Maternal Selenium and Developmental Programming
Abstract
:1. Introduction
2. Combined Effects of Maternal Plane of Nutrition and Selenium Status on Progeny
3. Effects of Maternal Selenium Status on Immunity of the Offspring
4. Effects of Maternal Selenium Status on Reproduction of the Offspring
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Godfrey, K.M.; Barker, D.J.P. Fetal nutrition and adult disease. Am. J. Clin. Nutr. 2000, 71 (Suppl. 5), 1344–1352. [Google Scholar] [CrossRef]
- McMillen, I.C.; Robinson, J.S. Developmental origins of the metabolic syndrome: Prediction, plasticity, and programming. Physiol. Rev. 2005, 85, 571–633. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, K.D.; Rutherford, K.M.D.; Wallace, J.M.; Brameld, J.M.; Stöger, R.; Alberio, R.; Sweetman, D.; Gardner, D.S.; Perry, V.E.A.; Adam, C.L.; et al. Epigenetics and developmental programming of welfare and production traits in farm animals. Reprod. Fertil. Dev. 2016, 28, 1443–1478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chavatte-Palmer, P.; Richard, C.; Peugnet, P.; Robles, M.; Rousseau-Ralliard, D.; Tarrade, A. The developmental origins of health and disease: Importance for animal production. Anim. Reprod. Sci. 2015, 12, 505–520. [Google Scholar]
- Chadio, S.; Kotsampasi, B. The role of early life nutrition in programming of reproductive function. J. Dev. Orig. Health. Dis. 2014, 5, 2–15. [Google Scholar] [CrossRef] [PubMed]
- Chadio, S.; Kotsampasi, B. Maternal undernutrition and developmental programming: Implications for offspring reproductive potential. In Handbook of Famine, Starvation, and Nutrient Deprivation; Preedy, V.R., Patel, V.B., Eds.; Springer International Publishing AG: Basel, Switzerland, 2018; pp. 1–17. [Google Scholar]
- Agarwal, A.; Allamaneni, S.S. Role of free radicals in female reproductive diseases and assisted reproduction. Reprod. Biomed. Online 2004, 9, 338–347. [Google Scholar] [CrossRef]
- Bartol, F.F.; Wiley, A.A.; Miller, D.J.; Silva, A.J.; Roberts, K.E.; Davolt, M.L.P.; Chen, J.C.; Frankshun, A.L.; Camp, M.E.; Rahman, K.M.; et al. Lactation Biology Symposium: Lactocrine signaling and developmental programming. J. Anim. Sci. 2013, 91, 696–705. [Google Scholar] [CrossRef] [PubMed]
- Fleming, T.P.; Velazquez, M.A.; Eckert, J.J.; Lucas, E.S.; Watkins, A.J. Nutrition of females during the peri-conceptional period and effects on fetal programming and health of offspring. Anim. Reprod. Sci. 2012, 130, 193–197. [Google Scholar] [CrossRef]
- Pappas, A.C.; Acamovic, T.; Surai, P.F.; McDevitt, R.M. Maternal organo-selenium compounds and polyunsaturated fatty acids affect progeny performance and levels of selenium and docosahexaenoic acid in the chick tissues. Poult. Sci. 2006, 85, 1610–1620. [Google Scholar] [CrossRef]
- Qazi, I.H.; Angel, C.; Yang, H.; Pan, B.; Zoidis, E.; Zeng, C.J.; Han, H.; Zhou, G.B. Selenium, Selenoproteins, and Female Reproduction: A Review. Molecules 2018, 23, 3053. [Google Scholar] [CrossRef]
- Ashworth, C.J.; Antipatis, C. Micronutrient programming of development throughout gestation. Reproduction 2001, 122, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Cetin, C.; Berti, S.; Calabrese, S. Role of micronutrients in the periconceptional period. Hum. Reprod. Update 2010, 16, 80–95. [Google Scholar] [CrossRef] [PubMed]
- Christian, P.; Stewart, C.P. Maternal Micronutrient deficiency, fetal development, and the risk of chronic disease. J. Nutr. 2010, 140, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Wiernsperger, N.; Rapin, J. Trace elements in glucometabolic disorders: An update. Diabetol. Metab. Syndr. 2010, 2, 70. [Google Scholar] [CrossRef] [PubMed]
