Antioxidative Characteristics of Chicken Breast Meat and Blood after Diet Supplementation with Carnosine, L-histidine, and β-alanine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Experimental Design, Diets, Performance Indices
2.2. Blood Collection and Muscles Preparation for Analyses
2.3. Chemical Composition
2.4. Amino Acids Profile
2.5. Radical Scavenging Ability
2.6. Activity of Antioxidant Enzymes
2.7. Histidine Dipeptides Content—HPLC Method
2.8. Statistical Analysis
3. Results
3.1. Performance Indices of Chickens
3.2. Antioxidant System in Chicken Muscles
3.3. Antioxidant System in Chicken Blood
3.4. Amino Acids Content in Chicken Muscles
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kulczyński, B.; Sidor, A.; Gramza-Michałowska, A. Characteristics of Selected Antioxidative and Bioactive Compounds in Meat and Animal Origin Products. Antioxidant 2019, 8, 335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, B.; Wang, J.; Ma, Y.-B.; Wu, S.-G.; Qi, G.; Zhang, H.-J. Effect of dietary β-alanine supplementation on growth performance, meat quality, carnosine content, and gene expression of carnosine-related enzymes in broilers. Poult. Sci. 2018, 97, 1220–1228. [Google Scholar] [CrossRef] [PubMed]
- Robbins, K.R.; Baker, D.H.; Norton, H.W. Histidine Status in the Chick as Measured by Growth Rate, Plasma Free Histidine and Breast Muscle Carnosine. J. Nutr. 1977, 107, 2055–2061. [Google Scholar] [CrossRef] [PubMed]
- Tomonaga, S.; Kaji, Y.; Tachibana, T.; Denbow, D.M.; Furuse, M. Oral administration of β-alanine modifies carnosine concentrations in the muscles and brains of chickens. Anim. Sci. J. 2005, 76, 249–254. [Google Scholar] [CrossRef]
- Hu, X.; Hongtrakul, K.; Ji, C.; Ma, Q.; Guan, S.; Song, C.; Zhang, Y.; Zhao, L. Effect of Carnosine on Growth Performance, Carcass Characteristics, Meat Quality and Oxidative Stability in Broiler Chickens. J. Poult. Sci. 2009, 46, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Kai, S.; Watanabe, G.; Kubota, M.; Kadowaki, M.; Fujimura, S. Effect of dietary histidine on contents of carnosine and anserine in muscles of broilers. Anim. Sci. J. 2014, 86, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Chee, M.E.; Zhang, H.; Zhang, W.; Mine, Y. Carnosine—a natural bioactive dipeptide: Bioaccessibility, bioavailability and health benefits. J. Food Bioact. 2019, 5, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Auh, J.; Namgung, N.; Shin, K.; Park, S.; Paik, I. Effects of Supplementary Blood Meal on the Content of Carnosine and Anserine in Broiler Meat. J. Poult. Sci. 2010, 47, 302–309. [Google Scholar] [CrossRef] [Green Version]
- Kopeć, W.; Jamroz, D.; Wiliczkiewicz, A.; Biazik, E.; Hikawczuk, T.; Skiba, T.; Pudło, A.; Orda, J. Antioxidation status and histidine dipeptides content in broiler blood and muscles depending on protein sources in feed. J. Anim. Physiol. Anim. Nutr. 2012, 97, 586–598. [Google Scholar] [CrossRef]
- Cong, J.; Zhang, L.; Li, J.; Wang, S.; Gao, F.; Zhou, G. Effects of dietary supplementation with carnosine on meat quality and antioxidant capacity in broiler chickens. Br. Poult. Sci. 2016, 58, 69–75. [Google Scholar] [CrossRef]
- Cong, J.; Zhang, L.; Li, J.; Wang, S.; Gao, F.; Zhou, G. Effects of dietary supplementation with carnosine on growth performance, meat quality, antioxidant capacity and muscle fiber characteristics in broiler chickens. J. Sci. Food Agric. 2017, 97, 3733–3741. [Google Scholar] [CrossRef]
- Ogata, H.Y. Muscle buffering capacity of yellowtail fed diets supplemented with crystalline histidine. J. Fish Biol. 2002, 61, 1504–1512. [Google Scholar] [CrossRef]
