Enhancement of Biological Properties of Blackcurrants by Lactic Acid Fermentation and Incorporation into Yogurt: A Review
Abstract
:1. Introduction
2. Blackcurrants
2.1. Blackcurrants Chemical Characterization
2.2. Health Benefits of Blackcurrants
2.2.1. Blackcurrants and Neurological Effects
2.2.2. Blackcurrants and Improving Exercise Recovery and Athletic Performance
2.2.3. Other Health Benefits of Blackcurrants
2.2.4. Dairy Fermented Products with Blackcurrants on the Market
3. Lactic Acid Fermentation to Produce Yogurt
3.1. Chemistry of Yogurt Fermentation
3.2. Yogurt Consumption
3.3. Addition of Other Bacteria
4. Blackcurrants Fermented with Lactic Acid Bacteria
4.1. Effect of Fermentation on Chemical Composition and Antioxidant Capacity of Blackcurrants
4.2. Important Factors That Influence the Blackcurrant Yogurt Product
4.3. Health Benefits of Fermented Blackcurrants Products in Dairy
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gopalan, A.; Reuben, S.C.; Ahmed, S.; Darvesh, A.S.; Hohmann, J.; Bishayee, A. The health benefits of blackcurrants. Food Funct. 2012, 3, 795–809. [Google Scholar] [CrossRef] [PubMed]
- Ribes nigrum, L.—The Plant List. Available online: http://www.theplantlist.org/tpl1.1/record/kew-2426569 (accessed on 13 July 2020).
- Benedict, W.V. History of White Pine Blister Rust Control a Personal Account; FS-355; USDA: Washington, DC, USA, 1981; pp. 1–47.
- Geils, B.W.; Hummer, K.E.; Hunt, R.S. White pines, Ribes, and blister rust: A review and synthesis. For. Pathol. 2010, 40, 147–185. [Google Scholar] [CrossRef]
- Luffman, M. Canadian Breeding Program for White Pine Blister Resistance in Black Currants. HortTechnology 2000, 10, 555–556. [Google Scholar] [CrossRef]
- Munck, I.A.; Tanguay, P.; Weimer, J.; Villani, S.M.; Cox, K.D. Impact of White Pine Blister Rust on Resistant Cultivated Ribes and Neighboring Eastern White Pine in New Hampshire. Plant Dis. 2015, 99, 1374–1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dale, A. Potential for Ribes Cultivation in North America. HortTechnology 2000, 10, 548–554. [Google Scholar] [CrossRef] [Green Version]
- Fisberg, M.; Machado, R. History of yogurt and current patterns of consumption. Nutr. Rev. 2015, 73, 4–7. [Google Scholar] [CrossRef] [Green Version]
- O’Rell, K.; Chandan, R.C. Manufacturing Yogurt and Fermented Milks, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013; p. 195. [Google Scholar] [CrossRef]
- FoodData Central. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/173963/nutrients (accessed on 15 August 2020).
- Heiberg, N.; Måge, F.; Haffner, K. Chemical Composition of Ten Blackcurrant (Ribes nigrum L.) Cultivars. Acta Agric. Scand. Sect. B Plant Soil Sci. 1992, 42, 251–254. [Google Scholar] [CrossRef]
- Tian, Y.; Laaksonen, O.A.; Haikonen, H.; Vanag, A.; Ejaz, H.; Linderborg, K.M.; Karhu, S.; Yang, B. Compositional Diversity among Blackcurrant (Ribes nigrum) Cultivars Originating from European Countries. J. Agric. Food Chem. 2019, 67, 5621–5633. [Google Scholar] [CrossRef] [Green Version]
- Ochmian, I.; Dobrowolska, A.; Chełpiński, P. Physical Parameters and Chemical Composition of Fourteen Blackcurrant Cultivars (Ribes nigrum L.). Not. Bot. Horti Agrobot. Cluj Napoca 2014, 42, 160–167. [Google Scholar] [CrossRef] [Green Version]
- Andersen, U.B.; Kjaer, K.H.; Erban, A.; Alpers, J.; Hincha, D.K.; Kopka, J.; Zuther, E.; Pagter, M. Impact of seasonal warming on overwintering and spring phenology of blackcurrant. Environ. Exp. Bot. 2017, 140, 96–109. [Google Scholar] [CrossRef]
