Biological and Chemical Insights of Beech (Fagus sylvatica L.) Bark: A Source of Bioactive Compounds with Functional Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Sample
2.3. Extraction
2.4. Quantitative Determinations of Total Phenolic Content
2.5. Phytochemical Analysis by LC-MS/MS
2.6. Antioxidant Activity Assays
2.7. Antidiabetic (Glucosidase inhibitory) Assay
2.8. Tyrosinase Inhibitory Activity
2.9. Assay of Antimicrobial Activity
2.9.1. Bacteria and Culture Conditions
2.9.2. Microdilution Method
2.9.3. Antifungal Activity
2.10. Mutagen and Antimutagen Activity
2.11. Statistical Analysis
3. Results and Discussion
3.1. Fitting of the Experimental Data with the Models
3.2. Optimization of the Extraction Parameters
3.3. Identification and Quantification of Individual Polyphenols
3.4. Assay of the Antioxidant Activity
3.5. Assay of the Antimicrobial Activity
3.6. Antimutagenity Activity
3.7. In Vitro Enzyme Inhibitory Properties of Beech Bark Extracts—α-Glucosidase (Antidiabetic) and Tyrosinase Inhibitory Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Alfredsen, G.; Solheim, H.; Slimestad, R. Antifungal effect of bark extracts from some European tree species. Eur. J. For. Res. 2008, 127, 387. [Google Scholar] [CrossRef]
- Tanase, C.; Coșarcă, S.; Muntean, D.-L. A critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity. Molecules 2019, 24, 1182. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, J.; Ferreres, F.; Gil-Izquierdo, Á.; Videira, R.A.; Valentão, P.; Veiga, F.; Andrade, P.B. In Vitro Multimodal-Effect of Trichilia catigua A. Juss. (Meliaceae) Bark Aqueous Extract in CNS Targets. J. Ethnopharmacol. 2018, 211, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Pathania, A.S.; Saxena, A.K.; Vishwakarma, R.A.; Ali, A.; Bhushan, S. The Anticancer Potential of Flavonoids Isolated from the Stem Bark of Erythrina suberosa through Induction of Apoptosis and Inhibition of STAT Signaling Pathway in Human Leukemia HL-60 Cells. Chem.-Biol. Interact. 2013, 205, 128–137. [Google Scholar] [CrossRef]
- de Souza Santos, C.C.; Guilhon, C.C.; Moreno, D.S.A.; Alviano, C.S.; dos Santos Estevam, C.; Blank, A.F.; Fernandes, P.D. Anti-Inflammatory, Antinociceptive and Antioxidant Properties of Schinopsis brasiliensis Bark. J. Ethnopharmacol. 2018, 213, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Salih, E.Y.A.; Kanninen, M.; Sipi, M.; Luukkanen, O.; Hiltunen, R.; Vuorela, H.; Julkunen-Tiitto, R.; Fyhrquist, P. Tannins, Flavonoids and Stilbenes in Extracts of African Savanna Woodland Trees Terminalia brownii, Terminalia laxiflora and Anogeissus leiocarpus Showing Promising Antibacterial Potential. S. Afr. J. Bot. 2017, 108, 370–386. [Google Scholar] [CrossRef]
- Ambika; Singh, P.P.; Chauhan, S.M.S. Activity-Guided Isolation of Antioxidants from the Leaves of Terminalia arjuna. Nat. Prod. Res. 2014, 28, 760–763. [Google Scholar] [CrossRef] [PubMed]
- Ferreres, F.; Gomes, N.G.M.; Valentão, P.; Pereira, D.M.; Gil-Izquierdo, A.; Araújo, L.; Silva, T.C.; Andrade, P.B. Leaves and Stem Bark from Allophylus africanus P. Beauv.: An Approach to Anti-Inflammatory Properties and Characterization of Their Flavonoid Profile. Food Chem. Toxicol. 2018, 118, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Bolte, A.; Czajkowski, T.; Kompa, T. The North-Eastern Distribution Range of European Beech—A Review. For. Int. J. For. Res. 2007, 80, 413–429. [Google Scholar] [CrossRef]