- Teufel, M.; Saudek, V.; Ledig, J.-P.; Bernhardt, A.; Boularand, S.; Carreau, A.; Cairns, N.J.; Carter, C.; Cowley, D.J.; Duverger, D.; et al. Sequence Identification and Characterization of Human Carnosinase and a Closely Related Non-specific Dipeptidase. J. Biol. Chem. 2002, 278, 6521–6531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Black, M.I.; Jones, A.M.; Morgan, P.T.; Bailey, S.J.; Fulford, J.; Vanhatalo, A. The Effects of β-Alanine Supplementation on Muscle pH and the Power-Duration Relationship during High-Intensity Exercise. Front. Physiol. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Culbertson, J.Y.; Kreider, R.B.; Greenwood, M.; Cooke, M.B. Effects of Beta-Alanine on Muscle Carnosine and Exercise Performance: A Review of the Current Literature. Nutrients 2010, 2, 75. [Google Scholar] [CrossRef] [Green Version]
- Łukasiewicz, M.; Puppel, K.; Kuczyńska, B.; Kamaszewski, M.; Niemiec, J. β-Alanine as a factor influencing the content of bioactive dipeptides in muscles of Hubbard Flex chickens. J. Sci. Food Agric. 2014, 95, 2562–2565. [Google Scholar] [CrossRef]
- Haug, A.; R⊘dbotten, R.; Mydland, L.T.; Christophersen, O.A. Increased broiler muscle carnosine and anserine following histidine supplementation of commercial broiler feed concentrate. Acta Agric. Scand. Sect. A. Anim. Sci. 2008, 58, 71–77. [Google Scholar] [CrossRef]
- Kopeć, W.; Wiliczkiewicz, A.; Jamroz, D.; Biazik, E.; Pudło, A.; Hikawczuk, T.; Skiba, T.; Korzeniowska, M. Antioxidant status of turkey breast meat and blood after feeding a diet enriched with histidine. Poult. Sci. 2016, 95, 53–61. [Google Scholar] [CrossRef]
- Kralik, G.; Sak-Bosnar, M.; Kralik, Z.; Galović, O. Effects of β-Alanine Dietary Supplementation on Concentration of Carnosine and Quality of Broiler Muscle Tissue. J. Poult. Sci. 2013, 51, 151–156. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Council Directive 2007/43/EC of 28 June 2007 laying down minimum rules for the protection of chickens kept for meat production. Off. J. Eur. Union 2007, 182, 19–28. [Google Scholar]
- Regulation, C. Council Regulation (EC) No 1099/2009 of 24 September 2009 on the protection of animals at the time of killing. Off. J. Eur. Union 2009, 303, 1. [Google Scholar]
- Gornall, A.G.; Bardawill, C.J.; David, M.M. Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. 1949, 177, 751–766. [Google Scholar] [PubMed]
- Sacchetti, G.; Di Mattia, C.; Pittia, P.; Martino, G. Application of a radical scavenging activity test to measure the total antioxidant activity of poultry meat. Meat Sci. 2008, 80, 1081–1085. [Google Scholar] [CrossRef]
- Moore, S.; Stein, N.H. Discussion of classic methods of acid hydrolysis. Methods Enzymol. 1963, 6, 819. [Google Scholar]
- Landry, J.; Delhaye, S. Determination of tryptophan in feedstuffs–comparison of two methods of hydrolysis prior to HPLC analysis. J. Sci. Food. Agric. 1992, 58, 438–441. [Google Scholar] [CrossRef]
- Janssen, W. European Table of Energy Values for Poultry Feedstuffs, 3rd ed.; Spelderhg Cen. Poultry Res. & Ext.: Beekbergen, The Netherlands, 1989. [Google Scholar]
- Heinz, J. Warmia and Mazury University Olsztyn, PolandNutrient requirement of poultry. In Nutrient Value of the Feedstuffs and Feeding Recommendations, 4th ed.; PAN Kielanowski-Institute for Animal Physiology and Nutrition, Jablonna: Warsaw, Poland, 2005; p. 135. (In Polish) [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Jang, A.; Liu, X.-D.; Shin, M.-H.; Lee, B.-D.; Lee, S.K.; Lee, J.H.; Jo, C. Antioxidative Potential of Raw Breast Meat from Broiler Chicks Fed a Dietary Medicinal Herb Extract Mix. Poult. Sci. 2008, 87, 2382–2389. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aebi, H. Catalase; Elsevier BV: New York, NY, USA, 1974; Volume 3, pp. 673–684. [Google Scholar]
- Aristoy, M.; Mora, L. Histidine dipeptides HPLC-based test for the detection of mammalian origin proteins in feeds for ruminants. Meat Sci. 2004, 67, 211–217. [Google Scholar] [CrossRef]
- Henderson, J.W.; Ricker, R.D.; Bidlingmeyer, B.A.; Woodward, C. Rapid, accurate, sensitive, and reproducible HPLC analysis of amino acids. 2000. Available online: http://www.chem.agilent.com/Library/chromatograms/59801193.pdf (accessed on 13 March 2020).
