scie. Pharm. 2010, 78, 133–154. [Google Scholar] [CrossRef]
- Guzman, E.; Baeten, V.; Pierna, J.A.F.; Garcia-Mesa, J.A. Determination of the olive maturity index of intact fruits using image analysis. J. Food Sci. Technol. 2015, 52, 1462–1470. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 1965, 16, 144–158. [Google Scholar]
- Goristen, S.; Martin-Belloso, O.; Katrich, E.; Lojek, A.; Ciz, M.; Gligelmo-Miguel, N. Comparison of the contents of the main biochemical compounds and the antioxidant activity of some Spanish olive oils as determined by four different radical scavenging tests. J. Nutr. Biochem. 2003, 14, 154–159. [Google Scholar] [CrossRef]
- Wang, H.; Cao, G.; Prior, R.L. Total Antioxidant Capacity of Fruits. J. Agr. Food Chem. 1996, 1996. 44, 701–705. [Google Scholar] [CrossRef]
- Dasgupta, N.; De, B. Antioxidant Activity of Piper Betle L. Leaf Extract in Vitro. Food Chem. 2004, 88, 219–224. [Google Scholar] [CrossRef]
- Nicolì, F.; Vergine, M.; Negro, C.; Luvisi, A.; Nutricati, E.; Aprile, A.; Rampino, P.; Sabella, E.; De Bellis, L.; Miceli, A. Salvia clandestina L.: Unexploited source of danshensu. Nat. Prod. Res. 2019, 19, 1–4. [Google Scholar] [CrossRef]
- Lee, M.J.; Park, J.S.; Choi, D.S.; Jung, M.Y. Characterization and quantification of anthocyanins in Purple-fleshed sweet potatoes cultivated in Korea by HPLC-DAD and HPLC-ESI-QTOF-MS/MS. J. Agric. Food Chem. 2013, 61, 3148–3158. [Google Scholar] [CrossRef]
- Fu, S.; Arráez-Roman, D.; Segura-Carretero, A.; Menéndez, J.A.; Menéndez-Gutiérrez, M.P.; Micol, V.; Fernández-Gutiérrez, A. Qualitative screening of phenolic compounds in olive leaf extracts by hyphenated liquid chromatography and preliminary evaluation of cytotoxic activity against human breast cancer cells. Anal. Bioanal. Chem. 2010, 397, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Talhaoui, N.; Gómez-Caravaca, A.M.; León, L.; De la Rosa, R.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Determination of phenolic compounds of ‘Sikitita’ olive leaves by HPLC-DAD-TOF-MS. Comparison with its parents ‘Arbequina’ and‘Picual’ olive leaves. LWT - Food Sci. Technol. 2014, 58, 28–34. [Google Scholar] [CrossRef]
- Talhaoui, N.; Gomez-Caravaca, A.M.; Rolda, C.; Leo, L.; De La Rosa, R.; Fernandez-Gutierrez, A.; Segura-Carretero, A. Chemo-metric analysis for the evaluation of phenolic patterns in olive leaves from six cultivars at different growth stages. J. Agric. Food Chem. 2015, 63, 1722–1729. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Sánchez, J.; Segura-Carretero, A.; Menéndez, J.; Oliveras-Ferraros, C.; Cerretani, L.; Fernández-Gutiérrez, A. Prediction of extra virgin olive oil varieties through their phenolic profile. Potential cytotoxic activity against human breast cancer cells. J. Agric. Food Chem. 2010, 58, 42–55. [Google Scholar] [CrossRef]
- Quirantes-Pine, R.; Zurek, G.; Barrajon-Catalan, E.; Bassmann, C.; Micol, V.; Segura-Carretero, A.; Fernandez-Gutierrez, A. A metabolite-profiling approach to assess the uptake and metabolism of phenolic compounds from olive leaves in SKBR3 cells by HPLC-ESI-QTOF-MS. J. Pharm. Biomed. Anal. 2013, 72, 121–126. [Google Scholar] [CrossRef]
