Effect of Sterigmatocystin or Aflatoxin Contaminated Feed on Lipid Peroxidation and Glutathione Redox System and Expression of Glutathione Redox System Regulatory Genes in Broiler Chicken
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Production of Mycotoxin Contaminated Feed
2.3. Quantification of STC and AFB1 by HPLC
2.4. Sampling and Biochemical Determinations
2.5. RNA Isolation, Reverse Transcriptase and qPCR
2.6. Statistical Methods
2.7. Ethical Statement
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sweeney, M.J.; Dobson, A.D.W. Molecular biology of mycotoxin biosynthesis. FEMS Microbiol. Lett. 1999, 175, 149–163. [Google Scholar] [CrossRef]
- Yu, J.; Chang, P.-K.; Ehrlich, K.C.; Cary, J.W.; Bhatnagar, D.; Cleveland, T.E.; Payne, G.A.; Linz, J.E.; Woloshuk, C.P.; Bennet, J.W. Clustered pathway genes in aflatoxin biosynthesis. Appl. Environ. Microbiol. 2004, 70, 1253–1262. [Google Scholar] [CrossRef]
- Versilovskis, A.; De Saeger, S. Sterigmatocystin: Occurrence in foodstuffs and analytical methods—An overview. Mol. Nutr. Food Res. 2010, 54, 136–147. [Google Scholar] [CrossRef]
- Purchase, I.F.H.; van der Watt, J.J. Acute toxicity of sterigmatocystin to rats. Food Cosmet. Toxicol. 1969, 7, 135–139. [Google Scholar] [CrossRef]
- Xing, L.X.; Zhang, X.H.; Li, Y.H.; Yan, X.; Wang, J.; Wang, F. Effects of sterigmatocystin on HLA- I expression of human peripheral blood mononuclear cells in vitro [In Chinese with English Abstract]. Wei Sheng Yan Jiu 2005, 34, 454–456. [Google Scholar]
- Liu, Y.; Xing, X.; Wang, J.; Xing, L.; Su, Y.; Yao, Z.; Yan, X.; Wang, J.; Zhang, X. Sterigmatocystin alters the number of FoxP3+ regulatory T cells and plasmacytoid dendritic cells in BALB/c mice. Food Chem. Toxicol. 2012, 50, 1920–1926. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, Z.G.; Wang, J.; Xing, L.X.; Xia, Y.; Zhang, X.H. Effects of sterigmatocystin on TNF-alpha, IL-6 and IL-12 expression in murine peripheral blood mononuclear cells and peritoneal macrophages in vivo. Mol. Med. Rep. 2012, 5, 1318–1322. [Google Scholar] [CrossRef]
- Noda, K.; Umeda, M.; Ueno, Y. Cytotoxic and mutagenic effects of sterigmatocystin on cultured Chinese hamster cells. Carcinogenesis 1981, 2, 945–949. [Google Scholar] [CrossRef]
- Baertschi, S.W.; Raney, K.D.; Shimada, T.; Harris, T.M.; Guengerich, F.P. Comparison of rates of enzymatic oxidation of aflatoxin B1, aflatoxin G1, and sterigmatocystin and activities of the epoxides in forming guanyl-N7 adducts and inducing different genetic responses. Chem. Res. Toxicol. 1989, 2, 114–122. [Google Scholar] [CrossRef]
- Curry, P.T.; Reed, R.N.; Martino, R.M.; Kitchin, R.M. Induction of sister-chromatid exchanges in vivo in mice by the mycotoxins sterigmatocystin and griseofulvin. Mutat. Res. 1984, 137, 111–115. [Google Scholar] [CrossRef]
