Influence of Sampling Conditions, Salivary Flow, and Total Protein Content in Uric Acid Measurements in Saliva
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Subjects
2.3. Procedures
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wong, D.T. Salivary diagnostics powered by nanotechnologies, proteomics and genomics. J. Am. Dent. Assoc. 2006, 137, 313–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, D.; Marquina, R.; Rondón, N.; Rodríguez-Malaver, A.J.; Reyes, R. Effects of aerobic exercise on uric acid, total antioxidant activity, oxidative stress, and nitric oxide in human saliva. Res. Sports Med. 2008, 16, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Bahar, G.; Feinmesser, R.; Shpitzer, T.; Popovtzer, A.; Nagler, R.M. Salivary analysis in oral cancer patients. Cancer 2007, 109, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Guentsch, A.; Preshaw, P.M.; Bremer-Streck, S.; Klinger, G.; Glockmann, E.; Sigusch, B.W. Lipid peroxidation and antioxidant activity in saliva of periodontitis patients: Effect of smoking and periodontal treatment. Clin. Oral Investig. 2008, 12, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Arana, C.; Cutando, A.; Ferrera, M.; Gómez-Moreno, G.; Worf, C.; Bolaños, M.; Escames, G.; Acuña-Castroviejo, D. Parameters of oxidative stress in saliva from diabetic and parenteral drug addict patients. J. Oral Pathol. Med. 2006, 35, 554–559. [Google Scholar] [CrossRef] [PubMed]
- Bibi, G.; Green, Y.; Nagler, R.M. Compositional and oxidative analysis in the saliva and serum of predialysis chronic kidney disease patients and end-stage renal failure patients on peritoneal dialysis. Ther. Apher. Dial. 2008, 12, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Deminice, R.; Sicchieri, T.; Payao, P.O.; Jordao, A.A. Blood and Salivary Oxidative Stress Biomarkers Following an Acute Session of Resistance Exercise in Humans. Int. J. Sports Med. 2010, 31, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Battino, M.; Ferreiro, M.S.; Gallardo, I.; Newman, H.N.; Bullon, P. The antioxidant capacity of saliva. J. Clin. Periodontol. 2002, 29, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Kuzkaya, N.; Weissmann, N.; Harrison, D.G.; Dikalov, S. Interactions of peroxynitrite with uric acid in the presence of ascorbate and thiols: Implications for uncoupling endothelial nitric oxide synthase. Biochem. Pharmacol. 2005, 70, 343–354. [Google Scholar] [CrossRef]
- Drinkwater, E.J.; Lawton, T.W.; Lindsell, R.P.; Pyne, D.B.; Hunt, P.H.; McKenna, M.J. Training leading to repetition failure enhances bench press strength gains in elite junior athletes. J. Strength Cond. Res. 2005, 19, 382–388. [Google Scholar]
- Schoenfeld, B.J.; Ogborn, D.; Vigotsky, D.; Franchi, M.V.; Krieger, J.W. Hypertrophic Effects of Concentric vs. Eccentric Muscle Actions: A Systematic Review and Meta-Analysis. J. Strength Cond. Res. 2017, 31, 2599–2608. [Google Scholar] [CrossRef]
