Does Herbal and/or Zinc Dietary Supplementation Improve the Antioxidant and Mineral Status of Lambs with Parasite Infection?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Feeding
2.2. Sample Collection
2.3. Sample Analysis
2.3.1. Chemical Composition of Feed
2.3.2. Preparation of Tissue Homogenates
2.3.3. Antioxidant Enzyme Activity Assays
2.3.4. Lipid Oxidation and Total Antioxidant Capacity Determination
2.3.5. Trace Elements Measurement
2.3.6. Statistical Analysis
3. Results
3.1. Antioxidant Enzyme Activity
3.2. Lipid Oxidation and Total Antioxidant Capacity
3.3. Mineral Profile
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hoste, H.; Torres-Acosta, J.F.J.; Quijada, J.; Chan-Perez, I.; Dakheel, M.M.; Kommuru, D.S.; Mueller-Harvey, I.; Terrill, T.H. Interactions between nutrition and infections with Haemonchus contortus and related gastrointestinal nematodes in small ruminants. In Advances in Parasitology, Haemonchus Contortus and Haemonchosis—Past, Present and Future Trends, 1st ed.; Gasser, R., Samson-Himmelstjerna, G., Eds.; Elsevier Ltd.: London, UK, 2016; Volume 93, pp. 239–351. ISBN 978-0-12-810395-1. [Google Scholar]
- Leal, M.L.R.; Pivoto, F.L.; Fausto, G.C.; Aires, A.R.; Grando, T.H.; Roos, D.H.; Sudati, J.H.; Wagner, C.; Costa, M.M.; Molento, M.B.; et al. Copper and selenium: Auxiliary measure to control infection by Haemonchus contortus in lambs. Exp. Parasitol. 2014, 144, 39–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schafer, A.S.; Leal, M.L.R.; Molento, M.B.; Aires, A.R.; Duarte, M.M.M.F.; Carvalho, F.B.; Tonin, A.A.; Schmidt, L.; Flores, E.M.M.; Franҫa, R.T.; et al. Immune response of lambs experimentally infected with Haemonchus contortus and parenterally treated with a combination of zinc and copper. Small Rumin. Res. 2015, 123, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Mravčáková, D.; Váradyová, Z.; Kopčáková, A.; Čobanová, K.; Grešáková, Ľ.; Kišidayová, S.; Babják, M.; Urda Dolinská, M.; Dvorožňáková, M.; Königová, A.; et al. Natural chemotherapeutic alternatives for controlling of haemonchosis in sheep. BMC Vet. Res. 2019, 15, 302. [Google Scholar] [CrossRef] [PubMed]
- Kotze, A.C. Catalase induction protects Haemonchus contortus against hydrogen peroxide in vitro. Int. J. Parasitol. 2003, 33, 393–400. [Google Scholar] [CrossRef]
- Celi, P. The role of oxidative stress in small ruminants’ health and production. Revista Brasileira de Zootecnia 2010, 39, 348–363. [Google Scholar] [CrossRef] [Green Version]
- Pivoto, F.L.; Torbitz, V.D.; Aires, A.R.; da Rocha, J.F.X.; Severo, M.M.; Grando, T.H.; Peiter, M.; Moresco, R.N.; da Rocha, J.B.T.; Leal, M.L.R. Oxidative stress by Haemonchus contortus in lambs: Influence of treatment with zinc edetate. Res. Vet. Sci. 2015, 102, 22–24. [Google Scholar] [CrossRef]
- Poutaraud, A.; Michelot-Antalik, A.; Plantureux, S. Grasslands: A source of secondary metabolites for livestock health. J. Agric. Food Chem. 2017, 65, 6535–6553. [Google Scholar] [CrossRef] [PubMed]
- Procházková, D.; Boušová, I.; Wilhelmová, N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia 2011, 82, 513–523. [Google Scholar] [CrossRef]
- Surai, P.F. Polyphenol compounds in the chicken/animal diet: From the past to the future. J. Anim. Physiol. Anim. Nutr. 2014, 98, 19–31. [Google Scholar] [CrossRef]