- Ueda, N.; Fujie, K.; Gotoh-Mimura, K.; Chattopadhyay, S.C.; Sugiyama, T. Acute cytogenetic effect of sterigmatocystin on rat bone-marrow cells in vivo. Mutat. Res. 1984, 139, 203–206. [Google Scholar] [CrossRef]
- Bünger, J.; Westphal, G.; Monnich, A.; Hinnendahl, B.; Hallier, E.; Müller, M. Cytotoxicity of occupationally and environmentally relevant mycotoxins. Toxicology 2004, 202, 199–211. [Google Scholar] [CrossRef]
- Zouaoui, N.; Mallebrera, B.; Berrada, H.; Abid-Essefi, S.; Bacha, H.; Ruiz, M.J. Cytotoxic effects induced by patulin, sterigmatocystin and beauvericin on CHO-K1 cells. Food Chem. Toxicol. 2016, 89, 92–103. [Google Scholar] [CrossRef]
- Huang, S.; Wang, J.; Xing, L.; Shen, H.; Yan, X.; Wang, J.; Zhang, X. Impairment of cell cycle progression by sterigmatocystin in human pulmonary cells in vitro. Food Chem. Toxicol. 2014, 66, 89–95. [Google Scholar] [CrossRef]
- Xing, X.; Wang, J.; Xing, L.X.; Li, Y.H.; Yan, X.; Zhang, X.H. Involvement of MAPK and PI3K signalling pathways in sterigmatocystin-induced G2 phase arrest in human gastric epithelium cells. Mol. Nutr. Food Res. 2011, 55, 749–760. [Google Scholar] [CrossRef]
- Engelbrecht, J.C.; Altenkirk, B. Comparison of some biological effects of sterigmatocystin and aflatoxin analogues on primary cell cultures. J. Natl. Cancer Inst. 1972, 48, 1647–1655. [Google Scholar] [CrossRef]
- Yamazaki, H.; Inui, Y.; Wrighton, S.A.; Guengerich, F.P.; Shimada, T. Procarcinogen activation by cytochrome P450 3A4 and 3A5 expressed in Escherichia coli and by human liver microsomes. Carcinogenesis 1995, 16, 2167–2170. [Google Scholar] [CrossRef]
- Essigmann, J.M.; Barker, L.J.; Fowler, K.W.; Francisco, M.A.; Reinhold, V.N.; Wogan, G.N. Sterigmatocystin-DNA interactions: Identification of a major adduct formed after metabolic activation in vitro. Proc. Natl. Acad. Sci. USA 1979, 76, 179–183. [Google Scholar] [CrossRef]
- Essigmann, J.M.; Donahue, P.R.; Story, D.L.; Wogan, G.N.; Brunengraber, H. Use of the isolated perfused rat liver to study carcinogen-DNA adduct formation from aflatoxin B1 and sterigmatocystin. Cancer Res. 1980, 40, 4085–4091. [Google Scholar]
- Terao, K. Sterigmatocystin – a masked potent carcinogen mycotoxin. J. Toxicol. Toxin Rev. 1983, 2, 77–110. [Google Scholar] [CrossRef]
- IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Overall Evaluations of Carcinogenicity: An Updating of IARC Monographs vol. 1 to 42. Supplement 7. 440 Seiten. International Agency for Research on Cancer, Lyon 1987. Preis: 65,—s.Fr. Food/Nahrung 1989, 33, 462. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on the risk for public and animal health related to the presence of sterigmatocystin in food and feed. EFSA J. 2013, 11, 3254. [Google Scholar] [CrossRef]
