Fatty Acid Profile and Antioxidative Properties of Peptides Isolated from Fermented Lamb Loin Treated with Fermented Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Sampling and Experimental Design
2.3. Physicochemical Properties (Water Activity, pH)
2.4. Determination of Peptides Content and Their Antioxidative Properties
2.5. Fatty Acids Profile
2.6. Statistical Analysis
3. Results and Discussion
3.1. pH and Water Activity Values
3.2. Peptide Content and Its Antioxidants Properties
3.3. Fatty Acid Profile and Conjugated Linoleic Acid Isomers Content
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hammes, W.P. Metabolism of nitrate in fermented meats: The characteristic feature of a specific group of fermented foods. Food Microbiol. 2012, 29, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Kęska, P.; Stadnik, J. Combined effect of sonication and acid whey on antioxidant and angiotensin-converting enzyme inhibitory activities of peptides obtained from dry-cured pork loin. Appl. Sci. 2020, 10, 4521. [Google Scholar] [CrossRef]
- Sánchez, A.; Vázquez, A. Bioactive peptides: A review. Food Qual. Saf. 2017, 1, 29–46. [Google Scholar] [CrossRef]
- Xing, L.; Liu, R.; Cao, S.; Zhang, W.; Guanghong, Z. Meat protein based bioactive peptides and their potential functional activity: A review. Int. J. Food Sci. Technol. 2019, 54, 1956–1966. [Google Scholar] [CrossRef] [Green Version]
- Kononiuk, A.D.; Karwowska, M. Bioactive compounds in fermented sausages prepared from beef and fallow deer meat with acid whey addition. Molecules 2020, 25, 2429. [Google Scholar] [CrossRef]
- Kitts, D.D.; Weiler, K. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Cur. Pharm. Des. 2003, 9, 1309–1323. [Google Scholar] [CrossRef]
- Liu, R.; Xing, L.; Fu, Q.; Zhou, G.-H.; Zhang, W.-G. A review of antioxidant peptides derived from meat muscle and by-products. Antioxidants 2016, 5, 32. [Google Scholar] [CrossRef] [Green Version]
- Ryder, K.; Bekhit, A.E.-D.; McConnell, M.; Carne, A. Towards generation of bioactive peptides from meat industry waste proteins: Generation of peptides using commercial microbial proteases. Food Chem. 2016, 208, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Escudero, E.; Toldra, F.; Sentandreu, M.A.; Nishimura, H.; Arihara, K. Antihypertensive activity of peptides identified in the in vitro gastrointestinal digest of pork meat. Meat Sci. 2012, 91, 382–384. [Google Scholar] [CrossRef] [PubMed]
- Asioli, D.; Aschemann-Witzel, J.; Caputo, V.; Vecchio, R.; Annunziata, A.; Naes, T.; Varela, P. Making sense of the “clean label” trends: A review of consumer food choice behavior and discussion of industry implications. Food Res. Int. 2017, 99, 58–71. [Google Scholar] [CrossRef] [PubMed]
- Ponnampalan, E.N.; Hopkins, D.L.; Butler, K.L.; Dunshea, F.R.; Sinclair, A.J.; Warner, R.D. Polyunsaturated fats in meat form Merino, first- and second-cross sheep slaughtered as yearlings. Meat Sci. 2009, 83, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Aksoy, Y.; Ugurlu, M.; Őnenc, A.; Sirin, E.; Sen, U.; Cicek, U.; Ulutas, Z.; Kuran, M. Meat production characteristics of Turkish native breeds: II. Meat quality, fatty acid and cholesterol profile of lambs. Arch. Anim. Breed. 2019, 62, 41–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caro, J.; Alaiz-Rodriguez, R.; Gonzalez-Castro, V.; Quinto, E.J.; Mateo, J. Conformation characteristics of suckling lamb carcasses from the Spanish local breeds Churra and Castellama and the non-native breed Assaf determined using digital photographs. Small Rum. Res. 2018, 160, 89–94. [Google Scholar] [CrossRef]