- Lee, S.R. Critical role of zinc as either an antioxidant or a prooxidant in cellular system. Oxid. Med. Cell. Longev. 2018. [Google Scholar] [CrossRef] [Green Version]
- Adogwa, A.; Mutani, A.; Ramnanan, A.; Ezeokoli, C. The effect of gastrointestinal parasitism on blood copper and hemoglobin levels in sheep. Can. Vet. J. 2005, 46, 1017–1021. [Google Scholar] [PubMed]
- Hughes, S.; Kelly, P. Interactions of malnutrition and immune impairment, with specific reference to immunity against parasites. Parasite Immunol. 2006, 28, 577–588. [Google Scholar] [CrossRef] [PubMed]
- Marreiro, D.N.; Cruz, K.J.C.; Morais, J.B.S.; Beserra, J.B.; Severo, J.S.; Oliveira, A.R.S. Zinc and Oxidative Stress: Current Mechanisms. Antioxidants 2017, 6, 24. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.S.; Bao, B. Molecular Mechanisms of Zinc as a Pro-antioxidant Mediator: Clinical Therapeutic Implications. Antioxidants 2019, 8, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garg, A.K.; Vishal, M.; Dass, R.S. Effect of organic zinc supplementation on growth, nutrient utilization and mineral profile in lambs. Anim. Feed Sci. Technol. 2008, 144, 82–96. [Google Scholar] [CrossRef]
- Kinal, S.; Slupczynska, M. The bioavailability of different chemical forms of zinc in fattening lambs. Arch. Tierzucht 2011, 54, 391–398. [Google Scholar] [CrossRef] [Green Version]
- VanValin, K.R.; Genther-Schroeder, O.N.; Carmichael, R.N.; Blank, C.P.; Deters, E.L.; Hartman, S.J.; Niedermayer, E.K.; Laudert, S.B.; Hansen, S.L. Influence of dietary zinc concentration and supplemental zinc source on nutrient digestibility, zinc absorption, and retention in sheep. J. Anim. Sci. 2018, 96, 5336–5344. [Google Scholar] [CrossRef]
- Patra, A.K. Interactions of plant bioactives with nutrient transport system in gut of livestock. Indian J. Anim. Health 2018, 57, 125–136. [Google Scholar] [CrossRef]
- Pappas, A.C.; Zoidis, E.; Goliomytis, M.; Simitzis, P.E.; Sotirakoglou, K.; Charismiadou, M.A.; Nikitas, C.; Danezis, G.; Deligeorgis, S.G.; Georgiou, C.A. Elemental Metabolomics: Modulation of Egg Metallome with Flavonoids, an Exploratory Study. Antioxidants 2019, 8, 361. [Google Scholar] [CrossRef] [Green Version]
- Naumann, H.D.; Tedeschi, L.O.; Zeller, W.E.; Huntley, N.F. The role of condensed tannins in ruminant animal production: Advances, limitations and future directions. Rev. Bras. Zootec. 2017, 46, 929–949. [Google Scholar] [CrossRef] [Green Version]
- Váradyová, Z.; Mravčáková, D.; Babják, M.; Bryszak, M.; Grešáková, Ľ.; Čobanová, K.; Kišidayová, S.; Plachá, I.; Königová, A.; Cieslak, A.; et al. Effect of herbal nutraceuticals and/or zinc against Haemonchus contortus in lambs experimentally infected. BMC Vet. Res. 2018, 14, 78. [Google Scholar] [CrossRef] [PubMed]