- Butler, J. Acute toxicity of aflatoxin B1 in rats. Br. J. Cancer 1964, 18, 756–762. [Google Scholar] [CrossRef]
- Heinonen, J.T.; Fisher, R.; Brendel, K.; Eaton, D.L. Determination of aflatoxin B1 biotransformation and binding to hepatic macromolecules in human precision liver slices. Toxicol. Appl. Pharmacol. 1996, 136, 1–7. [Google Scholar] [CrossRef]
- Sivakumar, V.; Thanislass, J.; Niranjali, S.; Devaraj, H. Lipid peroxidation as a possible secondary mechanism of sterigmatocystin toxicity. Hum. Exp. Toxicol. 2001, 20, 398–403. [Google Scholar] [CrossRef]
- Hungarian Feed Code. Nutrient Requirements of Farm Animals; OMMI: Budapest, Hungary, 2004; Volume II/II. (In Hungarian) [Google Scholar]
- Dobolyi, C.S.; Sebők, F.; Varga, J.; Kocsubé, S.; Szigeti, G.; Baranyi, N.; Szécsi, Á.; Tóth, B.; Varga, M.; Kriszt, B.; et al. Occourrence of aflatoxin producing Aspergillus flavus isolates in maize kernel in Hungary. Acta Aliment. 2013, 42, 451–459. [Google Scholar] [CrossRef]
- ISO 3656:2011 International Standard Fourth Edition. Animal and Vegetable Fats and Oils—Determination of Ultraviolet Absorbance Expressed as Specific UV Extinction; International Organization for Standardization (ISO): Geneva, Switzerland, 2011. [Google Scholar]
- Botsoglou, N.A.; Fletouris, D.J.; Papageorgiou, G.E.; Vassilopoulos, V.N.; Mantis, A.J.; Trakatellis, A.G. Rapid, sensitive and specific thiobarbituric acid method for measuring lipid peroxidation in animal tissue, food and feedstuff samples. J. Agric. Food Chem. 1994, 42, 1931–1937. [Google Scholar] [CrossRef]
- Rahman, I.; Kode, A.; Biswas, S.K. Assay for quantitative determination of glutathione and glutathione disulphide levels using enzymatic recycling method. Nat. Protoc. 2007, 1, 3159–3165. [Google Scholar] [CrossRef]
- Matkovics, B.; Szabó, I.; Szöllösi Varga, I. Determination of enzyme activities in lipid peroxidation and glutathione pathways. Lab. Diagn. 1998, 15, 248–249. [Google Scholar]
- Weichselbaum, T.E. An accurate and rapid method for the determination of proteins in small amounts of blood serum and plasma. Am. J. Clin. Pathol. 1946, 10, 40–49. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Yarru, L.P.; Settivari, R.S.; Antoniou, E.; Ledoux, D.R.; Rottinghaus, G. Toxicological and gene expression analysis of the impact of aflatoxin B1 on hepatic function of male broiler chicks. Poult. Sci. 2009, 88, 360–371. [Google Scholar] [CrossRef]