- Pappas, A.C.; Zoidis, E.; Surai, P.F.; Zervas, G. Selenoproteins and maternal nutrition. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2008, 151, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Zoidis, E.; Seremelis, I.; Kontopoulos, N.; Danezis, G.P. Selenium-dependent antioxidant enzymes: Actions and properties of selenoproteins. Antioxidants 2018, 7, 66. [Google Scholar] [CrossRef] [PubMed]
- Burk, R.F.; Hill, K.E. Selenoprotein P: An extracellular protein with unique physical characteristics and a role in selenium homeostasis. Annu. Rev. Nutr. 2005, 2, 215–235. [Google Scholar] [CrossRef]
- Yuan, D.; Zheng, L.; Guo, X.Y.; Wang, Y.X.; Zhan, X.A. Regulation of selenoprotein P concentration and expression by different sources of selenium in broiler breeders and their offspring. Poult. Sci. 2013, 92, 2375–2380. [Google Scholar] [CrossRef] [PubMed]
- Combs, G.F., Jr. Selenium in global food systems. Br. J. Nutr. 2001, 85, 517–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rayman, M.P. The use of high-selenium yeast to raise selenium status: How does it measure up? Br. J. Nutr. 2004, 92, 557–573. [Google Scholar] [CrossRef]
- Zoidis, E.; Demiris, N.; Kominakis, A.; Pappas, A.C. Meta-analysis of selenium accumulation and expression of antioxidant enzymes in chicken tissues. Animal 2014, 8, 542–554. [Google Scholar] [CrossRef] [PubMed]
- Briens, M.; Mercier, Y.; Rouffineau, F.; Mercerand, F.; Geraert, P.A. 2-Hydroxy-4-methylselenobutanoic acid induces additional tissue selenium enrichment in broiler chickens compared with other selenium sources. Poult. Sci. 2014, 93, 85–93. [Google Scholar] [CrossRef]
- Gulyas, G.; Csosz, E.; Prokisch, J.; Javor, A.; Mezes, M.; Erdelyi, M.; Balogh, K.; Janaky, T.; Szabo, Z.; Simon, A.; Czegledi, L. Effect of nano-sized, elemental selenium supplement on the proteome of chicken liver. J. Anim. Physiol. Anim. Nutr. 2017, 101, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Cemin, H.S.; Vieira, S.L.; Stefanello, C.; Kindlein, L.; Ferreira, T.Z.; Fireman, A.K. Broiler responses to increasing selenium supplementation using Zn-L-selenomethionine with special attention to breast myopathies. Poult. Sci. 2018, 97, 1832–1840. [Google Scholar] [CrossRef]
- Surai, P.F.; Fisinin, V.I. Selenium in poultry breeder nutrition: An update. Anim. Feed Sci. Technol. 2014, 191, 1–15. [Google Scholar] [CrossRef]
- Surai, P.F.; Kochish, I.I. Nutritional modulation of the antioxidant capacities in poultry: The case of selenium. Poult. Sci. 2018, pey406. [Google Scholar] [CrossRef]
- EC. Commission implementing regulation (EU) no 427/2013 of 8 May 2013 concerning the authorisation of selenomethionine produced by Saccharomyces cerevisiae NCYC R646 as a feed additive for all animal species and amending Regulations (EC) No 1750/2006, (EC) No 634/2007 and (EC) No 900/2009 as regards the maximum supplementation with selenised yeast. Off. J. Eur. Union L 2013, 127, 20–22. [Google Scholar]
- FDA. Code of Federal Regulations Title 21—Food and Drugs Chapter 1—Food and Drug Administration, Department of Health and Human Services Subchapter E—Animal Drugs, Feeds, and Related Products Part 573—Food Additive Permitted in Feed and Drinking Water of Animals Subpart B—Food Additive Listing Section 573920. Available online: https://www.ecfr.gov/cgi-bin/text-idx?SID=ba75d3f9ba613dbe211f845a356d209a&mc=true&node=pt21.6.573&rgn=div5#se21.6.573_1920 (accessed on 10 April 2019).