- Coles, G.C.; Bauer, C.; Borgsteede, F.H.M.; Geerts, S.; Klei, T.R.; Taylor, M.A.; Waller, P.J. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Vet. Parasitol. 1992, 44, 35–44. [Google Scholar] [CrossRef]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis of AOAC International, 15th ed.; AOAC: Arlington, VA, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Jo, C.; Ahn, D.U. Fluorometric analysis of 2-thiobarbituric acid reactive substances in turkey. Poult. Sci. 1998, 77, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Marklund, S.; Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 1974, 47, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Paglia, D.E.; Valentine, W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967, 70, 158–160. [Google Scholar]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Gresakova, L.; Venglovska, K.; Cobanova, K. Dietary manganese source does not affect Mn, Zn and Cu tissue deposition and the activity of manganese-containing enzymes in lambs. J. Trace Elem. Med. Biol. 2016, 38, 138–143. [Google Scholar] [CrossRef]
- Váradyová, Z.; Kišidayová, S.; Čobanová, K.; Grešáková, Ľ.; Babják, M.; Königová, A.; Urda Dolinská, M.; Várady, M. The impact of a mixture of medicinal herbs on ruminal fermentation, parasitological status and hematological parameters of the lambs experimentally infected with Haemonchus contortus. Small Rumin. Res. 2017, 151, 124–132. [Google Scholar] [CrossRef]
- Kamel, H.H.; Mostafa, A.M.; Al-Salahy, M.B.; Walaa, M.S.; Wahba, A.A. Protein carbonyl, oxidative stress, anemia, total free amino acids and sheep haemonchosis relationship. J. Egypt. Soc. Parasitol. 2018, 48, 21–30. [Google Scholar]
- Machado, V.; Da Silva, A.S.; Schafer, A.S.; Aires, A.R.; Tonin, A.A.; Oliveira, C.B.; Hermes, C.L.; Almeida, T.C.; Moresco, R.N.; Stefani, L.M.; et al. Relationship between oxidative stress and pathological findings in abomasum of infected lambs by Haemonchus contortus. Pathol. Res. Pract. 2014, 210, 812–817. [Google Scholar] [CrossRef] [PubMed]
- Pal, D.T.; Gowda, N.K.S.; Prasad, C.S.; Amarnath, R.; Bharadwaj, U.; Suresh Babu, G.; Sampath, K.T. Effect of copper- and zinc-methionine supplementation on bioavailability, mineral status and tissue concentrations of copper and zinc in ewes. J. Trace Elem. Med. Biol. 2010, 24, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Stewart, A.J.; Sadler, P.J.; Pinheiro, T.J.T.; Blindauer, C.A. Albumin as a zinc carrier: Properties of its high-affinity zinc-binding site. Biochem. Soc. Trans. 2008, 36, 1317–1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pathak, A.K.; Dutta, N.; Banerjee, P.S.; Pattanaik, A.K.; Sharma, K. Influence of dietary supplementation of condensed tannins through leaf meal mixture on intake, nutrient utilization and performance of Haemonchus contortus infected sheep. Asian Australas. J. Anim. Sci. 2013, 26, 1446–1458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osredkar, J.; Sustar, N. Copper and Zinc, Biological Role and Significance of Copper/Zinc Imbalance. J. Clinic. Toxicol. 2011, S3, 001. [Google Scholar] [CrossRef] [Green Version]
- Moñino, I.; Martínez, C.; Sotomayor, J.A.; Lafuente, A.; Jordán, M.J. Polyphenolic transmission to Segureño lamb meat from ewes’ diet supplemented with the distillate from rosemary (Rosmarinus officinalis) leaves. J. Agric. Food Chem. 2008, 56, 3363–3367. [Google Scholar] [CrossRef] [PubMed]
- López-Andrés, P.; Luciano, G.; Vasta, V.; Gibson, T.M.; Scerra, M.; Biondi, L.; Priolo, A.; Mueller-Harvey, I. Antioxidant effects of ryegrass phenolics in lamb liver and plasma. Animal 2014, 8, 51–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, R.; He, Y.; Arowolo, M.A.; Wu, S.; He, J. Polyphenols as Potential Attenuators of Heat Stress in Poultry Production. Antioxidants 2019, 8, 67. [Google Scholar] [CrossRef] [Green Version]