- Janiszewski, P.; Grześkowiak, E.; Lisiak, D.; Borys, B.; Borzuta, K.; Lisiak, B. Evaluation of the meat traits of lambs of polish native breeds. Ann. Anim. Sci. 2020. [Google Scholar] [CrossRef]
- Kawęcka, A.; Piórkowska, K. Characteristics of the genetic structure of native sheep breeds. Ann. Anim. Sci. 2011, 11, 371–382. [Google Scholar]
- Martínez, L.; Bastida, P.; Castillo, J.; Ros, G.; Nieto, G. Green Alternatives to Synthetic Antioxidants, Antimicrobials, Nitrates, and Nitrites in Clean Label Spanish Chorizo. Antioxidants 2019, 8, 184. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhao, M.; Zhao, Q.; Jiang, Y. Antioxidant properties of papain hydrolysates of wheat gluten in different oxidation systems. Food Chem. 2007, 101, 1658–1665. [Google Scholar] [CrossRef]
- Fitzgerald, C.; Mora-Soler, L.; Gallagher, E.; O’Connor, P.; Prieto, J.; Soler-Vila, A.; Hayes, M. Isolation and characterization of bioactive pro-peptides with in vitro renin inhibitory activities from the macroalga Palmaria palmata. J. Agric. Food Chem. 2012, 60, 7421–7427. [Google Scholar] [CrossRef]
- Dziuba, B.; Dziuba, M. Milk proteins-derived bioactive peptides in dairy products: Molecular, biological and methodological aspects. Acta Sci. Pol. Technol. Aliment. 2014, 13, 5–25. [Google Scholar] [CrossRef]
- Zhu, C.Z.; Zhang, W.G.; Zhou, G.H.; Xu, X.L.; Kang, Z.L.; Yin, Y. Isolation and identification of antioxidant peptides from Jinhua ham. J. Agric. Food Chem. 2013, 61, 1265–1271. [Google Scholar] [CrossRef]
- Nielsen, P.M.; Petersen, D.; Dambmann, C. Improved method for determining food protein degree of hydrolysis. J. Food Sci. 2001, 66, 642–646. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Mora, L.; Escudero, E.; Fraser, P.D.; Aristoy, M.C.; Toldrá, F. Proteomic identification of antioxidant peptides from 400 to 2500 Da generated in Spanish dry-cured ham contained in a size-exclusion chromatography fraction. Food Res. Int. 2014, 56, 68–76. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane-Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar]
- Malva, A.; Albenzio, M.; Annicchiarico, G.; Caroprese, M.; Muscio, A.; Santillo, A. Relationship between slaughtering age, nitritional and organoleptic properties of Altamurana lamb meat. Small Rumin. Res. 2016, 135, 39–45. [Google Scholar] [CrossRef]
- Villalobos, L.H.; Caro, I.; Blanco, C.; Morán, L.; Prieto, N.; Bodas, R.; Giráldez, F.J.; Mateo, J. Quality of a dry-cured lamb leg as affected by tumbling after dry-salting and processing time. Meat Sci. 2014, 97, 115–122. [Google Scholar] [CrossRef]
- Urbienė, U.; Leskauskaitė, D. Formation of some organic acids during fermentation of milk. Pol. J. Food Nutr. Sci. 2006, 3, 277–281. [Google Scholar]
- Kato, T.; Matsuda, T.; Tahara, T.; Sugimoto, M.; Sato, Y.; Nakamura, R. Effects of meat conditioning and lactic fermentation on pork muscle protein degradation. Biosci. Biotechnol. Biochem. 1994, 58, 408–410. [Google Scholar] [CrossRef] [Green Version]