- Salem, R.; El-Habashi, N.; Fadl, S.E.; Sakr, O.A.; Elbialy, Z.I. Effect of probiotic supplement on aflatoxicosis and gene expression in the liver of broiler chicken. Environ. Toxicol. Pharmacol. 2018, 60, 118–127. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Lu, S.C. Glutathione synthesis. Biochim. Biophys. Acta 2013, 1830, 3143–3153. [Google Scholar] [CrossRef]
- Karaman, M.; Ozen, H.; Tuzcu, M.; Ciğremiş, Y.; Onder, F.; Ozcan, K. Pathological, biochemical and haematological investigations on the protective effect of alpha-lipoic acid in experimental aflatoxin toxicosis in chicks. Br. Poult. Sci. 2010, 51, 132–141. [Google Scholar] [CrossRef]
- Eraslan, G.; Akdogan, M.; Yarsan, E.; Essiz, D.; Sahindokuyucu, F.; Hismiogullari, S.E.; Altintas, L. Effects of aflatoxin and sodium bentonite administered in feed alone or combined on lipid peroxidation in the liver and kidneys of broilers. Bull. Vet. Inst. Pulawy 2004, 48, 301–304. [Google Scholar]
- Gowda, N.K.S.; Ledoux, D.R.; Rottinghaus, G.E.; Bermudez, A.J.; Chen, Y.C. Efficacy of turmeric, containing a known level of curcumin, and a hydrated sodium calcium aluminosilicate to ameliorate the adverse effects of aflatoxin in broiler chicks. Poult. Sci. 2008, 87, 1125–1130. [Google Scholar] [CrossRef]
- Huang, J.Q.; Li, D.L.; Zhao, H.; Sun, L.H.; Xia, X.J.; Wang, K.N.; Luo, X.; Lei, X.G. The selenium deficiency disease exudative diathesis in chicks is associated with down-regulation of seven common selenoprotein genes in liver and muscle. J. Nutr. 2011, 141, 1605–1610. [Google Scholar] [CrossRef]
- Labunskyy, V.M.; Hatfield, D.L.; Gladyshev, V.N. Selenoproteins: Molecular pathways and physiological roles. Physiol. Rev. 2014, 94, 739–777. [Google Scholar] [CrossRef]
- Purchase, I.F.H.; van der Watt, J.J. Carcinogenicity of sterigmatocystin. Food Cosmet. Toxicol. 1970, 8, 289–295. [Google Scholar] [CrossRef]
- Sarma, B.K.; Mugesh, G. Thiol cofactors for selenoenzymes and their synthetic mimics. Org. Biomol. Chem. 2008, 6, 965–974. [Google Scholar] [CrossRef]
Metabolisable Energy (ME) | 10.69 MJ/kg |
Crude protein | 19.34% |
Crude fiber | 4.10% |
Ether extract | 2.90% |
Crude ash | 7.40% |
Calcium (Ca) | 1.02% |
Phosphorus (P) | 0.70% |
Sodium (Na) | 0.15% |
Lysine (Lys) | 0.95% |
Methionine (Met) | 0.45% |
Vitamin A | 10,050 IU/kg |
Vitamin D3 | 3015 IU/kg |
Vitamin E | 34 mg/kg |
Gene | Forward Primer 5′–3′ | Reverse Primer 5′–3′ | Accession Nr. |
---|---|---|---|
GAPDH | TGACCTGCCGTCTGGAGAAA | TGTGTATCCTAGGATGCCCTTCAG | NM_204305.1 |
GPX4 | AGTGCCATCAAGTGGAACTTCAC | TTCAAGGCAGGCCGTCAT | NM_001346448.1 |
GSS | GTACTCACTGGATGTGGGTGAAGA | CGGCTCGATCTTGTCCATCAG | XM_425692.6 |
GSR | CCACCAGAAAGGGGATCTACG | ACAGAGATGGCTTCATCTTCAGTG | XM_015276627.2 |
Gene | MGM-NFQ Dual Labelled Probe 5′–3′ | Fluorescent Dye |
---|---|---|
GAPDH | CCAGCCAAGTATGATGAT | VIC |