- Surai, P.F. Antioxidants in Poultry Nutrition and Reproduction: An Update. Antioxidants 2020, 9, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrič, D.; Mravčáková, D.; Kucková, K.; Čobanová, K.; Kišidayová, S.; Cieslak, A.; Slusarczyk, S.; Váradyová, Z. Effect of dry medicinal plants (wormwood, chamomile, fumitory and mallow) on in vitro ruminal antioxidant capacity and fermentation patterns of sheep. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1219–1232. [Google Scholar] [CrossRef] [PubMed]
- Dimitrios, B. Sources of natural phenolic antioxidants. Trends Food Sci. Technol. 2006, 17, 505–512. [Google Scholar] [CrossRef]
- Wojdylo, A.; Oszmianski, J.; Czemerys, R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 2007, 105, 940–949. [Google Scholar] [CrossRef]
- Yashin, A.; Yashin, Y.; Xia, X.; Nemzer, B. Antioxidant Activity of Spices and Their Impact on Human Health: A Review. Antioxidants 2017, 6, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Guo, X.; Chu, Y.; Lu, S. Heart protective effects and mechanism of quercetin preconditioning on anti-myocardial ischemia reperfusion (IR) injuries in rats. Gene 2014, 545, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Hu, M.-J.; Wang, Y.-Q.; Cui, Y.-L. Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules 2019, 24, 1123. [Google Scholar] [CrossRef] [Green Version]
- Benzie, I.F.F.; Devaki, M. The ferric reducing/antioxidant power (FRAP) assay for non-enzymatic antioxidant capacity: Concepts, procedures, limitations and applications. In Measurement of Antioxidant Activity & Capacity: Recent Trends and Applications, 1st ed.; Apak, R., Capanoglu, E., Shahidi, F., Eds.; John Wiley & Sons Ltd.: Oxford, UK, 2018; pp. 77–106. ISBN 978-1-119-13535-7. [Google Scholar]
- Stef, D.S.; Gergen, I. Effect of mineral-enriched diet and medicinal herbs on Fe, Mn, Zn, and Cu uptake in chicken. Chem. Cent. J. 2012, 6, 19. [Google Scholar] [CrossRef] [Green Version]
- Fiesel, A.; Ehrmann, M.; Geßner, D.K.; Most, E.; Eder, K. Effect of polyphenol-rich plant products from grape or hop as feed supplements on iron, zinc and copper status in piglets. Arch. Anim. Nutr. 2015, 69, 276–284. [Google Scholar] [CrossRef]
- Kim, E.-Y.; Ham, S.-K.; Shigenaga, M.K.; Han, O. Bioactive dietary polyphenolic compounds reduce nonheme iron transport across human intestinal cell monolayers. J. Nutr. 2008, 138, 1647–1651. [Google Scholar] [CrossRef] [Green Version]
- Afsana, K.; Shiga, K.; Ishizuka, S.; Hara, H. Reducing effect of ingesting tannic acid on the absorption of iron, but not of zinc, copper and manganese by rats. Biosci. Biotechnol. Biochem. 2004, 68, 584–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, M.E.; Koski, K.G. Zinc deficiency impairs immune responses against parasitic nematode infections at intestinal and systemic sites. J. Nutr. 2000, 130, S1412–S1420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bang, K.S.; Familton, A.S.; Sykes, A.R. Effect of ostertagiasis on copper status in sheep: A study involving use of copper oxide wire particles. Res. Vet. Sci. 1990, 49, 306–314. [Google Scholar] [CrossRef]