- Hofmann, T. Antioxidant Efficiency of Beech (Fagus sylvatica L.) Bark Polyphenols Assessed by Chemometric Methods. Ind. Crops Prod. 2017, 108, 26–35. [Google Scholar] [CrossRef]
- Tanase, C.; Cosarca, S.; Toma, F.; Mare, A.; Man, A.; Miklos, A.; Imre, S.; Boz, I. Antibacterial Activities of Beech Bark (Fagus sylvatica L.) Polyphenolic Extract. Environ. Eng. Manag. J. 2018, 17. [Google Scholar] [CrossRef]
- Hofmann, T.; Nebehaj, E.; Albert, L. The High-Performance Liquid Chromatography/Multistage Electrospray Mass Spectrometric Investigation and Extraction Optimization of Beech (Fagus sylvatica L.) Bark Polyphenols. J. Chromatogr. A 2015, 1393, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Coșarcă, S.-L. Spruce and Beech Bark Aqueous Extracts: Source of Polyphenols, Tannins and Antioxidants Correlated to in Vitro Antitumor Potential on Two Different Cell Lines. Wood Sci. Technol. 2019, 53, 313–333. [Google Scholar] [CrossRef]
- Sánchez-Rangel, J.C.; Benavides, J.; Heredia, J.B.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. The Folin–Ciocalteu Assay Revisited: Improvement of Its Specificity for Total Phenolic Content Determination. Anal. Methods 2013, 5, 5990–5999. [Google Scholar] [CrossRef]
- Rusu, M.E.; Gheldiu, A.-M.; Mocan, A.; Moldovan, C.; Popa, D.-S.; Tomuta, I.; Vlase, L. Process Optimization for Improved Phenolic Compounds Recovery from Walnut (Juglans regia L.) Septum: Phytochemical Profile and Biological Activities. Molecules 2018, 23, 2814. [Google Scholar] [CrossRef] [PubMed]
- Toiu, A.; Mocan, A.; Vlase, L.; Pârvu, A.E.; Vodnar, D.C.; Gheldiu, A.-M.; Moldovan, C.; Oniga, I. Phytochemical Composition, Antioxidant, Antimicrobial and in Vivo Anti-Inflammatory Activity of Traditionally Used Romanian Ajuga laxmannii (Murray) Benth. (“Nobleman’s Beard”—Barba Împăratului). Front Pharm. 2018, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Martins, N.; Barros, L.; Dueñas, M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Characterization of Phenolic Compounds and Antioxidant Properties of Glycyrrhiza glabra L. Rhizomes and Roots. RSC Adv. 2015, 5, 26991–26997. [Google Scholar] [CrossRef]
- Mocan, A.; Schafberg, M.; Crișan, G.; Rohn, S. Determination of Lignans and Phenolic Components of Schisandra chinensis (Turcz.) Baill. Using HPLC-ESI-ToF-MS and HPLC-Online TEAC: Contribution of Individual Components to Overall Antioxidant Activity and Comparison with Traditional Antioxidant Assays. J. Funct. Foods 2016, 24, 579–594. [Google Scholar] [CrossRef]
- Damiano, S.; Forino, M.; De, A.; Vitali, L.A.; Lupidi, G.; Taglialatela-Scafati, O. Antioxidant and Antibiofilm Activities of Secondary Metabolites from Ziziphus jujuba Leaves Used for Infusion Preparation. Food Chem. 2017, 230, 24–29. [Google Scholar] [CrossRef]
- Les, F.; Venditti, A.; Cásedas, G.; Frezza, C.; Guiso, M.; Sciubba, F.; Serafini, M.; Bianco, A.; Valero, M.S.; López, V. Everlasting Flower (Helichrysum stoechas Moench) as a Potential Source of Bioactive Molecules with Antiproliferative, Antioxidant, Antidiabetic and Neuroprotective Properties. Ind. Crops Prod. 2017, 108, 295–302. [Google Scholar] [CrossRef]