- Leblanc, J.; Soucy, J. Effects of carnosine on insulin and glucagon secretion in the dog. Nutr. Res. 1994, 14, 1655–1660. [Google Scholar] [CrossRef]
- Yamano, T.; Niijima, A.; Iimori, S.; Tsuruoka, N.; Kiso, Y.; Nagai, K. Effect of L-carnosine on the hyperglycemia caused by intracranial injection of 2-deoxy-D-glucose in rats. Neurosci. Lett. 2001, 313, 78–82. [Google Scholar] [CrossRef]
- Lee, Y.-T.; Hsu, C.-C.; Lin, M.-H.; Liu, K.-S.; Yin, M.-C. Histidine and carnosine delay diabetic deterioration in mice and protect human low density lipoprotein against oxidation and glycation. Eur. J. Pharmacol. 2005, 513, 145–150. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, Y.C. Effect of β-alanine administration on carbon tetrachloride-induced acute hepatotoxicity. Amino Acids 2006, 33, 543–546. [Google Scholar] [CrossRef]
- Tiedje, K.; Stevens, K.; Barnes, S.; Weaver, D. β-Alanine as a small molecule neurotransmitter. Neurochem. Int. 2010, 57, 177–188. [Google Scholar] [CrossRef]
- Smith, C.; Song, W. Comparative nutrition of pantothenic acid. J. Nutr. Biochem. 1996, 7, 312–321. [Google Scholar] [CrossRef]
- Jacob, J.P.; Blair, R.; Hart, L.E.; Gardiner, E.E. The effect of taurine transport anatagonists on cardiac taurine concentration and the incidence of sudden death syndrome in male broiler chickens. Poult. Sci. 1991, 70, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Tomonaga, S.; Kaneko, K.; Kaji, Y.; Kido, Y.; Denbow, D.M.; Furuse, M. Dietary beta-alanine enhances brain, but not muscle, carnosine and anserine concentrations in broilers. Anim. Sci. J. 2006, 77, 79–86. [Google Scholar] [CrossRef]
- Boldyrev, A.A.; Severin, S.E. The histidine-containing dipeptides, carnosine and anserine: Distribution, properties and biological significance. Adv. Enzym. Regul. 1990, 30, 175–194. [Google Scholar] [CrossRef]
- Horinishi, H.; Grillo, M.; Margolis, F.L. Purification and characterization of carnosine synthase from mouse olfactory bulbs. J Neurochem. 1978, 31, 909–919. [Google Scholar] [CrossRef]
- Harris, R.C.; Wise, J.A.; Price, K.A.; Kim, H.J.; Kim, C.K.; Sale, C. Determinants of muscle carnosine content. Amino Acids 2012, 43, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Nagai, K.; Niijima, A.; Yamano, T.; Otani, H.; Okumra, N.; Tsuruoka, N.; Nakai, M.; Kiso, Y. Possible Role of L-Carnosine in the Regulation of Blood Glucose through Controlling Autonomic Nerves. Exp. Biol. Med. 2003, 228, 1138–1145. [Google Scholar] [CrossRef]