- Goff, J.P. Invited review: Mineral absorption mechanisms, mineral interactions that affect acid-base and antioxidant status, and diet considerations to improve mineral status. J. Dairy Sci. 2018, 101, 2763–2813. [Google Scholar] [CrossRef]
- Iskandar, M.; Swist, E.; Trick, K.D.; Wang, B.; Abbé, M.R.L.; Bertinato, J. Copper chaperone for Cu/Zn superoxide dismutase is a sensitive biomarker of mild copper deficiency induced by moderately high intakes of zinc. Nutr. J. 2005, 4, 35. [Google Scholar] [CrossRef] [Green Version]
- The European Commision (EC). Commision Implementing Regulation (EU) 2016/1095. Off. J. Eur. Union 2016, 59, 7–27. [Google Scholar]
- Ao, T.; Pierce, J.L.; Power, R.; Pescatore, A.J.; Cantor, A.H.; Dawson, K.A.; Ford, M.J. Effect of feeding different forms of zinc and copper on the performance and tissue mineral content of chicks. Poult. Sci. 2009, 88, 2171–2175. [Google Scholar] [CrossRef]
- Čobanová, K.; Chrastinová, Ľ.; Chrenková, M.; Polačiková, M.; Formelová, Z.; Ivanišinová, O.; Ryzner, M.; Grešáková, Ľ. The effect of different dietary zinc sources on mineral deposition and antioxidant indices in rabbit tissues. World Rabbit Sci. 2018, 26, 241–248. [Google Scholar] [CrossRef]
- Kondaiah, P.; Yaduvanshi, P.S.; Sharp, P.A.; Pullakhandam, R. Iron and Zinc Homeostasis and Interactions: Does Enteric Zinc Excretion Cross-Talk with Intestinal Iron Absorption? Nutrients 2019, 11, 1885. [Google Scholar] [CrossRef] [Green Version]
- Kilari, S.; Pullakhandam, R.; Nair, K.M. Zinc inhibits oxidative stress-induced iron signaling and apoptosis in Caco-2 cells. Free Radic. Biol. Med. 2010, 48, 961–968. [Google Scholar] [CrossRef]
- Lesjak, M.; Srai, S.K. Role of Dietary Flavonoids in Iron Homeostasis. Pharmaceuticals 2019, 12, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lesjak, M.; Hoque, R.; Balesaria, S.; Skinner, V.; Debnam, E.S.; Srai, S.K.S.; Sharp, P.A. Quercetin inhibits intestinal iron absorption and ferroportin transporter expression in vivo and in vitro. PLoS ONE 2014, 9, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lesjak, M.; Balesaria, S.; Skinner, V.; Debnam, E.S.; Srai, S.K.S.; Sharp, P.A. Quercetin inhibits intestinal non-haem iron absorption by regulating iron metabolism genes in the tissues. Eur. J. Nutr. 2019, 58, 743–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazhar, M.; Faizi, S.; Gul, A.; Kabir, N.; Simjee, S.U. Effects of naturally occurring flavonoids on ferroportin expression in the spleen in iron deficiency anemia in vivo. RSC Adv. 2017, 7, 23238–23245. [Google Scholar] [CrossRef] [Green Version]
Analyzed Composition | MH | C | C + Zn | Hmix |
---|---|---|---|---|
Dry matter (g/kg) | 900 | 878 | 876 | 905 |
Neutral-detergent fiber (g/kg DM) | 651 | 136 | 254 | 532 |
Acid detergent fiber (g/kg DM) | 556 | 83 | 93 | 452 |
Crude protein (g/kg DM) | 163 | 309 | 352 | 207 |
Nitrogen (g/kg DM) | 27 | 49 | 56 | 33 |
Ash (g/kg DM) | 91 | 29 | 30 | 84 |
Fat (g/kg DM) | 21 | 13 | 12 | 26 |
Microelements Content (mg/kg DM) | ||||
Zinc | 45.1 | 25.4 | 86.0 | 26.4 |
Iron | 147.0 | 68.3 | 69.8 | 414.3 |
Copper | 7.0 | 7.1 | 8.1 | 9.9 |
Manganese | 77.7 | 24.1 | 25.8 | 45.1 |