GPX4 | CAGCCCAATGGAG | FAM |
GSS | AGGAGGGAACAACCTG | FAM |
GSR | CTGGCACTTCGGCTC | FAM |
Conjugated Dienes (OD 232 nm) | ||||
Samplings | Control | STC | PSTC | AFB1 |
0 h | 0.315 ± 0.027 | |||
Day 1 | 0.261 ± 0.026 | 0.279 ± 0.028 | 0.267 ± 0.041 | 0.296 ± 0.024 |
Day 2 | 0.293 ± 0.043 | 0.334 ± 0.089 | 0.323 ± 0.059 | 0.297 ± 0.039 |
Day 3 | 0.295 ± 0.041 | 0.295 ± 0.047 | 0.304 ± 0.031 | 0.326 ± 0.023 |
Day 7 | 0.313 ± 0.028 | 0.317 ± 0.036 | 0.307 ± 0.040 | 0.320 ± 0.023 |
Day 14 | 0.311 ± 0.049 | 0.290 ± 0.026 | 0.292 ± 0.029 | 0.305 ± 0.017 |
Conjugated Trienes (OD 268 nm) | ||||
Samplings | Control | STC | PSTC | AFB1 |
0 h | 0.168 ± 0.016 | |||
Day 1 | 0.135 ± 0.012 | 0.147 ± 0.015 | 0.138 ± 0.018 | 0.153 ± 0.010 |
Day 2 | 0.145 ± 0.015 | 0.166 ± 0.033 | 0.159 ± 0.027 | 0.157 ± 0.022 |
Day 3 | 0.156 ± 0.021 | 0.151 ± 0.017 | 0.152 ± 0.012 | 0.158 ± 0.014 |
Day 7 | 0.165 ± 0.012 | 0.161 ± 0.019 | 0.157 ± 0.019 | 0.161 ± 0.012 |
Day 14 | 0.155 ± 0.007 | 0.158 ± 0.012 | 0.162 ± 0.014 | 0.164 ± 0.012 |
Thiobarbituric Acid Reactive Substances (Malondialdehyde, µmol/g Wet Weight) | ||||
Samplings | Control | STC | PSTC | AFB1 |
0 h | 19.85 ± 6.47 | |||
Day 1 | 30.45 ± 12.98 | 38.99 ± 16.25 | 26.31 ± 3.27 | 31.06 ± 4.61 |
Day 2 | 25.96 ± 8.44 | 24.49 ± 6.97 | 22.18 ± 3.91 | 24.11 ± 2.78 |
Day 3 | 17.73 ± 3.53 | 14.95 ± 6.97 | 16.19 ± 4.73 | 18.62 ± 6.99 |
Day 7 | 28.78 ± 2.68 | 25.24 ± 5.61 | 28.33 ± 6.06 | 23.20 ± 1.01 |
Day 14 | 18.53 ± 3.13 | 19.91 ± 2.78 | 20.74 ± 4.10 | 23.39 ± 3.57 |
GSH (µmol/g Protein) | ||||
Samplings | Control | STC | PSTC | AFB1 |
0 h | 3.47 ± 0.38 | |||
Day 1 | 4.84 ± 0.98 | 4.56 ± 0.79 | 5.03 ± 0.74 | 5.17 ± 1.44 |
Day 2 | 4.49 ab ± 0.73 | 4.46 ab ± 0.55 | 3.63 a ± 0.83 | 4.79 b ± 0.41 |
Day 3 | 4.81 ± 0.79 | 3.99 ± 1.42 | 3.90 ± 1.04 | 4.66 ± 2.23 |
Day 7 | 7.41 ± 0.55 | 6.58 ± 0.41 | 7.69 ± 1.32 | 7.27 ± 0.95 |
Day 14 | 5.34 ± 0.42 | 4.97 ± 0.75 | 5.95 ± 0.66 | 6.89 ± 3.11 |
GPx (U/g Protein) | ||||
Samplings | Control | STC | PSTC | AFB1 |
0 h | 3.37 ± 0.29 | |||
Day 1 | 4.68 ± 1.00 | 4.41 ± 0.71 | 5.18 ± 0.91 | 5.46 ± 0.71 |
Day 2 | 3.97 b ± 0.46 | 3.62 ab ± 0.35 | 3.06 a ± 0.62 | 4.10 b ± 0.56 |
Day 3 | 4.48 ± 0.99 | 4.04 ± 1.32 | 3.96 ± 0.87 | 4.34 ± 1.99 |
Day 7 | 6.33 ± 0.72 | 6.16 ± 0.42 | 6.84 ± 1.32 | 6.01 ± 0.39 |
Day 14 | 5.20 ± 0.36 | 4.66 ± 0.93 | 5.58 ± 0.62 | 6.27 ± 2.73 |
Gene Expression of GPX4 | ||||
Samplings | Control | STC | PSTC | AFB1 |
0 h | 1.00 ± 0.05 | |||
Day 1 | 0.57 bc ± 0.02 | 0.63 c ± 0.03 | 0.52 ab ± 0.02 | 0.50 a ± 0.04 |
Day 2 | 0.57 a ± 0.03 | 0.59 ab ± 0.01 | 0.62 b ± 0.03 | 0.63 b ± 0.02 |
Day 3 | 0.67 a ± 0.03 | 0.62 a ± 0.04 | 0.71 a ± 0.07 | 0.60 a ± 0.02 |
Day 7 | 0.51 ab ± 0.04 | 0.48 a ± 0.03 | 0.67 c ± 0.06 | 0.59 b ± 0.04 |