- Schomburg, L.; Schweizer, U.; Koehrle, J. Selenium and selenoproteins in mammals: Extraordinary, essential, enigmatic. Cell Mol. Life Sci. 2004, 61, 1988–1995. [Google Scholar] [CrossRef]
- Pappas, A.C.; Acamovic, T.; Sparks, N.H.C.; Surai, P.F.; McDevitt, R.M. Effects of supplementing broiler breeder diets with organic selenium and polyunsaturated fatty acids on egg quality during storage. Poult. Sci. 2005, 84, 865–874. [Google Scholar] [CrossRef]
- Pappas, A.C.; Acamovic, T.; Sparks, N.H.C.; Surai, P.F.; McDevitt, R.M. Effects of supplementing broiler breeder diets with organoselenium compounds and polyunsaturated fatty acids on hatchability. Poult. Sci. 2006, 85, 1584–1593. [Google Scholar] [CrossRef]
- Yang, X.; Yu, X.; Fu, H.; Li, L.; Ren, T. Different levels of prenatal zinc and selenium had different effects on neonatal neurobehavioral development. Neurotoxicology 2013, 37, 35–39. [Google Scholar] [CrossRef]
- Skröder, H.M.; Hamadani, J.D.; Tofail, F.; Persson, L.Å.; Vahter, M.E.; Kippler, M.J. Selenium status in pregnancy influences children’s cognitive function at 1.5 years of age. Clin. Nutr. 2015, 34, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Polanska, K.; Krol, A.; Sobala, W.; Gromadzinska, J.; Brodzka, R.; Calamandrei, G.; Chiarotti, F.; Wasowicz, W.; Hanke, W. Selenium status during pregnancy and child psychomotor development-Polish Mother and Child Cohort study. Pediatr. Res. 2016, 79, 863–869. [Google Scholar] [CrossRef] [PubMed]
- Swanson, T.J.; Hammer, C.J.; Luther, J.S.; Carlson, D.B.; Taylor, J.B.; Redmer, D.A.; Neville, T.L.; Reed, J.J.; Reynolds, L.P.; Caton, J.S.; et al. Effects of plane of nutrition and selenium supplementation on colostrum quality and mammary development in pregnant ewe lambs. J. Anim. Sci. 2008, 86, 2415–2423. [Google Scholar] [CrossRef] [PubMed]
- Vonnahme, K.A.; Luther, J.S.; Reynolds, L.P.; Hammer, C.J.; Carlson, D.B.; Redmer, D.A.; Caton, J.S. Impacts of maternal selenium and nutritional level on growth, adiposity, and glucose tolerance in female offspring in sheep. Domest. Anim. Endocrinol. 2010, 39, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Meyer, A.M.; Reed, J.J.; Neville, T.L.; Taylor, J.B.; Hammer, C.J.; Reynolds, L.P.; Vonnahme, K.A.; Caton, J.S. Effects of plane of nutrition and selenium supply during gestation on ewe and neonatal offspring performance, body composition, and serum selenium. J. Anim. Sci. 2010, 88, 1786–1800. [Google Scholar] [CrossRef]
- Hu, H.; Wang, M.; Zhan, X.; Li, X.; Zhao, R. Effect of different selenium sources on productive performance, serum and milk Se concentrations, and antioxidant status of sows. Biol. Trace Elem. Res. 2011, 142, 471–480. [Google Scholar] [CrossRef]
- Urso, U.R.; Dahlke, F.; Maiorka, A.; Bueno, I.J.; Schneider, A.F.; Surek, D.; Rocha, C. Vitamin E and selenium in broiler breeder diets: Effect on live performance, hatching process, and chick quality. Poult. Sci. 2015, 94, 976–983. [Google Scholar] [CrossRef]
- Chadio, S.E.; Pappas, A.C.; Papanastasatos, A.; Pantelia, D.; Dardamani, A.; Fegeros, K.; Zervas, G. Effects of high selenium and fat supplementation on growth performance and thyroid hormones concentration of broilers. J. Trace Elem. Med. Biol. 2015, 29, 202–207. [Google Scholar] [CrossRef]
- Yunusova, R.D.; Neville, T.L.; Vonnahme, K.A.; Hammer, C.J.; Reed, J.J.; Taylor, J.B.; Redmer, D.A.; Reynolds, L.P.; Caton, J.S. Impacts of maternal selenium supply and nutritional plane on visceral tissues and intestinal biology in 180-day-old offspring in sheep. J. Anim. Sci. 2013, 91, 2229–2242. [Google Scholar] [CrossRef]