- Allwood, J.W.; Woznicki, T.L.; Xu, Y.; Foito, A.; Aaby, K.; Sungurtas, J.; Freitag, S.; Goodacre, R.; Stewart, D.; Remberg, S.F.; et al. Application of HPLC–PDA–MS metabolite profiling to investigate the effect of growth temperature and day length on blackcurrant fruit. Metabolomics 2019, 15, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woznicki, T.L.; Sønsteby, A.; Aaby, K.; Martinsen, B.K.; Heide, O.M.; Wold, A.-B.; Remberg, S.F. Ascorbate pool, sugars and organic acids in black currant (Ribes nigrum L.) berries are strongly influenced by genotype and post-flowering temperature. J. Sci. Food Agric. 2016, 97, 1302–1309. [Google Scholar] [CrossRef] [PubMed]
- Mikulic-Petkovsek, M.; Rescic, J.; Schmitzer, V.; Stampar, F.; Slatnar, A.; Koron, D.; Veberic, R. Changes in fruit quality parameters of four Ribes species during ripening. Food Chem. 2015, 173, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Talcott, S. Berry Fruit: Value-Added Products for Health Promotion; CRC Press: Boca Raton, FL, USA, 2007; pp. 51–72. [Google Scholar]
- Borges, G.; Degeneve, A.; Mullen, W.; Crozier, A. Identification of Flavonoid and Phenolic Antioxidants in Black Currants, Blueberries, Raspberries, Red Currants, and Cranberries. J. Agric. Food Chem. 2010, 58, 3901–3909. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, M.F. Enzymes in Fruit Juice Processing. Enzym. Food Biotechnol. 2019, 45–59. [Google Scholar] [CrossRef]
- Rubinskiene, M.; Speiciene, V.; Leskauskaite, D.; Viskelis, P. Effect of black currant genotype on quality and rheological properties of jams. J. Food Agric. Environ. 2007, 5, 71–75. [Google Scholar]
- Sandell, M.; Laaksonen, O.; Järvinen, R.; Rostiala, N.; Pohjanheimo, T.; Tiitinen, K.; Kallio, H. Orosensory Profiles and Chemical Composition of Black Currant (Ribes nigrum) Juice and Fractions of Press Residue. J. Agric. Food Chem. 2009, 57, 3718–3728. [Google Scholar] [CrossRef]
- Laaksonen, O.; Salminen, J.-P.; Mäkilä, L.; Kallio, H.P.; Yang, B. Proanthocyanidins and Their Contribution to Sensory Attributes of Black Currant Juices. J. Agric. Food Chem. 2015, 63, 5373–5380. [Google Scholar] [CrossRef]
- Laaksonen, O.; Mäkilä, L.; Tahvonen, R.; Kallio, H.; Yang, B. Sensory quality and compositional characteristics of blackcurrant juices produced by different processes. Food Chem. 2013, 138, 2421–2429. [Google Scholar] [CrossRef]
- Laaksonen, O.A.; Mäkilä, L.; Sandell, M.A.; Salminen, J.-P.; Liu, P.; Kallio, H.P.; Yang, B. Chemical-Sensory Characteristics and Consumer Responses of Blackcurrant Juices Produced by Different Industrial Processes. Food Bioprocess Technol. 2014, 7, 2877–2888. [Google Scholar] [CrossRef]
- Rebollo-Hernanz, M.; Aguilera, Y.; Martín-Cabrejas, M.; Gonzalez de Mejia, E. Role of anthocyanins in oxidative stress and the prevention of cancer in the digestive system. In Cancer: Oxidative Stress and Dietary Antioxidants; Preedy, V.R., Ed.; Kings College London: London, UK; Academic Press: Cambridge, MA, USA, 2020; Chapter 31. [Google Scholar]
- Erkkinen, M.G.; Kim, M.-O.; Geschwind, M.D. Clinical Neurology and Epidemiology of the Major Neurodegenerative Diseases. Cold Spring Harb. Perspect. Biol. 2018, 10, a033118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Picillo, M.; Erro, R.; Santangelo, G.; Pivonello, R.; Longo, K.; Pivonello, C.; Vitale, C.; Amboni, M.; Moccia, M.; Colao, A.; et al. Insulin-like growth factor-1 and progression of motor symptoms in early, drug-naïve Parkinson’s disease. J. Neurol. 2013, 260, 1724–1730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, D.; Alamri, Y.; Liu, K.; Macaskill, M.; Harris, P.W.; Brimble, M.A.; Dalrymple-Alford, J.C.; Prickett, T.; Menzies, O.; Laurenson, A.; et al. Supplementation of Blackcurrant Anthocyanins Increased Cyclic Glycine-Proline in the Cerebrospinal Fluid of Parkinson Patients: Potential Treatment to Improve Insulin-Like Growth Factor-1 Function. Nutrients 2018, 10, 714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strathearn, K.E.; Yousef, G.G.; Grace, M.H.; Roy, S.L.; Tambe, M.A.; Ferruzzi, M.G.; Wu, Q.-L.; Simon, J.E.; Lila, M.A.; Rochet, J.-C. Neuroprotective effects of anthocyanin- and proanthocyanidin-rich extracts in cellular models of Parkinson’s disease. Brain Res. 2014, 1555, 60–77. [Google Scholar] [CrossRef] [Green Version]