- Yorulmaz, A.; Poyrazoglu, E.S.; Ozcan, M.M.; Tekin, A. Phenolic profiles of Turkish olives and olive oils. Eur. J. Lipid Sci. Technol. 2012, 114, 1083–1093. [Google Scholar] [CrossRef]
- Li, D.; Wang, P.; Luo, Y.; Zhao, M.; Chen, F. Health benefits of anthocyanins and molecular mechanisms: Update from recent decade. Crit Rev Food Sci Nutr. 2017, 57, 1729–1741. [Google Scholar] [CrossRef] [PubMed]
- Romani, A.; Mulinacci, N.; Pinelli, P.; Vincieri, F.F.; Cimato, A. Polyphenolic content in five tuscany cultivars of Olea europaea L. J. Agric. Food Chem. 1999, 47, 964–967. [Google Scholar] [CrossRef]
- Zou, B.; Wu, J.; Yu, Y.; Xiao, G.; Xu, Y. Evolution of the antioxidant capacity and phenolic contents of persimmon during fermentation. J. Agr. Food Chem. 2017, 26, 563–571. [Google Scholar] [CrossRef]
- Brenes, M.; Rejano, L.; Garcia, P.; Sanchez, A.H.; Garrido, A. Biochemical changes in phenolic compounds during Spanish-style green olive processing. J. Agr. Food Chem. 1995, 43, 2702–2706. [Google Scholar] [CrossRef]
- Ziogas, V.; Tanou, G.; Molassiotis, A.; Diamantidis, G.; Vasilakakis, M. Antioxidant and free radical-scavenging activities of phenolic extracts of olive fruits. Food Chem 2010, 120, 1097–1103. [Google Scholar] [CrossRef]
- Ben Othman, N.; Roblain, D.; Chammen, N.; Thonart, P.; Hamdi, M. Antioxidant phenolic compounds loss during the fermentation of Chetoui olives. Food Chem. 2009, 116, 662–669. [Google Scholar] [CrossRef]
- Wolf, K.L.; Kang, X.; He, X.; Dong, M.; Zhang, Q.; Liu, R.H. Cellular antioxidant activity of common fruits. J. Agr. Food Chem. 2008, 56, 8418–8426. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J. Agr. Food Chem. 2004, 52, 4026–4037. [Google Scholar] [CrossRef] [PubMed]
- Bouaziz, M.; Chamkha, M.; Sayadi, S. Comparative study on phenolic content and antioxidant activity during maturation of the olive cultivar Chemlali from Tunisia. J. Agr. Food Chem. 2004, 52, 5476–5481. [Google Scholar] [CrossRef] [PubMed]
N. | Compound | RT a (min) | (M−H)− | m/z Exp b | m/z Clc c | Diff. (ppm) d | Score e | Ref.f |
---|---|---|---|---|---|---|---|---|
1 | * Quinic acid | 2.82 | C7H11O6 | 191.0510 | 191.0561 | −5.89 | 90.44 | [23,24,25] |
2 | Hydroxytyrosol glucoside | 4.63 | C14H19O8 | 315.1095 | 315.1085 | −1.26 | 96.62 | [22,23,25] |
3 | Secologanoside is. 1 | 4.85 | C16H21O11 | 389.1095 | 389.1089 | −1.11 | 88.91 | [22,23,25] |
4 | Secologanoside is. 2 | 4.94 | C16H21O11 | 389.1101 | 389.1089 | −2.62 | 96.13 | [24,26] |
5 | * Rutin | 5.83 | C27H29O16 | 609.1474 | 609.1461 | −2.15 | 90.20 | [24,26] |
6 | * Verbascoside | 6.02 | C29H35O15 | 623.2013 | 623.1618 | −0.05 | 93.73 | [24,25] |
7 | Elenoic acid glucoside | 6.31 | C17H23O11 | 403.1262 | 403.1246 | −3.68 | 80.90 | [24,26] |
8 | Oleuropein aglycon | 7.02 | C16H25O10 | 377.1459 | 377.1453 | −1.23 | 92.94 | [24] |
9 | * Quercitrin | 8.85 | C21H19O11 | 447.0960 | 447.0933 | −6.05 | 89.44 | [27] |
10 | Hydroxyoleuropein | 9.82 | C25H31O14 | 555.1773 | 556.1803 | −2.04 | 97.55 | [24,27] |
11 | * Luteolin 7 glucoside is. 1 | 10.03 | C21H19O11 | 447.0952 | 447.0933 | −3.93 | 77.64 | [24,25] |
12 | * Luteolin rutinoside | 10.95 | C27H29O15 | 593.1517 | 593.1512 | −0.87 | 97.79 | [24] |