- Folland, J.P.; Irish, C.S.; Roberts, J.C.; Tarr, J.E.; Jones, D.A. Fatigue is not a necessary stimulus for strength gains during resistance training. Br. J. Sports Med. 2002, 36, 370–373. [Google Scholar] [CrossRef]
- Celec, P.; Ostatníková, D. Saliva collection devices affect sex steroid concentrations. Clin. Chim. Acta 2012, 413, 1625–1628. [Google Scholar] [CrossRef] [PubMed]
- Shirtcliff, E.A.; Granger, D.A.; Schwartz, E.; Curran, M.J. Use of salivary biomarkers in biobehavioral research: Cotton-based sample collection methods can interfere with salivary immunoassay results. Psychoneuroendocrinology 2001, 26, 165–173. [Google Scholar] [CrossRef]
- Contreras-Aguilar, M.D.; Escribano, D.; Martínez-Subiela, S.; Martínez-Miró, S.; Rubio, M.; Tvarijonaviciute, A.; Tecles, F.; Cerón, J.J. Influence of the way of reporting alpha-Amylase values in saliva in different naturalistic situations: A pilot study. PLoS ONE 2017, 12, e0180100. [Google Scholar] [CrossRef] [PubMed]
- Chielle, E.O.; Casarin, J.N. Evaluation of salivary oxidative parameters in overweight and obese young adults. Arch. Endocrinol. Metab. 2017, 61, 152–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondakova, I.; Lissi, E.A.; Pizarro, M. Total reactive antioxidant potential in human saliva of smokers and non-smokers. IUBMB Life 1999, 47, 911–920. [Google Scholar] [CrossRef]
- Sánchez-Medina, L.; González-Badillo, J.J. Velocity loss as an indicator of neuromuscular fatigue during Resistance Training. Med. Sci. Sports Excerc. 2011, 43, 1725–1734. [Google Scholar] [CrossRef] [PubMed]
- Rohleder, N.; Nater, U.M. Determinants of salivary alpha-amylase in humans and methodological considerations. Psychoneuroendocrinology 2009, 34, 469–485. [Google Scholar] [CrossRef]
- Riis, J.; Bryce, C.; Hand, T.; Bayer, J.; Matin, M.; Stebbins, J.; Kornienko, O.; Segal, S.; van Huisstede, L.; Granger, D. The validity, stability, and utility of measuring uric acid in saliva: A salivary bioscience-biobehavioral research interface. Biomark. Med. 2018, 12, 583–596. [Google Scholar] [CrossRef]
- Lamey, P.; Nolan, A. The recovery of human saliva using the Salivette system. Eur. J. Clin. Chem. Clin. Biochem. 1994, 32, 727. [Google Scholar] [PubMed]
- Kruger, C.; Breunig, C.; BiskupekSigwart, J.; Dorr, H. Problems with salivary17-hydroxyprogesterone determinations using the Salivette(R) device. Eur. J. Clin. Chem. Clin. Biochem. 1996, 34, 927–929. [Google Scholar]
Sample Type | TLF (6 × 10) | TNLF (6 × 5) | ||||||
---|---|---|---|---|---|---|---|---|
Pre | Post_60 | Post_24 | Post_48 | Pre | Post_60 | Post_24 | Post_48 | |
Serum (mg/dL) | 5.36 (4.08–6.61) | 5.92 (4.85–6.99) * | 5.97 (4.58–6.81) ** | 5.58 (4.34–6.18) | 4.98 (4.18–6.28) | 4.81 (4.22–6.14) | 5.37 (4.27–6.16) | 5.38 (3.87–5.92) |
Salivette (mg/dL) | 2.10 (1.76–3.11) | 2.73 (2.25–3.53) * | 2.23 (1.44–2.62) | 2.17 (1.88–3.14) | 1.74 (1.61–2.42) | 1.97 (1.56–2.77) | 1.99 (1.50–2.57) | 2.29 (1.66–3.00) * |