- Ullah, R.; Khan, M.; Shah, S.A.; Saeed, K.; Kim, M.O. Natural Antioxidant Anthocyanins—A Hidden Therapeutic Candidate in Metabolic Disorders with Major Focus in Neurodegeneration. Nutrients 2019, 11, 1195. [Google Scholar] [CrossRef] [Green Version]
- Watson, A.W.; Haskell-Ramsay, C.; Kennedy, D.O.; Cooney, J.M.; Trower, T.; Scheepens, A. Acute supplementation with blackcurrant extracts modulates cognitive functioning and inhibits monoamine oxidase-B in healthy young adults. J. Funct. Foods 2015, 17, 524–539. [Google Scholar] [CrossRef] [Green Version]
- Watson, A.; Scheepens, A.; Kennedy, D.O.; Cooney, J.M.; Trower, T.M.; Haskell-Ramsay, C.F. The pharmacodynamic profile of “Blackadder” blackcurrant juice effects upon the monoamine axis in humans: A randomised controlled trial. Nutr. Neurosci. 2018, 23, 516–525. [Google Scholar] [CrossRef]
- Lomiwes, D.; Ha, B.; Ngametua, N.; Burr, N.S.; Cooney, J.M.; Trower, T.M.; Sawyer, G.; Hedderley, D.; Hurst, R.D.; Hurst, S.M. Timed consumption of a New Zealand blackcurrant juice support positive affective responses during a self-motivated moderate walking exercise in healthy sedentary adults. J. Int. Soc. Sports Nutr. 2019, 16, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Watson, A.; Okello, E.J.; Brooker, H.; Lester, S.; McDougall, G.J.; Wesnes, K.A. The impact of blackcurrant juice on attention, mood and brain wave spectral activity in young healthy volunteers. Nutr. Neurosci. 2019, 22, 596–606. [Google Scholar] [CrossRef] [Green Version]
- Hurst, R.D.; Lyall, K.A.; Roberts, J.M.; Perthaner, A.; Wells, R.W.; Cooney, J.M.; Jensen, D.J.; Burr, N.S.; Hurst, S.M. Consumption of an Anthocyanin-Rich Extract Made From New Zealand Blackcurrants Prior to Exercise May Assist Recovery From Oxidative Stress and Maintains Circulating Neutrophil Function: A Pilot Study. Front. Nutr. 2019, 6, 73. [Google Scholar] [CrossRef]
- Hurst, R.D.; Lyall, K.A.; Wells, R.W.; Sawyer, G.M.; Lomiwes, D.; Ngametua, N.; Hurst, S.M. Daily Consumption of an Anthocyanin-Rich Extract Made From New Zealand Blackcurrants for 5 Weeks Supports Exercise Recovery Through the Management of Oxidative Stress and Inflammation: A Randomized Placebo Controlled Pilot Study. Front. Nutr. 2020, 7, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, M.D.; Myers, S.D.; Gault, M.L.; Edwards, V.C.; Willems, M.E. Cardiovascular function during supine rest in endurance-trained males with New Zealand blackcurrant: A dose–response study. Eur. J. Appl. Physiol. 2016, 117, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Willems, M.E.T.; Myers, S.D.; Gault, M.L.; Cook, M.D. Beneficial Physiological Effects with Blackcurrant Intake in Endurance Athletes. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 367–374. [Google Scholar] [CrossRef]
- Cook, M.D.; Myers, S.D.; Blacker, S.D.; Willems, M.E. New Zealand blackcurrant extract improves cycling performance and fat oxidation in cyclists. Eur. J. Appl. Physiol. 2015, 115, 2357–2365. [Google Scholar] [CrossRef] [PubMed]
- Perkins, I.C.; Vine, S.A.; Blacker, S.D.; Willems, M.E.T. New Zealand Blackcurrant Extract Improves High-Intensity Intermittent Running. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Potter, J.A.; Hodgson, C.I.; Broadhurst, M.; Howell, L.; Gilbert, J.; Willems, M.E.T.; Perkins, I.C. Effects of New Zealand blackcurrant extract on sport climbing performance. Eur. J. Appl. Physiol. 2019, 120, 67–75. [Google Scholar] [CrossRef]