- Meyer, A.M.; Reed, J.J.; Neville, T.L.; Thorson, J.F.; Maddock-Carlin, K.R.; Taylor, J.B.; Reynolds, L.P.; Redmer, D.A.; Luther, J.S.; Hammer, C.J.; et al. Nutritional plane and selenium supply during gestation affect yield and nutrient composition of colostrum and milk in primiparous ewes. Anim. Sci. 2011, 89, 1627–1639. [Google Scholar] [CrossRef]
- Vonnahme, K.A.; Wienhold, C.M.; Borowicz, P.P.; Neville, T.L.; Redmer, D.A.; Reynolds, L.P.; Caton, J.S. Selenium Supplementation Increases Mammary Gland Vascularity in Postpartum Ewe Lambs. J. Dairy Sci. 2011, 94, 2850–2858. [Google Scholar] [CrossRef] [PubMed]
- Ojeda, M.L.; Nogales, F.; Muρoz Del Valle, P.; Dνaz-Castro, J.; Murillo, M.L.; Carreras, O. Metabolic syndrome and selenium in fetal programming: Gender differences. Food Funct. 2016, 7, 3031–3038. [Google Scholar] [CrossRef]
- Mao, J.; Teng, W. The relationship between selenoprotein P and glucose metabolism in experimental studies. Nutrients 2013, 5, 1937–1948. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Qiu, Q.; Zou, C.; Dou, L.; Liang, J. Regulation of hepatic carbohydrate metabolism by selenium during diabetes. Chem. Biol. Interact. 2015, 232, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.; Qiu, Q.; Chen, H.; Dou, L.; Liang, J. Hepatoprotective effects of selenium during diabetes in rats. Hum. Exp. Toxicol. 2016, 35, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Cominetti, C.; Bortoli, M.C.; Abdalla, D.S.P.; Cozzolino, S.M.F. Considerations about oxidative stress, selenium and nutrigenetics. Rev. Nutr. 2011, 36, 131–153. [Google Scholar]
- Ojeda, M.L.; Nogales, F.; Membrilla, A.; Carreras, O. Maternal selenium status is profoundly involved in metabolic fetal programming by modulating insulin resistance, oxidative balance and energy homeostasis. Braz. J. Pharm. Sci. 2018, 54, e00139. [Google Scholar] [CrossRef]
- Labunskyy, V.M.; Lee, B.C.; Handy, D.E.; Loscalzo, J.; Hatfield, D.L.; Gladyshev, V.N. Both maximal expression of selenoproteins and selenoprotein deficiency can promote development of type 2 diabetes-like phenotype in mice. Antioxid. Redox Signal. 2011, 14, 2327–2336. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, W.; Chen, H.; Liao, N.; Wang, Z.; Zhang, X.; Hai, C. High selenium impairs hepatic insulin sensitivity through opposite regulation of ROS. Toxicol. Lett. 2014, 224, 16–23. [Google Scholar] [CrossRef]
- Avery, J.C.; Hoffmann, P.R. Selenium, selenoproteins, and immunity. Nutrients 2018, 10, 1203. [Google Scholar] [CrossRef] [PubMed]
- Arnér, E.S.; Holmgren, A. Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem. 2000, 267, 6102–6109. [Google Scholar] [CrossRef] [PubMed]
- Apperson, K.D.; Vorachek, W.R.; Dolan, B.P.; Bobe, G.; Pirelli, G.J.; Hall, J.A. Effects of feeding pregnant beef cows selenium-enriched alfalfa hay on passive transfer of ovalbumin in their newborn calves. J. Trace Elem. Med. Biol. 2018, 50, 640–645. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, F.; Guan, W.; Song, H.; Tian, M.; Cheng, L.; Shi, K.; Song, J.; Chen, F.; Zhang, S.; et al. Increasing selenium supply for heat-stressed or actively cooled sows improves piglet preweaning survival, colostrum and milk composition, as well as maternal selenium, antioxidant status and immunoglobulin transfer. J. Trace Elem. Med. Biol. 2019, 52, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Stewart, W.C.; Bobe, G.; Vorachek, W.R.; Stang, B.V.; Pirelli, G.J.; Mosher, W.D.; Hall, J.A. Organic and inorganic selenium: IV. Passive transfer of immunoglobulin from ewe to lamb. J. Anim. Sci. 2013, 91, 1791–1800. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.A.; Bobe, G.; Vorachek, W.R.; Estill, C.T.; Mosher, W.D.; Pirelli, G.J.; Gamroth, M. Effect of supranutritional maternal and colostral selenium supplementation on passive absorption of immunoglobulin G in selenium-replete dairy calves. J. Dairy Sci. 2014, 97, 4379–4391. [Google Scholar] [CrossRef] [PubMed]
- Kamada, H.; Nonaka, I.; Ueda, Y.; Murai, M. Selenium addition to colostrum increases immunoglobulin G absorption by newborn calves. J. Dairy Sci. 2007, 90, 5665–5670. [Google Scholar] [CrossRef] [PubMed]
- Yoshitaka, M.; Tsunao, H.; Sadao, O.; Naohito, K.; Satoshi, K.; Junko, K.; Kiyokazu, M. Effects of feeding selenium-enriched yeast to beef dams on leukocyte function in their suckling calves. J. Jpn. Vet. Med. Assoc. 2000, 53, 131–135. [Google Scholar]
- Enjalbert, F. The relationship between trace elements status and health in calves. Revue Méd. Vét. 2009, 160, 429–435. [Google Scholar]
- Palmer, A.C. Nutritionally mediated programming of the developing immune system. Adv. Nutr. 2011, 2, 377–395. [Google Scholar] [CrossRef]
- Chadio, S.; Katsafadou, A.; Kotsampasi, B.; Michailidis, G.; Mountzouris, K.; Kalogiannis, D.; Christodoulou, V. Effects of maternal undernutrition during late gestation and/or lactation on colostrum synthesis and immunological parameters in the offspring. Reprod. Fertil. Dev. 2014, 28, 384–393. [Google Scholar] [CrossRef]
- Dylewski, M.L.; Mastro, A.M.; Picciano, M.F. Maternal selenium nutrition and neonatal immune system development. Biol. Neonate 2002, 82, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, J.B.; Wichtel, J.J.; Wichtel, M.G.; McNiven, M.A.; McClure, J.T.; Markham, F.; Horohov, D.W. Effects of selenium source on measures of selenium status of mares and selenium status and immune function of their foals. J. Equine Vet. Sci. 2012, 32, 352–359. [Google Scholar] [CrossRef]
- Hogan, J.S.; Weiss, W.P.; Smith, K.L. Role of vitamin E and selenium in host defense against mastitis. J. Dairy Sci. 1993, 76, 2795–2803. [Google Scholar] [CrossRef]
- Cebra, C.K.; Heidel, J.R.; Crisman, R.O.; Stang, B.V. The relationship between endogenous cortisol, blood micronutrients, and neutrophil function in postparturient holstein cows. J. Vet. Intern. Med. 2003, 17, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Pagmantidis, V.; Meplan, C.; van Schothorst, E.M.; Keijer, J.; Hesketh, J.E. Supplementation of healthy volunteers with nutritionally relevant amounts of selenium increases the expression of lymphocyte protein biosynthesis genes. Am. J. Clin. Nutr. 2008, 87, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Kotsampasi, B.; Balaskas, C.; Papadomichelakis, G.; Chadio, S. Reduced Sertoli cell number and altered pituitary responsiveness in lambs undernourished in utero. Anim. Reprod. Sci. 2009, 114, 135–147. [Google Scholar] [CrossRef]
- Kotsampasi, B.; Chadio, S.; Papadomichelakis, G.; Deligeorgis, S.; Kalogiannis, D.; Menegatos, I.; Zervas, G. Effects of maternal undernutrition on the hypothalamic-pituitary-gonadal axis in female offspring. Reprod. Domest. Anim. 2009, 44, 677–684. [Google Scholar] [CrossRef]