- Spínola, V.; Castilho, P.C. Evaluation of Asteraceae Herbal Extracts in the Management of Diabetes and Obesity. Contribution of Caffeoylquinic Acids on the Inhibition of Digestive Enzymes Activity and Formation of Advanced Glycation End-Products (in Vitro). Phytochemistry 2017, 143, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-H.; Chan, H.-C.; Chu, Y.-T.; Ho, H.-Y.; Chen, P.-Y.; Lee, T.-H.; Lee, C.-K. Antioxidant Activity of Some Plant Extracts towards Xanthine Oxidase, Lipoxygenase and Tyrosinase. Molecules 2009, 14, 2947–2958. [Google Scholar] [CrossRef] [PubMed]
- Maron, D.M.; Ames, B.N. Revised Methods for the Salmonella Mutagenicity Test. Mutat. Res.Environ. Mutagen. Relat. Subj. 1983, 113, 173–215. [Google Scholar] [CrossRef]
- Saraç, N.; Şen, B. Antioxidant, Mutagenic, Antimutagenic Activities, and Phenolic Compounds of Liquidambar Orientalis Mill. Var. Orientalis. Ind. Crops Prod. 2014, 53, 60–64. [Google Scholar] [CrossRef]
- Ong, T.; Whong, W.-Z.; Stewart, J.; Brockman, H.E. Chlorophyllin: A Potent Antimutagen against Environmental and Dietary Complex Mixtures. Mutat. Res. Lett. 1986, 173, 111–115. [Google Scholar] [CrossRef]
- Evandri, M.G.; Battinelli, L.; Daniele, C.; Mastrangelo, S.; Bolle, P.; Mazzanti, G. The Antimutagenic Activity of Lavandula angustifolia (Lavender) Essential Oil in the Bacterial Reverse Mutation Assay. Food Chem. Toxicol. 2005, 43, 1381–1387. [Google Scholar] [CrossRef]
- Eriksson, L.; Johansson, E.; Kettaneh-World, N.; Wold, S. Design of Experiments. Principles and Applications; Umetrics Academy: Umeå, Sweden, 2008. [Google Scholar]
- Valencia-Avilés, E.; García-Pérez, E.M.; Garnica-Romo, G.M.; Figueroa-Cárdenas, D.J.; Meléndez-Herrera, E.; Salgado-Garciglia, R.; Martínez-Flores, E.H. Antioxidant Properties of Polyphenolic Extracts from Quercus laurina, Quercus crassifolia, and Quercus scytophylla Bark. Antioxidants 2018, 7, 81. [Google Scholar] [CrossRef]
- Kumar, A.; Anand, V.; Dubey, R.C.; Goel, K.K. Evaluation of Antioxidant Potential of Alcoholic Stem Bark Extracts of Bauhinia variegata Linn. JANS 2019, 11. [Google Scholar] [CrossRef]
- Panelli, F.M.; Pierine, T.D.; De Souza, L.S.; Ferron, J.A.; Garcia, L.J.; Santos, C.K.; Belin, A.M.; Lima, P.G.; Borguini, G.M.; Minatel, O.I.; et al. Bark of Passiflora edulis Treatment Stimulates Antioxidant Capacity, and Reduces Dyslipidemia and Body Fat in Db/Db Mice. Antioxidants 2018, 7, 120. [Google Scholar] [CrossRef]
- Grzesik, M.; Naparło, K.; Bartosz, G.; Sadowska-Bartosz, I. Antioxidant Properties of Catechins: Comparison with Other Antioxidants. Food Chem. 2018, 241, 480–492. [Google Scholar] [CrossRef]
- Pereira, R.B.; Sousa, C.; Costa, A.; Andrade, P.B.; Valentão, P. Glutathione and the Antioxidant Potential of Binary Mixtures with Flavonoids: Synergisms and Antagonisms. Molecules 2013, 18, 8858–8872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ke, F.; Zhang, M.; Qin, N.; Zhao, G.; Chu, J.; Wan, X. Synergistic Antioxidant Activity and Anticancer Effect of Green Tea Catechin Stabilized on Nanoscale Cyclodextrin-Based Metal–Organic Frameworks. J. Mater. Sci. 2019, 54, 10420–10429. [Google Scholar] [CrossRef]
- Negi, P.S.; Jayaprakasha, G.K.; Jena, B.S. Antioxidant and Antimutagenic Activities of Pomegranate Peel Extracts. Food Chem. 2003, 80, 393–397. [Google Scholar] [CrossRef]