- De Mejia, E.G.; Zhang, Q.; Penta, K.; Eroglu, A.; Lila, M.A. The Colors of Health: Chemistry, Bioactivity, and Market Demand for Colorful Foods and Natural Food Sources of Colorants. Annu. Rev. Food Sci. Technol. 2020, 11, 145–182. [Google Scholar] [CrossRef]
- Castro-Acosta, M.L.; Smith, L.; Miller, R.J.; McCarthy, D.I.; Farrimond, J.A.; Hall, W.L. Drinks containing anthocyanin-rich blackcurrant extract decrease postprandial blood glucose, insulin and incretin concentrations. J. Nutr. Biochem. 2016, 38, 154–161. [Google Scholar] [CrossRef] [Green Version]
- Tomisawa, T.; Nanashima, N.; Kitajima, M.; Mikami, K.; Takamagi, S.; Maeda, H.; Horie, K.; Lai, F.-C.; Osanai, T. Effects of Blackcurrant Anthocyanin on Endothelial Function and Peripheral Temperature in Young Smokers. Molecules 2019, 24, 4295. [Google Scholar] [CrossRef] [Green Version]
- Tabart, J.; Auger, C.; Kevers, C.; Dommes, J.; Pollet, B.; Defraigne, J.-O.; Schini-Kerth, V.B.; Pincemail, J. The potency of commercial blackcurrant juices to induce relaxation in porcine coronary artery rings is not correlated to their antioxidant capacity but to their anthocyanin content. Nutrition 2018, 53–59. [Google Scholar] [CrossRef]
- Okamoto, T.; Hashimoto, Y.; Kobayashi, R.; Nakazato, K.; Willems, M.E.T. Effects of blackcurrant extract on arterial functions in older adults: A randomized, double-blind, placebo-controlled, crossover trial. Clin. Exp. Hypertens. 2020, 42, 640–647. [Google Scholar] [CrossRef] [PubMed]
- Shaw, O.M.; Nyanhanda, T.; McGhie, T.K.; Harper, J.L.; Hurst, R.D. Blackcurrant anthocyanins modulate CCL11 secretion and suppress allergic airway inflammation. Mol. Nutr. Food Res. 2017, 61, 1600868. [Google Scholar] [CrossRef] [PubMed]
- Benn, T.; Kim, B.; Park, Y.-K.; Wegner, C.J.; Harness, E.; Nam, T.G.; Kim, D.-O.; Lee, J.S.; Lee, J.-Y. Polyphenol-rich blackcurrant extract prevents inflammation in diet-induced obese mice. J. Nutr. Biochem. 2014, 25, 1019–1025. [Google Scholar] [CrossRef] [PubMed]
- Flavor Insight: Black Currant by the Numbers|FONA International. Available online: https://www.fona.com/flavor-insight-black-currant-by-the-numbers/ (accessed on 29 June 2020).
- Corrigan, V.; Hedderley, D.; Langford, G.; Zou, C.; Corrigan, V.K.; Hedderley, D.I. Flavour analysis of New Zealand grown blackcurrants: An evaluation of expert selection methods. N. Z. J. Crop. Hortic. Sci. 2014, 42, 247–264. [Google Scholar] [CrossRef]
- Icelandic Provisions Cherry Black Currant Skyr. Available online: https://www.icelandicprovisions.com/skyr-product/cherry-black-currant-skyr/ (accessed on 22 July 2020).
- The CurrantC Story. Available online: http://www.currantc.com/the-currantc-story/ (accessed on 21 July 2020).
- CurrantC Products. Available online: http://currantc.mybigcommerce.com/ (accessed on 21 July 2020).
- Artemis International. Black Currant Extract|Black Currant Powder. Available online: https://www.artemis-nutraceuticals.com/products/black-currant-extract/ (accessed on 22 July 2020).
- Fernandez, M.A.; Marette, A. Potential Health Benefits of Combining Yogurt and Fruits Based on Their Probiotic and Prebiotic Properties. Adv. Nutr. 2017, 8, 155S–164S. [Google Scholar] [CrossRef]
- Saxelin, M. Probiotic Formulations and Applications, the Current Probiotics Market, and Changes in the Marketplace: A European Perspective. Clin. Infect. Dis. 2008, 46, S76–S79. [Google Scholar] [CrossRef] [Green Version]
- FDA. CFR—Code of Federal Regulations Title 21. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=131.200 (accessed on 15 July 2020).