- Shori, A.B.; Baba, A. Fermented milk derives bioactive peptides with antihypertensive effects. Integr. Food Nutr. Metab. 2015, 2, 180–183. [Google Scholar]
- El-Salam, M.H.A.; El-Shibiny, S. Bioactive peptides of buffalo, camel, goat, sheep, mare, and yak milks and milk products. Food Rev. Int. 2013, 29, 1–23. [Google Scholar] [CrossRef]
- Karwowska, M.; Kononiuk, A.; Wójciak, K. Impact of sodium nitrite reduction on lipid oxidation and antioxidant properties of cooked meat products. Antioxidants 2020, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- Karami, Z.; Akbari-Adergani, B. Bioactive food derived peptides: A review on correlation between structure of bioactive peptides and their functional properties. J. Food Sci. Technol. 2019. [Google Scholar] [CrossRef]
- Cumby, N.; Zhong, Y.; Naczk, M.; Shahidi, F. Antioxidant activity and water-holding capacity of canola protein hydrolysates. Food Chem. 2008, 109, 144–148. [Google Scholar] [CrossRef]
- Mendis, E.; Rajapakse, N.; Byun, H.G.; Kim, S.K. Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. Life Sci. 2005, 77, 2166–2178. [Google Scholar] [CrossRef]
- Rajapakse, N.; Mendis, E.; Jung, W.-K.; Je, J.-Y.; Kim, S.-K. Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Res Int. 2005, 38, 175–182. [Google Scholar] [CrossRef]
- Serra, A.; Mele, M.; La Compa, F.; Conte, G.; Buccioni, A.; Secchiari, P. Conjugated linoleic acid (CLA) content of meat from three muscles of Massese suckling lambs slaughtered at different weights. Meat Sci. 2009, 81, 396–404. [Google Scholar] [CrossRef] [Green Version]
- Baldi, G.; Chauhan, S.S.; Linden, F.; Dunshea, F.R.; Hopkins, D.L.; Sgoifo Rossi, C.A.; Dell’Orto, V.; Ponnampalam, E.N. Comparison of a grain-based diet supplemented with synthetic vitamin E versus a lucerne (alfalfa) hay-based diet fed to lambs in terms of carcass traits, muscle vitamin E, fatty acid content, lipid oxidation, and retail colour of meat. Meat Sci. 2019, 148, 105–112106. [Google Scholar] [CrossRef]
- Webb, E.C.; O’Neill, H.A. The animal fat paradox and meat quality. Meat Sci. 2008, 80, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Mulvihill, B. Ruminant meat as a source of conjugated linoleic acid (CLA). Nutr. Bull. 2001, 26, 295–299. [Google Scholar] [CrossRef]
- Kulczyński, B.; Sidor, A.; Gramza-Michałowska, A. Characteristics of Selected Antioxidative and Bioactive Compounds in Meat and Animal Origin Products. Antioxidants 2019, 8, 335. [Google Scholar] [CrossRef] [Green Version]
- Karwowska, M.; Kononiuk, A. Addition of acid whey improves organic dry-fermented sausage without nitrite production and its nutritional value. Int. J. Food Sci. Technol. 2018, 53, 246–253. [Google Scholar] [CrossRef]
Parameter | Lamb Breeds | Raw Meat | P1 | P2 | P3 |
---|---|---|---|---|---|
aw | W | 0.972 a ± 0.007 | 0.908 bcd ± 0.003 | 0.903 bc ± 0.003 | 0.913 bc ± 0.005 |
U | 0.974 a ± 0.001 | 0.910 bcd ± 0.002 | 0.902 c ± 0.001 | 0.915 b ± 0.001 | |
S | 0.972 a ± 0.007 | 0.908 bcd ± 0.002 | 0.905 bc ± 0.002 | 0.907 bcd ± 0.001 | |
pH | W | 5.58 a ± 0.03 | 5.12 b ± 0.04 | 4.98 c ± 0.01 | 4.82 d ± 0.04 |
U | 5.59 a ± 0.09 | 5.12 b ± 0.03 | 5.02 bc ± 0.05 | 4.78 d ± 0.01 | |
S | 5.51 a ± 0.02 | 5.10 b ± 0.02 | 5.05 bc ± 0.02 | 4.76 d ± 0.01 |
Parameter | pH | aw | Peptide Content | Antioxidant Activity | ||