- Kim, K.Y.; Nam, K.A.; Kurihara, H.; Kim, S.M. Potent α-Glucosidase Inhibitors Purified from the Red Alga Grateloupia elliptica. Phytochemistry 2008, 69, 2820–2825. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Narwal, S.; Kumar, V.; Prakash, O. α-Glucosidase Inhibitors from Plants: A Natural Approach to Treat Diabetes. Pharm. Rev. 2011, 5, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Adisakwattana, S.; Lerdsuwankij, O.; Poputtachai, U.; Minipun, A.; Suparpprom, C. Inhibitory Activity of Cinnamon Bark Species and Their Combination Effect with Acarbose against Intestinal α-Glucosidase and Pancreatic α-Amylase. Plant Foods Hum. Nutr. 2011, 66, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Quan, N.V.; Xuan, T.D.; Tran, H.-D.; Thuy, N.T.D.; Trang, L.T.; Huong, C.T.; Andriana, Y.; Tuyen, P.T. Antioxidant, α-Amylase and α-Glucosidase Inhibitory Activities and Potential Constituents of Canarium Tramdenum Bark. Molecules 2019, 24, 605. [Google Scholar] [CrossRef]
- Fu, R.; Zhang, Y.; Guo, Y.; Chen, F. Antioxidant and Tyrosinase Inhibition Activities of the Ethanol-Insoluble Fraction of Water Extract of Sapium sebiferum (L.) Roxb. Leaves. S. Afr. J. Bot. 2014, 93, 98–104. [Google Scholar] [CrossRef]
Variables | Symbol | Level of Variation | |||
---|---|---|---|---|---|
Independent Variables (Factors) | |||||
Extraction time (min) | X1 | 2 | 3 | 4 | |
Microwave power (W) | X2 | 300 | 450 | 600 | 800 |
Dependent Variables (Responses) | |||||
Extraction solvent-water | BBE 1 | ||||
Extraction solvent—50:50 ethanol–water | BBE 2 | ||||
Extraction solvent—80:20 ethanol–water | BBE 3 |
Sample Code | Run Order | Independent Variables (Factors) | Dependent Variables (Responses) | |||
---|---|---|---|---|---|---|
Extraction Time (min) | Microwave Power (W) | BBE 1 | BBE 2 | BBE 3 | ||
(TPC mg GAE/g Dry Plant Material ± SD) | ||||||
N1 | 1 | 2 | 300 | 51.53 | 67.27 | 62.26 |
N2 | 6 | 4 | 300 | 47.44 | 76.46 | 61.87 |
N3 | 3 | 3 | 300 | 50.53 | 69.59 | 64.77 |
N4 | 2 | 2 | 450 | 56.79 | 66.43 | 66.20 |
N5 | 7 | 4 | 450 | 48.19 | 77.53 | 66.00 |
N6 | 5 | 3 | 450 | 54.55 | 70.32 | 67.86 |
N7 | 11 | 4 | 600 | 52.79 | 72.43 | 70.95 |
N8 | 10 | 3 | 600 | 58.61 | 72.06 | 70.20 |
N9 | 8 | 2 | 800 | 71.80 | 73.02 | 64.12 |
N10 | 14 | 2 | 800 | 72.31 | 72.46 | 64.27 |
N11 | 4 | 4 | 800 | 56.15 | 73.23 | 65.97 |
N12 | 12 | 4 | 800 | 55.68 | 73.32 | 66.07 |
N13 | 9 | 3 | 600 | 58.91 | 72.09 | 69.81 |
N14 | 15 | 3 | 600 | 59.00 | 71.91 | 70.33 |
N15 | 13 | 3 | 600 | 59.10 | 71.92 | 69.93 |
Extraction Solvent | Symbol | Extraction Time (min) | Microwave Power (W) | DoE Predicted Values | Experimental Obtained Values | Recovery (%) |
---|---|---|---|---|---|---|
(TPC mg GAE/g Plant Material) | ||||||
water | BBE 1 | 2 | 800 | 72.05 | 69.76 | 96.82 |
50:50 ethanol–water | BBE 2 | 4 | 300 | 76.55 | 76.31 | 99.69 |
80:20 ethanol–water | BBE 3 | 3.1 | 600 | 70.09 | 69.75 | 99.51 |
Sample Code | Bioactive Compounds | |||||
---|---|---|---|---|---|---|
(−)-Epicatechin | (+)-Catechin | Syringic Acid | Gallic Acid | Protocatechuic Acid | Vanillic Acid | |
BBE1 | 22.7 ± 2.72 | 300.7 ± 44.22 | 24.2 ± 3.02 | 1.9 ± 0.14 | 3.3 ± 0.29 | 49.9 ± 7.28 |
BBE2 | 39.6 ± 3.24 | 577.4 ± 56.58 | 7.5 ± 0.78 | NF | 6.2 ± 0.41 | 18.0 ± 1.52 |