- Peters, V.; Jansen, E.E.; Jakobs, C.; Riedl, E.; Janssen, B.; Yard, B.A.; Wedel, J.; Hoffmann, G.F.; Zschocke, J.; Gotthardt, D.; et al. Anserine inhibits carnosine degradation but in human serum carnosinase (CN1) is not correlated with histidine dipeptide concentration. Clin. Chim. Acta 2011, 412, 263–267. [Google Scholar] [CrossRef]
- Seely, J.E.; Marshall, F.D. Carnosine levels in blood. Cell. Mol. Life Sci. 1981, 37, 1256–1257. [Google Scholar] [CrossRef]
- Pegova, A.; Abe, H.; Boldyrev, A. Hydrolysis of carnosine and related compounds by mammalian carnosinases. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2000, 127, 443–446. [Google Scholar] [CrossRef]
- Stadtman, E.R.; Berlett, B.S. Fenton chemistry. Amino acid oxidation. J. Biol. Chem. 1991, 266, 17201–17211. [Google Scholar]
- Edwards, C.J.; Fuller, J. Oxidative Stress in Erythrocytes. Comp. Haematol. Int. 1996, 6, 24–31. [Google Scholar] [CrossRef]
- Uchida, K.; Kawakishi, S. Identification of oxidized histidine generated at the active site of Cu,Zn-superoxide dismutase exposed to H2O2. Selective generation of 2-oxo-histidine at the histidine 118. J. Biol. Chem. 1994, 269, 2405–2410. [Google Scholar]
- Kang, J.H.; Kim, K.S.; Choi, S.Y.; Kwon, H.Y.; Won, M.H.; Kang, T.-C. Protective effects of carnosine, homocarnosine and anserine against peroxyl radical-mediated Cu,Zn-superoxide dismutase modification. Biochim. Biophys. Acta Gen. Subj. 2002, 1570, 89–96. [Google Scholar] [CrossRef]
- Ukeda, H.; Hasegawa, Y.; Harada, Y.; Sawamura, M. Effect of Carnosine and Related Compounds on the Inactivation of Human Cu,Zn-Superoxide Dismutase by Modification of Fructose and Glycolaldehyde. Biosci. Biotechnol. Biochem. 2002, 66, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Hewlings, S.; Kalman, D. A Review of Zinc-L-Carnosine and Its Positive Effects on Oral Mucositis, Taste Disorders, and Gastrointestinal Disorders. Nutrients 2020, 12, 665. [Google Scholar] [CrossRef] [Green Version]
- Bou, R.; Guardiola, F.; Barroeta, A.C.; Codony, R. Effect of dietary fat sources and zinc and selenium supplements on the composition and consumer acceptability of chicken meat. Poult. Sci. 2005, 84, 1129–1140. [Google Scholar] [CrossRef]
- Davison, A.J.; Kettle, A.J.; Fatur, D.J. Mechanism of the inhibition of catalase by ascorbate. Roles of active oxygen species, copper and semidehydroascorbate. J. Biol. Chem. 1986, 261, 1193–1200. [Google Scholar] [PubMed]
- Benzer, F.; Yilmaz, S. Effect on oxidative stress and antioxidant enzyme activities of experimentally induced Ornithobacterium rhinotracheale infection in broilers. J. Anim. Vet. Adv. 2009, 8, 548–553. [Google Scholar]