- Boitani, C.; Puglisi, R. Selenium, a key element in spermatogenesis and male fertility. In Molecular Mechanisms in Spermatogenesis. Advances in Experimental Medicine and Biology; Cheng, C.Y., Ed.; Springer: New York, NY, USA, 2009; Volume 636, pp. 65–73. [Google Scholar]
- Shi, L.; Song, R.; Yao, X.; Duan, Y.; Ren, Y.; Zhang, C.; Yue, W.; Lei, F. Effects of maternal dietary selenium (Se-enriched yeast) on testis development, testosterone level and testicular steroidogenesis-related gene expression of their male kids in Taihang black goats. Theriogenology 2018, 114, 95–102. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, Q.; Shi, L.; Yue, W.; Zhang, C.; Lei, F. Effects of maternal and dietary selenium (Se-enriched yeast) on the expression of p34(cdc2) and CyclinB1 of germ cells of their offspring in goats. Anim. Reprod. Sci. 2011, 123, 187–191. [Google Scholar] [CrossRef]
- Grazul-Bilska, A.T.; Caton, J.S.; Arndt, W.; Burchill, K.; Thorson, C.; Borowczyk, E.; Bilski, J.J.; Redmer, D.A.; Reynolds, L.P.; Vonnahme, K.A. Cellular proliferation and vascularization in ovine fetal ovaries: Effects of undernutrition and selenium in maternal diet. Reproduction 2009, 137, 699–707. [Google Scholar] [CrossRef]
- Basini, G.; Tamanini, C. Selenium stimulates estradiol production in bovine granulosa cells: Possible involvement of nitric oxide. Domest. Anim. Endocrinol. 2000, 18, 1–17. [Google Scholar] [CrossRef]
- Surai, P.F.; Noble, R.C.; Sparks, N.H.C.; Speake, B.K. Effect of long-term supplementation with arachidonic or docosahexaenoic acids on sperm production in the broiler chicken. J. Reprod. Fertil. 2000, 120, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Surai, P.F.; Brillard, J.P.; Speake, B.K.; Blesbois, E.; Seigneurin, E.; Sparks, N.H.C. Phospholipid fatty acid composition, vitamin E content and susceptibility to lipid peroxidation of duck spermatozoa. Theriogenology 2000, 53, 1025–1039. [Google Scholar] [CrossRef]
- Pappas, A.C.; Karadas, F.; Speake, B.K.; Surai, P.F.; Sparks, N.H.C. Detection and dietary manipulation of selenium in avian semen. Br. Poult. Abstr. 2005, 1, 60–61. [Google Scholar]
- Brennan, K.M.; Crowdus, C.A.; Cantor, A.H.; Pescatore, A.J.; Barger, J.L.; Horgan, K.; Xiao, R.; Power, R.F.; Dawson, K.A. Effects of organic and inorganic dietary selenium supplementation on gene expression profiles in oviduct tissue from broiler-breeder hens. Anim. Reprod. Sci. 2011, 125, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.; Zhan, X.; Wang, Y. Effects of selenium sources and levels on reproductive performance and selenium retention in broiler breeder, egg, developing embryo, and 1-day-old chick. Biol. Trace Elem. Res. 2011, 144, 705–714. [Google Scholar] [CrossRef]
- Attig, L.; Gabory, A.; Junien, C. Early nutrition and epigenetic programming: chasing shadows. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 284–293. [Google Scholar] [CrossRef]
- Mamon, M.A.C.; Ramos, G.B. Maternal selenium-supplementation at various stages of periconception period: influence on murine blastocyst morphology and implantation status. J. Anim. Sci. Technol. 2017, 59, 7. [Google Scholar] [CrossRef]
- Tsunoda, S.; Kimura, N.; Fujii, J. Oxidative stress and redox regulation of gametogenesis, fertilization, and embryonic development. Reprod. Med. Biol. 2014, 13, 71–79. [Google Scholar] [CrossRef]
- Lammi, M.J.; Qu, C. Selenium-related transcriptional regulation of gene expression. Int. J. Mol. Sci. 2018, 19, 2665. [Google Scholar] [CrossRef] [PubMed]