- Kechagia, M.; Basoulis, D.; Konstantopoulou, S.; Dimitriadi, D.; Gyftopoulou, K.; Skarmoutsou, N.; Fakiri, E.M. Health Benefits of Probiotics: A Review. Int. Sch. Res. Not. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.J.; Lucey, J.A. Formation and Physical Properties of Yogurt. Asian Australas. J. Anim. Sci. 2010, 23, 1127–1136. [Google Scholar] [CrossRef]
- Yildiz, F. Development and Manufacture of Yogurt and Other Functional Dairy Products; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2016; p. 435. [Google Scholar]
- Zourari, A.; Accolas, J.P.; Desmazeaud, M.J. Metabolism and biochemical characteristics of yogurt bacteria. A review. Le Lait 1992, 72, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Vieco-Saiz, N.; Belguesmia, Y.; Raspoet, R.; Auclair, E.; Gancel, F.; Kempf, I.; Drider, D. Benefits and Inputs From Lactic Acid Bacteria and Their Bacteriocins as Alternatives to Antibiotic Growth Promoters During Food-Animal Production. Front. Microbiol. 2019, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Ozcan, T.; Horne, D.S.; Lucey, J.A. Yogurt made from milk heated at different pH values. J. Dairy Sci. 2015, 98, 6749–6758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaker, R.; Jumah, R.; Abu-Jdayil, B. Rheological properties of plain yogurt during coagulation process: Impact of fat content and preheat treatment of milk. J. Food Eng. 2000, 44, 175–180. [Google Scholar] [CrossRef]
- Tian, H.; Shi, Y.; Zhang, Y.; Yu, H.; Mu, H.; Chen, C. Screening of aroma-producing lactic acid bacteria and their application in improving the aromatic profile of yogurt. J. Food Biochem. 2019, 43, e12837. [Google Scholar] [CrossRef] [PubMed]
- Turchi, B.; Francesca, P.; Torracca, B.; Fratini, F.; Mancini, S.; Galiero, A.; Montalbano, B.; Cerri, D.; Roberta, N. Lactobacillus plantarum and Streptococcus thermophilus as starter cultures for a donkey milk fermented beverage. Int. J. Food Microbiol. 2017, 256, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Amani, E.; Eskandari, M.H.; Shekarforoush, S. The effect of proteolytic activity of starter cultures on technologically important properties of yogurt. Food Sci. Nutr. 2016, 5, 525–537. [Google Scholar] [CrossRef] [PubMed]
- Moslehishad, M.; Ehsani, M.R.; Salami, M.; Mirdamadi, S.; Ezzatpanah, H.; Naslaji, A.N.; Moosavi-Movahedi, A. The comparative assessment of ACE-inhibitory and antioxidant activities of peptide fractions obtained from fermented camel and bovine milk by Lactobacillus rhamnosus PTCC 1637. Int. Dairy J. 2013, 29, 82–87. [Google Scholar] [CrossRef]
- Panahi, S.; Doyon, C.Y.; Després, J.-P.; Pérusse, L.; Vohl, M.-C.; Drapeau, V.; Tremblay, A. Yogurt consumption, body composition, and metabolic health in the Québec Family Study. Eur. J. Nutr. 2017, 57, 1591–1603. [Google Scholar] [CrossRef]
- Keast, D.R.; Gallant, K.M.H.; Albertson, A.M.; Gugger, C.K.; Holschuh, N.M. Associations between Yogurt, Dairy, Calcium, and Vitamin D Intake and Obesity among U.S. Children Aged 8–18 Years: NHANES, 2005–2008. Nutrients 2015, 7, 1577–1593. [Google Scholar] [CrossRef]
- Meucci, A.; Rossetti, L.; Zago, M.; Monti, L.; Giraffa, G.; Carminati, D.; Tidona, F. Folates biosynthesis by Streptococcus thermophilus during growth in milk. Food Microbiol. 2018, 69, 116–122. [Google Scholar] [CrossRef]
- Alvaro, E.; Andrieux, C.; Rochet, V.; Rigottier-Gois, L.; Lepercq, P.; Sutren, M.; Galan, P.; Duval, Y.; Juste, C.; Doré, J. Composition and metabolism of the intestinal microbiota in consumers and non-consumers of yogurt. Br. J. Nutr. 2007, 97, 126–133. [Google Scholar] [CrossRef] [Green Version]