- Georgieva, N.; Stoyanchev, K.; Bozakova, N.; Jotova, I. Combined Effects of Muscular Dystrophy, Ecological Stress, and Selenium on Blood Antioxidant Status in Broiler Chickens. Biol. Trace Element Res. 2010, 142, 532–545. [Google Scholar] [CrossRef]
- Maraschiello, C.; Sárraga, A.C.; Regueiro, J.A.G. Glutathione Peroxidase Activity, TBARS, and α-Tocopherol in Meat from Chickens Fed Different Diets. J. Agric. Food Chem. 1999, 47, 867–872. [Google Scholar] [CrossRef]
- Ma, X.Y.; Jiang, Z.Y.; Lin, Y.C.; Zheng, C.; Zhou, G.L. Dietary supplementation with carnosine improves antioxidant capacity and meat quality of finishing pigs. J. Anim. Physiol. Anim. Nutr. 2010, 94, e286–e295. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Zhuang, H.; Zhou, G.; Zhang, J. Investigation of inhibition of lipid oxidation by L-carnosine using an oxidized-myoglobin-mediated washed fish muscle system. LWT 2018, 97, 703–710. [Google Scholar] [CrossRef]
- Aydın, A.F.; Küçükgergin, C.; Bingül, I.; Doğan-Ekici, I.; Doğru-Abbasoğlu, S.; Uysal, M. Effect of Carnosine on Renal Function, Oxidation and Glycation Products in the Kidneys of High-Fat Diet/Streptozotocin-Induced Diabetic Rats. Exp. Clin. Endocrinol. Diabetes 2017, 125, 282–289. [Google Scholar] [CrossRef]
- Elias, R.J.; Kellerby, S.S.; Decker, E.A. Antioxidant Activity of Proteins and Peptides. Crit. Rev. Food Sci. Nutr. 2008, 48, 430–441. [Google Scholar] [CrossRef] [PubMed]
- Husain, N.; Mahmood, R. Mitigation of Cu(II)-induced damage in human blood cells by carnosine: An in vitro study. Toxicol. Vitr. 2020, 68, 104956. [Google Scholar] [CrossRef]
- Cripps, M.J.; Hanna, K.; Lavilla, C.; Sayers, S.R.; Caton, P.W.; Sims, C.; De Girolamo, L.; Sale, C.; Turner, M.D. Carnosine scavenging of glucolipotoxic free radicals enhances insulin secretion and glucose uptake. Sci. Rep. 2017, 7, 13313. [Google Scholar] [CrossRef] [Green Version]
- Ghodsi, R.; Kheirouri, S. Carnosine and advanced glycation end products: A systematic review. Amino Acids 2018, 50, 1177–1186. [Google Scholar] [CrossRef]
Ingredient | Amount |
---|---|
Wheat [g/kg] | 396.00 |
Maize [g/kg] | 200.00 |
Rapeseed oil [g/kg] | 38.00 |
Soyabean meal [g/kg] | 327.00 |
Dicalcium phosphate [g/kg] | 19.65 |
Limestone [g/kg] | 2.45 |
NaCl [g/kg] | 3.50 |
Premix dka-s a [g/kg] | 10.00 |
DL—Met 98% [g/kg] | 2.32 |
L—Lys 98% [g/kg] | 1.03 |
Metabolic energy b [MJ/kg] | |
Chemical analysis | 11.98 |
Crude protein [g/kg] | 215.90 |
Crude fiber [g/kg] | 32.30 |
NDF [g/kg] | 11.56 |
ADF [g/kg] | 3.99 |
Crude fat [g/kg] | 56.90 |
Crude ash [g/kg] | 65.20 |
Ca [g/kg] | 9.17 |
Pavailable [g/kg] | 4.30 |
Na [g/kg] | 1.60 |
Mg [g/kg] | 1.62 |
Cu [mg/kg] | 8.93 |
Mn [mg/kg] | 80.00 |
Fe [mg/kg] | 365.65 |
Zn [mg/kg] | 59.60 |