Day 14 | 0.48 a ± 0.03 | 0.57 c ± 0.05 | 0.50 ab ± 0.03 | 0.55 bc ± 0.03 |
Gene Expression of GSS | ||||
Samplings | Control | STC | PSTC | AFB1 |
0 h | 1.00 ± 0.02 | |||
Day 1 | 0.55 d ± 0.04 | 0.46 c ± 0.02 | 0.38 ab ± 0.05 | 0.34 a ± 0.05 |
Day 2 | 0.45 a ± 0.05 | 0.57 b ± 0.03 | 0.52 ab ± 0.05 | 0.54 a ± 0.06 |
Day 3 | 0.66 ab ± 0.05 | 0.61 ab ± 0.08 | 0.60 a ± 0.08 | 0.70 b ± 0.05 |
Day 7 | 0.41 a ± 0.04 | 0.50 b ± 0.05 | 0.70 c ± 0.06 | 1.04 d ± 0.02 |
Day 14 | 1.03 c ± 0.06 | 0.93 b ± 0.05 | 0.74 a ± 0.09 | 0.91 b ± 0.04 |
Gene Expression of GSR | ||||
Samplings | Control | STC | PSTC | AFB1 |
0 h | 1.00 ± 0.03 | |||
Day 1 | 0.43 b ± 0.06 | 0.41 b ± 0.05 | 0.28 a ± 0.03 | 0.24 a ± 0.02 |
Day 2 | 0.36 a ± 0.05 | 0.40 ab ± 0.06 | 0.41 ab ± 0.05 | 0.46 b ± 0.04 |
Day 3 | 0.47 a ± 0.04 | 0.50 a ± 0.07 | 0.68 b ± 0.10 | 0.43 a ± 0.03 |
Day 7 | 0.42 a ± 0.03 | 0.39 a ± 0.07 | 0.55 b ± 0.07 | 0.84 c ± 0.05 |
Day 14 | 0.40 a ± 0.04 | 0.64 b ± 0.08 | 0.41 a ± 0.06 | 0.44 a ± 0.08 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balogh, K.; Kövesi, B.; Zándoki, E.; Kulcsár, S.; Ancsin, Z.; Erdélyi, M.; Dobolyi, C.; Bata-Vidács, I.; Inotai, K.; Szekeres, A.; et al. Effect of Sterigmatocystin or Aflatoxin Contaminated Feed on Lipid Peroxidation and Glutathione Redox System and Expression of Glutathione Redox System Regulatory Genes in Broiler Chicken. Antioxidants 2019, 8, 201. https://doi.org/10.3390/antiox8070201
Balogh K, Kövesi B, Zándoki E, Kulcsár S, Ancsin Z, Erdélyi M, Dobolyi C, Bata-Vidács I, Inotai K, Szekeres A, et al. Effect of Sterigmatocystin or Aflatoxin Contaminated Feed on Lipid Peroxidation and Glutathione Redox System and Expression of Glutathione Redox System Regulatory Genes in Broiler Chicken. Antioxidants. 2019; 8(7):201. https://doi.org/10.3390/antiox8070201
Chicago/Turabian StyleBalogh, Krisztián, Benjámin Kövesi, Erika Zándoki, Szabina Kulcsár, Zsolt Ancsin, Márta Erdélyi, Csaba Dobolyi, Ildikó Bata-Vidács, Katalin Inotai, András Szekeres, and et al. 2019. "Effect of Sterigmatocystin or Aflatoxin Contaminated Feed on Lipid Peroxidation and Glutathione Redox System and Expression of Glutathione Redox System Regulatory Genes in Broiler Chicken" Antioxidants 8, no. 7: 201. https://doi.org/10.3390/antiox8070201
APA StyleBalogh, K., Kövesi, B., Zándoki, E., Kulcsár, S., Ancsin, Z., Erdélyi, M., Dobolyi, C., Bata-Vidács, I., Inotai, K., Szekeres, A., Mézes, M., & Kukolya, J. (2019). Effect of Sterigmatocystin or Aflatoxin Contaminated Feed on Lipid Peroxidation and Glutathione Redox System and Expression of Glutathione Redox System Regulatory Genes in Broiler Chicken. Antioxidants, 8(7), 201. https://doi.org/10.3390/antiox8070201