BBE3 | 33.4 ± 3.55 | 465.1 ± 51.62 | 5.8 ± 0.68 | NF | 5.7 ± 0.74 | 16.1 ± 1.55 |
Sample Code | TPC mg GAE/g of Dry Extract | DPPH mg TE/g of Dry Extract | TEAC mg TE/g of Dry Extract | FRAP mg TE/g of Dry Extract |
---|---|---|---|---|
BBE 1 | 69.76 ± 1.54 | 676.29 ± 19.80 | 472.08 ± 67.07 | 625.13 ± 9.62 |
BBE 2 | 76.49 ± 2.41 | 741.43 ± 59.44 | 619.85 ± 20.75 | 783.24 ± 31.24 |
BBE 3 | 69.86 ± 1.04 | 505.02 ± 42.02 | 464.41 ± 37.42 | 592.84 ± 44.02 |
Sample Code | Bacteria | |||
---|---|---|---|---|
Staphylococcus aureus (ATCC 49444) | Escherichia coli (ATCC 25922) | Pseudomonas aeruginosa (ATCC 27853) | Salmonella typhimurium (ATCC 14028) | |
Minimum Inhibitory Concentration (MIC) | ||||
BBE1 | 1.56 | 3 | 3 | 3 |
BBE2 | 1.56 | 3 | 3 | 3 |
BBE3 | 1.56 | 3 | 3 | 3 |
Minimum Bactericidal Concentration (MBC) | ||||
BBE1 | 3.12 | 6 | 6 | 6 |
BBE2 | 3.12 | 6 | 6 | 6 |
BBE3 | 3.12 | 6 | 6 | 6 |
Sample Code | Fungi | ||
---|---|---|---|
Candida albicans (ATCC 10231) | Candida parapsilosis (ATCC 22019) | Candida zeylanoides (ATCC 20356) | |
Minimum Inhibitory Concentration (MIC) | |||
BBE1 | 25 | 25 | 25 |
BBE2 | NF | >50 | >50 |
BBE3 | NF | >50 | >50 |
Minimum Fungicidal Concentration (MFC) | |||
BBE1 | 50 | 50 | 50 |
BBE2 | NF | >50 | >50 |
BBE3 | NF | >50 | >50 |
Test Item | Number of Revertants | |||
---|---|---|---|---|
TA 98 | TA100 | |||
Mean ± SD | Inhibition % | Mean ± SD | Inhibition % | |
Negative Control | 9.25 ± 3.6 a | 9.25 ± 2.4 b | ||
BBE1 a | 161 ± 3.6 | 17,01 | 292 ± 6.4 | 16,33 |
BBE2 a | 187 ± 4.4 | 3.60 | 295 ± 6.4 | 15.47 |
BBE3 a | 172 ± 3.8 | 11.34 | 294 ± 6.2 | 15,75 |
4-NPD c | 193 ± 3.4 | - | - | - |
NaN3 c | - | - | 349 ± 15.22 | - |
Nr. crt. | Sample | Glucosidase Inhibition (IC50 µg/mL) | Tyrosinase Inhibition (PI—4.025 mg/mL) |
---|---|---|---|
1. | BBE1 | 92 | NF |
2. | BBE2 | 168 | 45.99 ± 5.26% |
3. | BBE3 | 38 | NF |
4. | Acarbose | 838 | - |
5 | Kojic acid (1 mg/mL) | - | 97.61 ± 0.24% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanase, C.; Mocan, A.; Coșarcă, S.; Gavan, A.; Nicolescu, A.; Gheldiu, A.-M.; Vodnar, D.C.; Muntean, D.-L.; Crișan, O. Biological and Chemical Insights of Beech (Fagus sylvatica L.) Bark: A Source of Bioactive Compounds with Functional Properties. Antioxidants 2019, 8, 417. https://doi.org/10.3390/antiox8090417
Tanase C, Mocan A, Coșarcă S, Gavan A, Nicolescu A, Gheldiu A-M, Vodnar DC, Muntean D-L, Crișan O. Biological and Chemical Insights of Beech (Fagus sylvatica L.) Bark: A Source of Bioactive Compounds with Functional Properties. Antioxidants. 2019; 8(9):417. https://doi.org/10.3390/antiox8090417
Chicago/Turabian StyleTanase, Corneliu, Andrei Mocan, Sanda Coșarcă, Alexandru Gavan, Alexandru Nicolescu, Ana-Maria Gheldiu, Dan C. Vodnar, Daniela-Lucia Muntean, and Ovidiu Crișan. 2019. "Biological and Chemical Insights of Beech (Fagus sylvatica L.) Bark: A Source of Bioactive Compounds with Functional Properties" Antioxidants 8, no. 9: 417. https://doi.org/10.3390/antiox8090417
APA StyleTanase, C., Mocan, A., Coșarcă, S., Gavan, A., Nicolescu, A., Gheldiu, A. -M., Vodnar, D. C., Muntean, D. -L., & Crișan, O. (2019). Biological and Chemical Insights of Beech (Fagus sylvatica L.) Bark: A Source of Bioactive Compounds with Functional Properties. Antioxidants, 8(9), 417. https://doi.org/10.3390/antiox8090417