Phytochemical Content (g/kg DM) | ||||
Phenolic acids | n.d. | n.d. | n.d. | 3.55 |
Flavonoids | n.d. | n.d. | n.d. | 9.96 |
Diterpenes | n.d. | n.d. | n.d. | 4.89 |
Enzyme Activity | Dietary Treatment | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
CON | Hmix | Zn | Hmix + Zn | Hmix | Zn | Hmix × Zn | ||
Total SOD (U/mg protein) | ||||||||
Liver | 58.23 | 71.31 | 67.60 | 65.98 | 2.035 | 0.148 | 0.601 | 0.068 |
Kidney | 42.20 | 47.57 | 46.44 | 48.19 | 0.918 | 0.052 | 0.173 | 0.304 |
Duodenum | 5.87 a | 6.19 ab | 8.49 b | 7.81 ab | 0.366 | 0.771 | 0.002 | 0.423 |
Jejunum | 5.82 | 7.10 | 7.13 | 7.45 | 0.264 | 0.119 | 0.106 | 0.337 |
Ileum | 4.92 | 6.39 | 5.88 | 5.98 | 0.236 | 0.093 | 0.545 | 0.141 |
Cu/Zn SOD (U/mg protein) | ||||||||
Liver | 50.16 A | 66.76 B | 59.77 AB | 57.34 AB | 2.065 | 0.060 | 0.979 | 0.014 |
Kidney | 31.83 | 36.64 | 34.96 | 35.73 | 0.681 | 0.063 | 0.443 | 0.170 |
Duodenum | 3.52 a | 3.68 a | 5.36 b | 4.58 ab | 0.231 | 0.403 | 0.001 | 0.221 |
Jejunum | 3.32 | 4.34 | 4.50 | 4.60 | 0.206 | 0.151 | 0.072 | 0.240 |
Ileum | 3.23 | 3.90 | 3.46 | 3.38 | 0.136 | 0.280 | 0.592 | 0.173 |
GPx (U/g protein) | ||||||||
Liver | 27.96 AB | 31.00 B | 32.90 B | 24.90 A | 1.013 | 0.159 | 0.734 | 0.004 |
Kidney | 37.83 | 42.22 | 39.95 | 39.78 | 1.111 | 0.366 | 0.945 | 0.331 |
Duodenum | 27.35 A | 32.02 B | 32.90 B | 28.54 A | 0.636 | 0.862 | 0.258 | <0.001 |
Jejunum | 25.26 | 26.88 | 26.09 | 23.72 | 0.792 | 0.818 | 0.479 | 0.233 |
Ileum | 25.53 | 27.96 | 26.44 | 28.00 | 0.955 | 0.328 | 0.814 | 0.830 |
CAT (U/mg protein) | ||||||||
Liver | 45.70 | 54.92 | 56.50 | 58.70 | 2.672 | 0.293 | 0.184 | 0.514 |
Kidney | 53.86 | 58.17 | 51.89 | 66.46 | 2.162 | 0.025 | 0.428 | 0.203 |
Duodenum | 2.41 | 2.61 | 2.50 | 1.82 | 0.124 | 0.296 | 0.139 | 0.067 |
Jejunum | 1.55 | 1.76 | 1.87 | 1.96 | 0.093 | 0.414 | 0.181 | 0.761 |
Ileum | 1.59 | 1.63 | 1.30 | 1.65 | 0.054 | 0.050 | 0.172 | 0.127 |
Antioxidant Parameters | Dietary Treatment | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
CON | Hmix | Zn | Hmix + Zn | Hmix | Zn | Hmix × Zn | ||
MDA (nmol/g protein) | ||||||||
Liver | 73.48 | 72.01 | 77.32 | 74.50 | 3.403 | 0.770 | 0.666 | 0.927 |
Kidney | 55.08 | 48.91 | 47.09 | 44.30 | 1.663 | 0.164 | 0.055 | 0.590 |
Duodenum | 48.38 | 43.11 | 48.03 | 45.47 | 1.971 | 0.353 | 0.809 | 0.745 |
Jejunum | 82.30 | 72.39 | 84.40 | 91.39 | 3.806 | 0.849 | 0.179 | 0.278 |
Ileum | 66.52 | 65.13 | 67.95 | 64.61 | 1.751 | 0.532 | 0.904 | 0.796 |
TAC (µmol/g protein) | ||||||||
Liver | 46.73 | 50.47 | 49.00 | 54.93 | 1.243 | 0.049 | 0.160 | 0.639 |
Kidney | 41.31 | 40.58 | 39.08 | 45.97 | 1.276 | 0.229 | 0.531 | 0.140 |
Duodenum | 23.02 A | 27.30 B | 25.46 B | 25.68 B | 0.492 | 0.011 | 0.617 | 0.020 |
Jejunum | 24.23 | 27.45 | 27.25 | 27.88 | 0.564 | 0.074 | 0.108 | 0.220 |
Ileum | 24.03 a | 25.40 ab | 27.44 b | 30.04 c | 0.553 | 0.004 | <0.001 | 0.329 |
Serum Parameters | Dietary Treatment | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
CON | Hmix | Zn | Hmix + Zn | Hmix | Zn | Hmix × Zn | ||
GPx (U/g Hb) | 381.08 A | 464.21 B | 476.86 B | 419.44 AB | 15.162 | 0.648 | 0.369 | 0.020 |
MDA (µmol/L) | 0.279 B | 0.187 A | 0.203 A | 0.221 A | 0.011 | 0.074 | 0.298 | 0.010 |
TAC (mmol/L) | 0.336 | 0.349 | 0.341 | 0.355 | 0.005 | 0.199 | 0.579 | 0.921 |