Amino Acid | Treatments [g/kg] | ||||
---|---|---|---|---|---|
C | ExpH | ExpA | ExpH+A | ExpCar | |
Histidine | - | 1.8 (12) | - | 1.8 (12) | - |
β-Alanine | - | 0 | 3.2 (36) | 3.2 (36) | - |
Carnosine | - | - | - | - | 2.7 (12) eq. of 1.8 (12) His |
Item | Treatments [g/kg] | SEM d | p-Value | ||||
---|---|---|---|---|---|---|---|
C | ExpH | ExpA | ExpH+A | ExpCar | |||
Body weight [kg] | 1.19 a | 1.23 b | 1.31 b | 1.28 b | 1.28 b | 0.012 | 0.022 |
Feed consumption [kg] | 1.76 a | 1.91 a,b | 1.86 a,b | 1.86 a,b | 2.12 b | 0.037 | 0.016 |
Feed conversion ratio [kg/kg BW] | 1.63 a | 1.55 a,b | 1.41 b | 1.45 a,b | 1.65 a | 0.028 | 0.009 |
Weight of breast muscles without skin [g] | 173.8 a | 198.3 a,b | 196.6 a,b | 195.5 a,b | 207.7 b | 3.56 | 0.041 |
Share of breast muscles in BW [%] | 14.59 a | 16.13 b | 15.01 a,b | 15.27 a,b | 16.17 b | 0.186 | 0.046 |
Item | Treatments [g/kg] | SEM d | p-Value | ||||
---|---|---|---|---|---|---|---|
C | ExpH | ExpA | ExpH+A | ExpCar | |||
SOD [U/g] | 2.92 | 3.29 | 3.16 | 2.67 | 2.53 | 0.246 | 0.449 |
GPx [U/g] | 0.75 a,b | 0.77 b | 0.76 b | 0.76 b | 0.64 a | 0.032 | 0.008 |
CAT [U/g] | 296 a | 277 a | 398 b | 291 a | 294 a | 24.80 | 0.003 |
ABST [mM Trolox/g] | 2.37 | 2.38 | 2.40 | 2.45 | 2.47 | 0.315 | 0.490 |
DPPH [mM Trolox/g] | 13.5 | 12.6 | 11.7 | 12.5 | 11.9 | 1.380 | 0.062 |
FRAP [mM Fe/g] | 0.17 | 0.16 | 0.15 | 0.16 | 0.17 | 0.017 | 0.384 |
Carnosine [mg/g tissue] | 1.22 a | 1.83 b | 1.51 a,b | 1.80 b | 1.68 b | 0.127 | 0.003 |
Anserine [mg/g tissue] | 2.37 a,b | 2.46 b | 2.36 a,b | 2.25 a | 2.47 b | 0.047 | 0.012 |
Sum of dipeptides [mg/g tissue] | 3.60 a | 4.30 c | 3.88 a,b | 4.05 b,c | 4.16 b,c | 0.129 | 0.001 |
Item | Treatments, g/kg | SEM d | p-Value | ||||
---|---|---|---|---|---|---|---|
C | ExpH | ExpA | ExpH+A | ExpCar | |||
Blood cells sediment | |||||||
CAT, U/mg | 272 a,b | 349 b | 169 a | 185 a | 367 b | 47.60 | 0.001 |
SOD, U/mg | 0.156 a | 0.276 b | 0.151 a | 0.196 a,b | 0.228 a,b | 0.025 | 0.023 |
GPx, U/mg | 0.413 a | 0.516 b | 0.360 a | 0.359 a | 0.357 a | 0.026 | 0.006 |
Blood plasma | |||||||
SOD [U/mL] | 2.34 | 1.97 | 2.45 | 1.98 | 2.15 | 0.171 | 0.173 |
GPx [U/mL] | 1.25 | 1.16 | 1.34 | 1.28 | 1.37 | 0.100 | 0.307 |
ABTS [mM Trolox/mL] | 2.76 | 2.78 | 2.70 | 2.77 | 2.75 | 0.359 | 0.391 |
DPPH [mM Trolox/mL] | 10.5 | 10.1 | 10.4 | 10.4 | 9.9 | 0.490 | 0.103 |
FRAP [mM Fe/mL] | 0.143 | 0.159 | 0.150 | 0.156 | 0.153 | 0.004 | 0.080 |
Carnosine [µg/g] | 143 b,c | 148 b,c | 89 a | 122 a,b | 167 c | 14.2 | 0.001 |
Anserine [µg/g] | 25.1 | 27.4 | 22.2 | 23.1 | 19.7 | 2.40 | 0.421 |
Sum of dipeptides [µg/g] | 168 b | 175 b | 111 a | 145 a,b | 187 b | 15.1 | 0.002 |