13 | * Luteolin 7 glucoside is. 2 | 11.87 | C21H19O11 | 447.0948 | 447.0933 | −3.03 | 96.13 | [24,25,26] |
14 | * Oleuropein | 12.21 | C15H9O13 | 539.1772 | 539.1770 | 0.03 | 97.14 | [23,24,25,27] |
15 | * Luteolin | 12.53 | C15H9O6 | 285.0419 | 285.0405 | −4.87 | 97.08 | [23,24,25,27] |
16 | * Quercetin | 13.07 | C15H9O7 | 301.0351 | 301.0354 | 1.10 | 96.04 | [24,25] |
17 | Ligstroside | 13.88 | C25H31O12 | 523.1823 | 523.1821 | −0.03 | 97.55 | [26] |
18 | * Apigenin 7 glucoside | 14.31 | C15H9O5 | 269.0461 | 269.0455 | −1.77 | 98.70 | [23] |
19 | Diosmetin | 14.72 | C16H11O6 | 299.0566 | 299.0561 | −1.43 | 98.50 | [23] |
20 | ** Cyanidin 3 glucoside | 15.03 | C21H21O11 | 449.1081 | 449.1078 | 0.66 | 92.21 | [28] |
21 | ** Cyanidin 3 rutinoside | 15.82 | C27H31O15 | 595.1658 | 595.1657 | 0.16 | 95.23 | [28] |
Olive Extract | Cyanidin-3-Rutinoside (g/kg DW) |
---|---|
Stage 0 | ND |
Stage 2 | Traces |
Stage 4 | 3.22 b ± 0.22 |
Stage 7 | 4.62 a ± 0.06 |
Table olive (fermented) | 1.16 c ± 0.16 |
Olive Extract | ORAC Test μmol TE/100 g FW | DPPH μmol TE/100 g FW | Superoxide Anion Test IC50 (µg FW) |
---|---|---|---|
Stage 0 | 11,412 b ± 1722 | 2888 d ± 234 | 3.15 a ± 0.13 |
Stage 2 | 13,565 b ± 2173 | 4212 c ± 351 | 2.15 b ± 0.35 |
Stage 4 | 15,990 a,b ± 486 | 6285 b ± 312 | 1.45 b,c± 0.49 |
Stage 7 | 18,788 a ± 3298 | 9062 a ± 302 | 1.05 c ± 0.07 |
Black Table Olive Extract | ORAC Test μmol TE/100 g FW | DPPH μmol TE/100 g FW | Superoxide Anion Test (IC50 µg FW) |
---|---|---|---|
Cellina di Nardò | 7415 a ± 353 | 2920 a ± 51 | 4.25 c ± 0.21 |
Kalamata | 4717 b ± 96 | 2533 a ± 135 | 6.10 c ± 0.42 |
Leccino | 3964 c ± 213 | 2612 a ± 686 | 9.55 c ± 1.34 |
Empeltre | 2355 d ± 224 | 1209 b ± 247 | 22.00 b ± 2.83 |
Ogliarola | 1676 e ± 87 | 1186 b ± 398 | 22.95 b ± 2.62 |
Blanqueta | 1537 e ± 164 | 1299 b ± 416 | 42.21 a ± 11.60 |
Hojiblanca | 747 f ± 10 | 1356 b ± 246 | 47.55 a ± 2.05 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aprile, A.; Negro, C.; Sabella, E.; Luvisi, A.; Nicolì, F.; Nutricati, E.; Vergine, M.; Miceli, A.; Blando, F.; De Bellis, L. Antioxidant Activity and Anthocyanin Contents in Olives (cv Cellina di Nardò) during Ripening and after Fermentation. Antioxidants 2019, 8, 138. https://doi.org/10.3390/antiox8050138
Aprile A, Negro C, Sabella E, Luvisi A, Nicolì F, Nutricati E, Vergine M, Miceli A, Blando F, De Bellis L. Antioxidant Activity and Anthocyanin Contents in Olives (cv Cellina di Nardò) during Ripening and after Fermentation. Antioxidants. 2019; 8(5):138. https://doi.org/10.3390/antiox8050138
Chicago/Turabian StyleAprile, Alessio, Carmine Negro, Erika Sabella, Andrea Luvisi, Francesca Nicolì, Eliana Nutricati, Marzia Vergine, Antonio Miceli, Federica Blando, and Luigi De Bellis. 2019. "Antioxidant Activity and Anthocyanin Contents in Olives (cv Cellina di Nardò) during Ripening and after Fermentation" Antioxidants 8, no. 5: 138. https://doi.org/10.3390/antiox8050138
APA StyleAprile, A., Negro, C., Sabella, E., Luvisi, A., Nicolì, F., Nutricati, E., Vergine, M., Miceli, A., Blando, F., & De Bellis, L. (2019). Antioxidant Activity and Anthocyanin Contents in Olives (cv Cellina di Nardò) during Ripening and after Fermentation. Antioxidants, 8(5), 138. https://doi.org/10.3390/antiox8050138