Zinc (mg/L) | 0.740 a | 0.810 ab | 0.850 ab | 0.903 b | 0.021 | 0.109 | 0.012 | 0.823 |
Copper (mg/L) | 0.815 | 0.893 | 0.857 | 0.845 | 0.037 | 0.675 | 0.967 | 0.572 |
Iron (mg/L) | 1.418 | 1.940 | 1.858 | 1.920 | 0.107 | 0.180 | 0.329 | 0.286 |
Mineral Concentration | Dietary Treatment | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
CON | Hmix | Zn | Hmix + Zn | Hmix | Zn | Hmix × Zn | ||
Zinc (mg/kg DM) | ||||||||
Liver | 118.34 ab | 102.32 a | 122.84 ab | 129.20 b | 3.653 | 0.471 | 0.026 | 0.104 |
Kidney | 105.23 | 106.42 | 104.16 | 106.16 | 1.481 | 0.617 | 0.835 | 0.897 |
Duodenum | 98.61 | 97.72 | 96.27 | 98.54 | 0.700 | 0.635 | 0.599 | 0.282 |
Jejunum | 98.48 | 96.76 | 98.18 | 100.35 | 1.687 | 0.950 | 0.647 | 0.589 |
Ileum | 98.26 | 98.51 | 95.93 | 97.94 | 0.824 | 0.512 | 0.400 | 0.609 |
Copper (mg/kg DM) | ||||||||
Liver | 295.88 | 350.36 | 295.90 | 322.67 | 17.420 | 0.270 | 0.704 | 0.704 |
Kidney | 16.44 A | 17.41 AB | 18.56 B | 17.06 A | 0.286 | 0.613 | 0.099 | 0.024 |
Duodenum | 7.03 | 6.84 | 8.08 | 7.64 | 0.220 | 0.462 | 0.039 | 0.777 |
Jejunum | 7.44 | 9.04 | 8.15 | 8.04 | 0.242 | 0.116 | 0.749 | 0.074 |
Ileum | 11.71 | 12.20 | 11.85 | 11.81 | 0.182 | 0.563 | 0.751 | 0.493 |
Iron (mg/kg DM) | ||||||||
Liver | 81.62 | 93.78 | 87.40 | 94.11 | 2.810 | 0.106 | 0.591 | 0.631 |
Kidney | 104.28 | 107.23 | 103.06 | 107.70 | 2.671 | 0.505 | 0.948 | 0.881 |
Duodenum | 143.38 AB | 178.28 AB | 215.41 B | 103.97 A | 13.395 | 0.109 | 0.961 | 0.004 |
Jejunum | 59.54 | 65.22 | 64.16 | 64.76 | 1.713 | 0.383 | 0.561 | 0.480 |
Ileum | 56.96 | 64.29 | 61.45 | 61.22 | 1.352 | 0.195 | 0.792 | 0.168 |
Manganese (mg/kg DM) | ||||||||
Liver | 11.43 | 10.35 | 11.48 | 11.42 | 0.294 | 0.347 | 0.354 | 0.403 |
Kidney | 4.12 | 4.26 | 4.46 | 4.53 | 0.078 | 0.495 | 0.063 | 0.819 |
Duodenum | 22.81 | 19.24 | 17.40 | 18.44 | 1.071 | 0.555 | 0.155 | 0.286 |
Jejunum | 6.08 | 6.57 | 5.59 | 6.22 | 0.225 | 0.231 | 0.361 | 0.874 |
Ileum | 7.33 | 7.80 | 6.53 | 7.98 | 0.263 | 0.071 | 0.544 | 0.345 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čobanová, K.; Váradyová, Z.; Grešáková, Ľ.; Kucková, K.; Mravčáková, D.; Várady, M. Does Herbal and/or Zinc Dietary Supplementation Improve the Antioxidant and Mineral Status of Lambs with Parasite Infection? Antioxidants 2020, 9, 1172. https://doi.org/10.3390/antiox9121172
Čobanová K, Váradyová Z, Grešáková Ľ, Kucková K, Mravčáková D, Várady M. Does Herbal and/or Zinc Dietary Supplementation Improve the Antioxidant and Mineral Status of Lambs with Parasite Infection? Antioxidants. 2020; 9(12):1172. https://doi.org/10.3390/antiox9121172
Chicago/Turabian StyleČobanová, Klaudia, Zora Váradyová, Ľubomíra Grešáková, Katarína Kucková, Dominika Mravčáková, and Marián Várady. 2020. "Does Herbal and/or Zinc Dietary Supplementation Improve the Antioxidant and Mineral Status of Lambs with Parasite Infection?" Antioxidants 9, no. 12: 1172. https://doi.org/10.3390/antiox9121172
APA StyleČobanová, K., Váradyová, Z., Grešáková, Ľ., Kucková, K., Mravčáková, D., & Várady, M. (2020). Does Herbal and/or Zinc Dietary Supplementation Improve the Antioxidant and Mineral Status of Lambs with Parasite Infection? Antioxidants, 9(12), 1172. https://doi.org/10.3390/antiox9121172