Amino Acid | Treatments, g/kg | SEM d | p-Value | ||||
---|---|---|---|---|---|---|---|
C | ExpH | ExpA | ExpH+A | ExpCar | |||
Asp | 9.34 b | 9.08 a | 9.08 a | 9.02 a | 9.48 c | 0.082 | 0.001 |
Thr | 4.76 c | 4.63 b | 4.59 b | 4.55 b | 4.45 a | 0.050 | 0.001 |
Ser | 4.12 | 4.05 | 4.03 | 4.01 | 3.89 | 0.044 | 0.001 |
Glu | 14.5 | 14.3 | 14.4 | 13.9 | 13.7 | 0.167 | 0.152 |
Pro | 3.34 | 3.35 | 3.30 | 3.23 | 3.98 | 0.033 | 0.259 |
Gly | 4.55 | 4.30 | 4.28 | 4.48 | 4.10 | 0.076 | 0.335 |
Ala | 5.78 | 5.58 | 5.57 | 5.48 | 5.52 | 0.051 | 0.445 |
Val | 4.89 | 4.65 | 4.53 | 4.36 | 4.57 | 0.050 | 0.107 |
Ile | 4.42 | 4.16 | 4.12 | 3.98 | 4.28 | 0.035 | 0.058 |
Leu | 7.93 | 7.69 | 7.70 | 7.54 | 7.63 | 0.069 | 0.329 |
Tyr | 3.13 | 3.07 | 3.04 | 3.10 | 3.17 | 0.023 | 0.362 |
Phe | 3.82 | 3.68 | 3.72 | 3.81 | 3.98 | 0.024 | 0.056 |
His | 5.11 | 5.59 | 5.59 | 5.76 | 5.71 | 0.071 | 0.248 |
β—Ala | 0.49 a | 0.47 a | 0.58 b | 0.58 b | 0.54 b | 0.008 | 0.001 |
Lys | 9.30 | 8.87 | 8.96 | 8.82 | 8.84 | 0.087 | 0.334 |
Arg | 7.42 | 7.08 | 7.27 | 7.35 | 7.41 | 0.058 | 0.150 |
Cys | 1.06 | 1.05 | 1.01 | 1.01 | 1.15 | 0.006 | 0.337 |
Met | 2.81 | 2.70 | 2.65 | 2.67 | 3.00 | 0.014 | 0.275 |
Trp | 1.09 c | 1.11 c | 0.99 a | 1.00 a | 1.04 b | 0.015 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopec, W.; Jamroz, D.; Wiliczkiewicz, A.; Biazik, E.; Pudlo, A.; Korzeniowska, M.; Hikawczuk, T.; Skiba, T. Antioxidative Characteristics of Chicken Breast Meat and Blood after Diet Supplementation with Carnosine, L-histidine, and β-alanine. Antioxidants 2020, 9, 1093. https://doi.org/10.3390/antiox9111093
Kopec W, Jamroz D, Wiliczkiewicz A, Biazik E, Pudlo A, Korzeniowska M, Hikawczuk T, Skiba T. Antioxidative Characteristics of Chicken Breast Meat and Blood after Diet Supplementation with Carnosine, L-histidine, and β-alanine. Antioxidants. 2020; 9(11):1093. https://doi.org/10.3390/antiox9111093
Chicago/Turabian StyleKopec, Wieslaw, Dorota Jamroz, Andrzej Wiliczkiewicz, Ewa Biazik, Anna Pudlo, Malgorzata Korzeniowska, Tomasz Hikawczuk, and Teresa Skiba. 2020. "Antioxidative Characteristics of Chicken Breast Meat and Blood after Diet Supplementation with Carnosine, L-histidine, and β-alanine" Antioxidants 9, no. 11: 1093. https://doi.org/10.3390/antiox9111093
APA StyleKopec, W., Jamroz, D., Wiliczkiewicz, A., Biazik, E., Pudlo, A., Korzeniowska, M., Hikawczuk, T., & Skiba, T. (2020). Antioxidative Characteristics of Chicken Breast Meat and Blood after Diet Supplementation with Carnosine, L-histidine, and β-alanine. Antioxidants, 9(11), 1093. https://doi.org/10.3390/antiox9111093