---|---|---|---|---|---|---|
ABTS | DPPH | RP | ||||
Breeds (B) | – | – | *** | *** | *** | *** |
Treatment (T) | *** | *** | *** | *** | *** | ** |
B × T | – | – | *** | *** | *** | *** |
Parameter | Lamb Breeds | Raw Meat | P1 | P2 | P3 |
---|---|---|---|---|---|
peptide content mg g−1 of product | W | 4.31 f ± 0.45 | 11.59 e ± 0.45 | 15.80 abc ± 0.88 | 16.37 a ± 0.73 |
U | 4.26 f ± 0.56 | 15.56 abc ± 0.45 | 16.06 ab ± 0.95 | 11.84 de ± 0.61 | |
S | 2.90 g ± 0.03 | 14.08 bc ± 0.21 | 14.41 abc ± 1.22 | 13.88 cd ± 1.19 | |
ABTS mg Trolox eqv. /1 mg of peptide | W | 0.964 d ± 0.095 | 0.796 def± 0.051 | 0.851 de ± 0.044 | 0.891 d ± 0.040 |
U | 0.614 f ± 0.067 | 1.610 bc ± 0.043 | 1.703 bc ± 0.080 | 1.801 b ± 0.098 | |
S | 0.637 ef ± 0.085 | 1.645 bc ± 0.022 | 1.536 c ± 0.027 | 2.081 a ± 0.133 | |
DPPH mg Trolox eqv. /1 mg of peptide | W | 0.343 e ± 0.085 | 1.276 bc ± 0.090 | 1.000 d ± 0.008 | 1.164 cd ± 0.104 |
U | 0.117 f ± 0.050 | 1.196 c ± 0.042 | 1.187 cd ± 0.022 | 1.492 a ± 0.061 | |
S | 0.064 f ± 0.007 | 1.408 ab ± 0.014 | 1.280 bc ± 0.077 | 1.499 a ± 0.104 | |
RP mg ascorbic acid eqv./1 mg of peptide | W | 0.024 de ± 0.002 | 0.020 e ± 0.001 | 0.020 e ± 0.000 | 0.020 e ± 0.001 |
U | 0.024 cde ± 0.001 | 0.028 bcd ± 0.003 | 0.030 bcd ± 0.001 | 0.033 ab ± 0.002 | |
S | 0.031 abc ± 0.005 | 0.029 bcd ± 0.002 | 0.029 bcd ± 0.002 | 0.037 a ± 0.003 |
W | U | S | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Raw Meat | P1 | P2 | P3 | Raw Meat | P1 | P2 | P3 | Raw Meat | P1 | P2 | P3 | |
SFA | 48.52 | 53.45 | 50.52 | 53.45 | 48.95 | 49.72 | 48.24 | 53.41 | 53.44 | 51.70 | 51.37 | 47.64 |
MUFA | 45.22 | 39.35 | 43.02 | 39.35 | 40.34 | 40.62 | 42.08 | 39.59 | 39.97 | 38.03 | 39.25 | 37.38 |
PUFA | 6.25 | 7.20 | 6.46 | 7.20 | 10.70 | 9.65 | 9.67 | 7.00 | 6.59 | 10.26 | 9.38 | 14.98 |
UFA/SFA | 1.06 | 0.87 | 0.98 | 0.87 | 1.04 | 1.01 | 1.07 | 0.88 | 0.88 | 0.94 | 0.95 | 1.10 |
MUFA/SFA | 0.93 | 0.74 | 0.85 | 0.76 | 0.82 | 0.82 | 0.87 | 0.75 | 0.75 | 0.74 | 0.77 | 0.79 |
PUFA/SFA | 0.13 | 0.13 | 0.13 | 0.13 | 0.22 | 0.20 | 0.20 | 0.14 | 0.13 | 0.20 | 0.19 | 0.32 |
PUFA 6/3 | 8.82 | 8.68 | 8.50 | 8.66 | 5.55 | 4.29 | 4.32 | 5.53 | 2.76 | 3.68 | 2.97 | 3.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karwowska, M.; Kononiuk, A.D.; Stasiak, D.M.; Patkowski, K. Fatty Acid Profile and Antioxidative Properties of Peptides Isolated from Fermented Lamb Loin Treated with Fermented Milk. Antioxidants 2020, 9, 1094. https://doi.org/10.3390/antiox9111094
Karwowska M, Kononiuk AD, Stasiak DM, Patkowski K. Fatty Acid Profile and Antioxidative Properties of Peptides Isolated from Fermented Lamb Loin Treated with Fermented Milk. Antioxidants. 2020; 9(11):1094. https://doi.org/10.3390/antiox9111094
Chicago/Turabian StyleKarwowska, Małgorzata, Anna D. Kononiuk, Dariusz M. Stasiak, and Krzysztof Patkowski. 2020. "Fatty Acid Profile and Antioxidative Properties of Peptides Isolated from Fermented Lamb Loin Treated with Fermented Milk" Antioxidants 9, no. 11: 1094. https://doi.org/10.3390/antiox9111094
APA StyleKarwowska, M., Kononiuk, A. D., Stasiak, D. M., & Patkowski, K. (2020). Fatty Acid Profile and Antioxidative Properties of Peptides Isolated from Fermented Lamb Loin Treated with Fermented Milk. Antioxidants, 9(11), 1094. https://doi.org/10.3390/antiox9111094