- Rao, L.; Puschner, B.; Prolla, T.A. Gene expression profiling of low selenium status in the mouse intestine: Transcriptional activation of genes linked to DNA damage, cell cycle control and oxidative stress. J. Nutr. 2001, 131, 3175–3181. [Google Scholar] [CrossRef] [PubMed]
- Rebel, J.M.J.; Van Hemert, S.; Hoekman, A.J.W.; Balk, F.R.M.; Stockhofe-Zurwieden, N.; Bakke, D.; Smits, M.A. Maternal diet influences gene expression in intestine of offspring in chicken (Gallus gallus). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2006, 145, 502–508. [Google Scholar] [CrossRef]
- Gao, J.; Nie, W.; Wang, F. Maternal selenium supplementation enhanced skeletal muscle development through increasing protein synthesis and SelW mRNA levels of their offspring. Biol. Trace Elem. Res. 2018, 186, 238–248. [Google Scholar] [CrossRef]
- Speckmann, B.; Grune, T. Epigenetic effects of selenium and their implications for health. Epigenetics 2015, 10, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.Y.; Somuncu, B.; Zhu, J.; Muftuoglu, M.; Cheng, W.H. Selenoproteins and epigenetic regulation in mammals. In Handbook of Nutrition, Diet, and Epigenetics; Patel, V., Preedy, V., Eds.; Springer: Basel, Switzerland, 2019; pp. 1803–1817. [Google Scholar]
Animal Model | Study Design | Key Findings as Reported by Authors | Reference |
---|---|---|---|
Broiler breeders/broilers | Low (0.1 mg/kg) or High (0.5 mg/kg) selenium (Se) status (Se yeast) and soyabean oil and low or high (0.5 mg/kg) Se status and fish oil and progeny fed high or low (20% less energy and protein) diets with similar Se content | Broilers fed for two weeks posthatch a diet with similar Se content but hatched from parents fed high-Se diets had higher tissue Se concentrations than those hatched from parents fed diets low in Se Supplementation of the maternal diet of chicks with organo Se compounds enhanced the concentration of docosahexaenoic acid in the brain of progeny | [10] |
Broiler breeders/broilers | Vitamin E at two levels (30, 120 mg/kg) and two sources of Se (Sodium selenite or Zinc-L-SeMet) at 0.4 mg/kg | Inclusion of organic selenium in breeders diet led to heavier hatchling weight until egg production peak (33 wk) Hatchability of the eggs from 29 wk old breeders fed 120 mg vitamin E/kg feed was higher than that of breeders fed 30 mg vitamin E | [40] |
Ewes/lambs | Adequate (9.5 μg/kg body weight (BW)) or High (81.8 μg/kg BW) and nutritional status 60% of metabolisable energy requirements (Restricted), 100% (Control), and 140% (High) | Female lambs from high Se ewes were heavier at birth Maternal Se intake can enhance fat deposition in female offspring Nutritional intake × Se status interaction on growth rate of lambs and insulin response on a glucose tolerance test; thus, both maternal nutritional level and Se intake can influence insulin sensitivity | [37] |
Ewes/lambs | Adequate (9.5 μg/kg BW) or High (81.8 μg/kg BW) and nutritional status 60% of metabolisable energy requirements (Restricted), 100% (Control), and 140% (High) | High maternal Se led to greater jejunal capillary area density in the offspring | [42] |
Ewes/lambs | Adequate (9.5 μg/kg BW) or High (81.8 μg/kg BW) and nutritional status 60% of metabolisable energy requirements (Restricted), 100% (Control), and 140% (High) | Colostrum and milk yield greater in high- vs. adequate-Se-fed ewes | [43] |