- O’Toole, P.W.; Marchesi, J.R.; Hill, C. Next-generation probiotics: The spectrum from probiotics to live biotherapeutics. Nat. Microbiol. 2017, 2, 17057. [Google Scholar] [CrossRef] [PubMed]
- Mohammadshahi, M.; Veissi, M.; Haidari, F.; Shahbazian, H.; Kaydani, G.A.; Mohammadi, F. Effects of probiotic yogurt consumption on inflammatory biomarkers in patients with type 2 diabetes. BioImpacts 2014, 4, 83–88. [Google Scholar]
- Arena, M.P.; Russo, P.; Capozzi, V.; López, P.; Fiocco, D.; Spano, G. Probiotic abilities of riboflavin-overproducing Lactobacillus strains: A novel promising application of probiotics. Appl. Microbiol. Biotechnol. 2014, 98, 7569–7581. [Google Scholar] [CrossRef] [PubMed]
- Nabavi, S.; Rafraf, M.; Somi, M.; Homayouni-Rad, A.; Asghari-Jafarabadi, M. Effects of probiotic yogurt consumption on metabolic factors in individuals with nonalcoholic fatty liver disease. J. Dairy Sci. 2014, 97, 7386–7393. [Google Scholar] [CrossRef]
- Shadnoush, M.; Hosseini, R.S.; Khalilnezhad, A.; Navai, L.; Goudarzi, H.; Vaezjalali, M. Effects of Probiotics on Gut Microbiota in Patients with Inflammatory Bowel Disease: A Double-blind, Placebo-controlled Clinical Trial. Korean J. Gastroenterol. 2015, 65, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Li, S.; Yang, D.; Qiu, L.; Wu, Y.; Wang, D.; Shah, N.P.; Xu, F.; Wei, H. A novel strain of Lactobacillus mucosae isolated from a Gaotian villager improves in vitro and in vivo antioxidant as well as biological properties in d-galactose-induced aging mice. J. Dairy Sci. 2016, 99, 903–914. [Google Scholar] [CrossRef] [Green Version]
- Nami, Y.; Bakhshayesh, R.V.; Manafi, M.; Hejazi, M.A. Hypocholesterolaemic activity of a novel autochthonous potential probiotic Lactobacillus plantarum YS5 isolated from yogurt. LWT 2019, 111, 876–882. [Google Scholar] [CrossRef]
- Du, X.; Myracle, A.D. Fermentation alters the bioaccessible phenolic compounds and increases the alpha-glucosidase inhibitory effects of aronia juice in a dairy matrix followingin vitrodigestion. Food Funct. 2018, 9, 2998–3007. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D.; Zhou, J.; Wadhwa, S.S. Drinking yoghurts with berry polyphenols added before and after fermentation. Food Control 2013, 32, 450–460. [Google Scholar] [CrossRef]
- Park, J.-B.; Lim, S.-H.; Sim, H.-S.; Park, J.-H.; Kwon, H.-J.; Nam, H.S.; Kim, M.-D.; Baek, H.-H.; Ha, S.-J. Changes in antioxidant activities and volatile compounds of mixed berry juice through fermentation by lactic acid bacteria. Food Sci. Biotechnol. 2017, 26, 441–446. [Google Scholar] [CrossRef]
- Kim, J.-B.; Sim, H.-S.; Ha, S.-J.; Kim, M.-D. Enhancement of Antioxidative Activities of Berry or Vegetable Juices through Fermentation by Lactic Acid Bacteria. Microbiol. Biotechnol. Lett. 2015, 43, 291–295. [Google Scholar] [CrossRef]
- Curiel, J.A.; Pinto, D.; Marzani, B.; Filannino, P.; Farris, G.A.; Gobbetti, M.; Rizzello, C.G. Lactic acid fermentation as a tool to enhance the antioxidant properties of Myrtus communis berries. Microb. Cell Factories 2015, 14, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lekha, P.; Lonsane, B. Production and Application of Tannin Acyl Hydrolase: State of the Art. Int. Rev. Cytol. 1997, 44, 215–260. [Google Scholar] [CrossRef]
- Vaquero, I.; Marcobal, A.; Muñoz, R. Tannase activity by lactic acid bacteria isolated from grape must and wine. Int. J. Food Microbiol. 2004, 96, 199–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foo, L.Y.; Porter, L.J. The structure of tannins of some edible fruits. J. Sci. Food Agric. 1981, 32, 711–716. [Google Scholar] [CrossRef]