Salivettex Flow Rate (mg/min) | 4.16 (3.14–5.49) | 4.98 (3.52–6.84) * | 3.01 (2.42–5.13) | 4.09 (2.92–5.71) | 3.64 (3.14–4.49) | 5.10 (3.10–6.62) ** | 3.15 (2.51–4.31) | 3.98 (3.50–4.82) |
Salivetter/TP (mg/mg) | 5.80 (5.08–6.83) | 3.65 (2.28–4.35) * | 5.05 (3.15–6.98) | 4.65 (3.40–5.85) | 6.64 (4.98–8.89) | 2.64 (1.91–4.64) *** | 4.67 (3.49–9.01) | 5.47 (4.41–8.06) |
Passive Drool (mg/dL) | 2.47 (1.30–3.07) | 2.77 (1.86–4.85) * | 2.52 (1.48–2.84) | 2.28 (0.96–2.51) | 1.92 (1.02–2.69) | 2.40 (1.27–2.95) * | 1.86 (1.46–2.56) | 1.73 (1.33–2.64) |
Passive Drool × Flow Rate (mg/min ) | 2.54 (1.16–4.41) | 4.51 (1.80–8.89) * | 3.57 (1.58–4.14) | 2.15 (0.90–3.81) | 1.80 (1.24–3.02) | 1.75 (1.21–4.03) | 2.20 (1.37–3.78) | 2.27 (1.27–3.56) |
Passive Drool/ TP (mg/mg) | 6.61 (3.37–8.58) | 5.86 (3.19–9.15) | 5.68 (2.86–10.40) | 4.42 (2.31–16.6) | 1.92 (1.02–2.69) | 2.40 (1.27–2.95) * | 1.86 (1.46–2.56) | 1.73 (1.33–2.64) |
Analyte | Serum | Salivette | Passive Drool |
---|---|---|---|
Uric Acid, mg/dL | 5.38 (4.25–6.36) | 2.11 (1.67–2.76) * | 2.17 (1.40–2.84) * |
Sample type | Spearman r | 95% Confidence Interval | p Value |
---|---|---|---|
Salivette | 0.4344 | 0.2506–0.5880 | <0.001 |
Salivette Flow | 0.1795 | −0.02787–0.3720 | 0.080 |
Salivette/TP | 0.1676 | −0.04009–0.3614 | 0.102 |
Passive Drool | 0.3728 | 0.07919–0.4605 | 0.031 |
Passive Drool Flow | 0.3541 | 0.1131–0.4871 | 0.089 |
Passive Drool/TP | 0.09 | −0.3365–0.4859 | 0.170 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Hernández, J.M.; Franco, L.; Colomer-Poveda, D.; Martinez-Subiela, S.; Cugat, R.; Cerón, J.J.; Márquez, G.; Martínez-Aranda, L.M.; Jimenez-Reyes, P.; Tvarijonaviciute, A. Influence of Sampling Conditions, Salivary Flow, and Total Protein Content in Uric Acid Measurements in Saliva. Antioxidants 2019, 8, 389. https://doi.org/10.3390/antiox8090389
González-Hernández JM, Franco L, Colomer-Poveda D, Martinez-Subiela S, Cugat R, Cerón JJ, Márquez G, Martínez-Aranda LM, Jimenez-Reyes P, Tvarijonaviciute A. Influence of Sampling Conditions, Salivary Flow, and Total Protein Content in Uric Acid Measurements in Saliva. Antioxidants. 2019; 8(9):389. https://doi.org/10.3390/antiox8090389
Chicago/Turabian StyleGonzález-Hernández, Jorge M., Lorena Franco, David Colomer-Poveda, Silvia Martinez-Subiela, Ramón Cugat, José J. Cerón, Gonzalo Márquez, Luis M. Martínez-Aranda, Pedro Jimenez-Reyes, and Asta Tvarijonaviciute. 2019. "Influence of Sampling Conditions, Salivary Flow, and Total Protein Content in Uric Acid Measurements in Saliva" Antioxidants 8, no. 9: 389. https://doi.org/10.3390/antiox8090389
APA StyleGonzález-Hernández, J. M., Franco, L., Colomer-Poveda, D., Martinez-Subiela, S., Cugat, R., Cerón, J. J., Márquez, G., Martínez-Aranda, L. M., Jimenez-Reyes, P., & Tvarijonaviciute, A. (2019). Influence of Sampling Conditions, Salivary Flow, and Total Protein Content in Uric Acid Measurements in Saliva. Antioxidants, 8(9), 389. https://doi.org/10.3390/antiox8090389