Ewes/lambs | Adequate (9.5 μg/kg BW) or High (81.8 μg/kg BW) and nutritional status 60% of metabolisable energy requirements (Restricted), 100% (Control), and 140% (High) | Progeny from high-Se ewes had greater capillary surface density compared with those from adequate group | [44] |
Sows/piglets | 0.042 mg/kg or 0.3 mg/kg as sodium selenite or selenomethionine | Maternal selenomethionine vs. inorganic Se significantly increased the weaning litter weight and average weight of piglets | [39] |
Dam rats/pups | 0.01 mg Se/kg diet (deficient-low), 0.1 mg /kg, and 0.5 mg Se/kg diet (supplemented-high) | Pups born from mothers fed excess Se exhibited insulin resistance | [50] |
Animal Model | Study Design | Key Findings as Reported by Authors | Reference |
---|---|---|---|
Sows/piglets | Sows during late gestation and lactation fed dietary Se level low (0.3 mg/kg) or high (1.2 mg/kg) and subjected to heat stress or not | Colostrum and milk composition from sows fed increasing Se was improved compared to that from low-Se-fed sows Increasing Se intake of sows led to improved piglet preweaning survival, immunoglobulin transfer, and better antioxidant status | [56] |
Ewes/lambs | No Se or adequate (4.9 mg Se/wk) or two supranutritional levels (14.7 and 24.5 mg Se/wk) from inorganic or organic sources | Ewes during pregnancy fed supranutritional Se supplementation had increased colostral IgG concentrations Optimal supplementation rate for IgG transfer from ewe to lamb may differ between inorganic and organic sources | [57] |
Beef cows/calves | Control cows were fed non-Se-fortified alfalfa hay (5.3 mg Se/head daily plus inorganic Se 3 mg Se/head daily). Medium-Se cows were fed Se-fortified alfalfa hay (27.6 mg Se/head daily) and high-Se cows were fed Se-fortified alfalfa hay (57.5 mg Se/head daily) | Using ovalbumin as a model to examine passive transfer, it was reported that calves born from high-Se cows given of age at 12 h of age an oral dose of ovalbumin had higher serum ovalbumin concentrations across the first 48 h of life compared to calves born from control cows | [55] |
Dairy dam/calves | Basal maternal diet with 0.3 mg Se/kg dry matter (DM) plus 0 or 105 mg Se/wk as yeast | Increased serum IgG concentrations persisted up to 60 d of age | [58] |
Beef dam/calves | Control and Se-enriched fed dams (Se: 0.525 mg/100 kg of body weight/day) | After three weeks, calves of dams fed Se-supplemented diets had higher serum-Se concentration than in those of control dams Suckling calves had enhanced neutrophil and lymphocyte functions | [60] |
Mare/foals | Deficient (0.05 mg Se/kg DM), inorganic with 0.3 mg Se/kg DM, and organic as yeast with 0.3 mg Se/kg DM | Foals from organic group had higher gene expression of interferon gamma and interleukin-2 and lower tumor necrosis factor alpha expression compared with foals in the inorganic group | [65] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pappas, A.C.; Zoidis, E.; Chadio, S.E. Maternal Selenium and Developmental Programming. Antioxidants 2019, 8, 145. https://doi.org/10.3390/antiox8050145
Pappas AC, Zoidis E, Chadio SE. Maternal Selenium and Developmental Programming. Antioxidants. 2019; 8(5):145. https://doi.org/10.3390/antiox8050145
Chicago/Turabian StylePappas, Athanasios C., Evangelos Zoidis, and Stella E. Chadio. 2019. "Maternal Selenium and Developmental Programming" Antioxidants 8, no. 5: 145. https://doi.org/10.3390/antiox8050145
APA StylePappas, A. C., Zoidis, E., & Chadio, S. E. (2019). Maternal Selenium and Developmental Programming. Antioxidants, 8(5), 145. https://doi.org/10.3390/antiox8050145