- Li, T.; Jiang, T.; Liu, N.; Wu, C.; Xu, H.; Lei, H. Biotransformation of phenolic profiles and improvement of antioxidant capacities in jujube juice by select lactic acid bacteria. Food Chem. 2021, 339, 127859. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Li, T.; Qi, J.; Jiang, T.; Xu, H.; Lei, H. Effects of lactic acid fermentation-based biotransformation on phenolic profiles, antioxidant capacity and flavor volatiles of apple juice. LWT 2020, 122, 109064. [Google Scholar] [CrossRef]
- Pyo, Y.-H.; Lee, T.-C.; Lee, Y.-C. Effect of Lactic Acid Fermentation on Enrichment of Antioxidant Properties and Bioactive Isoflavones in Soybean. J. Food Sci. 2006, 70, S215–S220. [Google Scholar] [CrossRef]
- Yildirim-Elikoglu, S.; Erdem, Y.K. Interactions between milk proteins and polyphenols: Binding mechanisms, related changes, and the future trends in the dairy industry. Food Rev. Int. 2018, 34, 665–697. [Google Scholar] [CrossRef]
- Jauregi, P.; Olatujoye, J.B.; Cabezudo, I.; Frazier, R.A.; Gordon, M.H. Astringency reduction in red wine by whey proteins. Food Chem. 2016, 199, 547–555. [Google Scholar] [CrossRef]
- Sfakianakis, P.; Tzia, C. Conventional and Innovative Processing of Milk for Yogurt Manufacture; Development of Texture and Flavor: A Review. Foods 2014, 3, 176–193. [Google Scholar] [CrossRef] [PubMed]
- Kleerebezem, M.; Boekhorst, J.; Van Kranenburg, R.; Molenaar, D.; Kuipers, O.P.; Leer, R.; Tarchini, R.; Peters, S.A.; Sandbrink, H.M.; Fiers, M.W.E.J.; et al. Complete genome sequence of Lactobacillus plantarum WCFS1. Proc. Natl. Acad. Sci. USA 2003, 100, 1990–1995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kantor, A.; Mareček, J.; Ivanišová, E.; Terentjeva, M.; Kačániová, M. Microorganisms of Grape Berries. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 2017, 71, 502–508. [Google Scholar] [CrossRef] [Green Version]
- Capozzi, V.; Fragasso, M.; Romaniello, R.; Berbegal, C.; Russo, P.; Spano, G. Spontaneous Food Fermentations and Potential Risks for Human Health. Fermentation 2017, 3, 49. [Google Scholar] [CrossRef]
- Succi, M.; Pannella, G.; Tremonte, P.; Tipaldi, L.; Coppola, R.; Iorizzo, M.; Lombardi, S.J.; Sorrentino, E. Sub-optimal pH Preadaptation Improves the Survival of Lactobacillus plantarum Strains and the Malic Acid Consumption in Wine-Like Medium. Front. Microbiol. 2017, 8, 470. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.; Rheem, I.; Rheem, S.; Oh, S. Optimizing Medium Components for the Maximum Growth of Lactobacillus plantarum JNU 2116 Using Response Surface Methodology. Food Sci. Anim. Resour. 2018, 38, 240–250. [Google Scholar]
- Marco, M.L.; Heeney, D.; Binda, S.; Cifelli, C.J.; Cotter, P.D.; Foligné, B.; Gänzle, M.; Kort, R.; Pasin, G.; Pihlanto, A.; et al. Health benefits of fermented foods: Microbiota and beyond. Curr. Opin. Biotechnol. 2017, 44, 94–102. [Google Scholar] [CrossRef]
- Pandey, K.R.; Naik, S.R.; Vakil, B.V. Probiotics, prebiotics and synbiotics—A review. J. Food Sci. Technol. 2015, 52, 7577–7587. [Google Scholar] [CrossRef]
- Ni, H.; Hayes, H.E.; Stead, D.; Raikos, V. Incorporating salal berry (Gaultheria shallon) and blackcurrant (Ribes nigrum) pomace in yogurt for the development of a beverage with antidiabetic properties. Heliyon 2018, 4, e00875. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Song, Y.; Lee, K.H.; Lee, H.S.; Lee, M.; Jee, S.H.; Joung, H. A fruit and dairy dietary pattern is associated with a reduced risk of metabolic syndrome. Metabolism 2012, 61, 883–890. [Google Scholar] [CrossRef]
- Huang, P.L. A comprehensive definition for metabolic syndrome. Dis. Model. Mech. 2009, 2, 231–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NCCIH. Antioxidants. Available online: https://www.nccih.nih.gov/health/antioxidants-in-depth (accessed on 21 July 2020).
Compound# | Tentative Identification | Abbreviation |
---|---|---|
Anthocyanins | ||
1 | delphinidin 3-O-glucoside | De-Glu |
2 | delphinidin 3-O-rutinoside | De-Rut |
3 | cyanidin 3-O-glucoside | Cy-Glu |
4 | cyanidin 3-O-rutinoside | Cy-Rut |
5 | petunidin 3-O-glucoside | Pt-Glu |
6 | petunidin 3-O-rutinoside | Pt-Rut |
7 | cyanidin 3-O-arabinoside | Cy-Ara |
8 | pelargonidin 3-O-glucoside | Pl-Glu |
9 | pelargonidin 3-O-rutinoside | Pl-Rut |
10 | peonidin 3-O-glucoside | Po-Glu |
11 | peonidin 3-O-rutinoside | Po-Rut |
12 | malvidin 3-O-glucoside | Ma-Glu |
13 | malvidin 3-O-rutinoside | Ma-Rut |
14 | delphinidin 3-O-(6″-coumaroyl)-glucoside | De-coGlu |
15 | cyanidin 3-O-(6″-coumaroyl)-glucoside | Cy-coGlu |
Flavonols | ||
16 | myricetin 3-O-rutinoside | My-Rut |
17 | myricetin 3-O-galactoside | My-Gal |
18 | myricetin 3-O-glucoside | My-Glu |
19 | myricetin 3-O-arabinoside | My-Ara |
20 | myricetin 3-O-(6″-malonyl)-galactoside | My-maGal |
21 | quercetin 3-O-rutinoside | Qu-Rut |
22 | quercetin 3-O-galactoside | Qu-Gal |
23 | quercetin 3-O-glucoside | Qu-Glu |
24 | quercetin 3-O-arabinoside | Qu-Ara |
25 | quercetin 3-O-(6″-malonyl)-glucoside | Qu-maGlu |
26 | kaempferol 3-O-rutinoside | Ka-Rut |
27 | kaempferol 3-O-galactoside | Ka-Gal |
28 | isorhamnetin 3-O-glucoside | Is-Glu |
29 | myricetin aglycone | Myagly |
30 | kaempferol 3-O-(6″-malonyl)-glucoside | Ka-maGlu |
31 | isorhamnetin 3-O-(6″-malonyl)-galactoside | Is-maGal |
32 | myricetin-hexoside-deoxyhexoside | My-hex-deox |
33 | isorhamnetin 3-O-(6″-malonyl)-glucoside | Is-maGlu |
34 | quercetin aglycone | Quagly |
Phenolic Acid Derivatives | ||
35 | 5-O-caffeoylquinic acid | 5-CaQA |
36 | 4-O-caffeoylglucose | 4-Ca-Glu |
37 | 1-O-caffeoylglucose | 1-Ca-Glu |
38 | coumaroylquinic acid isomer | CoQA |
39 | 3-O-coumaroylquinic acid | 3-CoQA |
40 | 4-O-coumaroylglucose | 4-Co-Glu |
41 | 1-O-coumaroylglucose | 1-Co-Glu |
42 | 3-O-caffeoylquinic acid | 3-CaQA |
43 | feruloylglucose isomer | Fe-Glu |
44 | 1-O-feruloylglucose | 1-Fe-Glu |
45 | (E)-caffeoyloxymethylene-glucopyranosyloxy-(Z)-butenenitrile | Ca-meGlu-B |
46 | (E)-coumaroyloxymethylene-glucopyranosyloxy-(Z)-butenenitrile | Co-meGlu-B1 |
47 | (Z)-coumaroyloxymethylene-glucopyranosyloxy-(Z)-butenenitrile | Co-meGlu-B2 |
48 | (E)-feruloyloxymethylene-glucopyranosyloxy-(Z)-butenenitrile | Fe-meGlu-B |
Flavan-3-ols | ||
49 | gallocatechin | GCat |
50 | epigallocatechin | EGCat |
51 | (+)-catechin | Cat |
52 | (−)-epicatechin | ECat |
Other Phenolics | ||
53 | aureusidin glucoside | Au-Glu |
Organic Acids | ||
54 | malic acid | MaA |
55 | citric acid | CiA |
56 | quinic acid | QuA |
57 | ascorbic acid | AsA |
Sugars | ||
58–60 | fructose anomers | Fru |
61,62 | glucose anomers | Glu |
63 | sucrose | Sur |
Compound | Blackcurrant | Blueberry | Raspberry | Red Currant | Cranberry |
---|---|---|---|---|---|
Vitamin C | 2328 (18) | 115 (0) | 1014 (11) | 313 (47) | 1107 (23) |
Anthocyanins | 5521 (73) | 4810 (84) | 885 (16) | 328 (21) | 725 (39) |
Flavanols | 514 (5) | 751 (14) | 67 (0) | 69 (4) | 456 (10) |
Antioxidant capacity FRAP (μmol of Fe2+/g) | 51.6 ± 1.2 | 30.0 ± 1.9 | 27.7 ± 1.1 | 24.6 ± 0.5 | 18.6 ± 0.3 |
Health Benefit | Model Used | Results | Reference |
---|---|---|---|
Treat neurological conditions such as PD | Plasma and CSF collected from 11 male patients before and after 300 mg of BCA was taken twice daily for 4 weeks |
| [29] |
Neuroendocrinological and Cognitive benefits | In a randomized, double-blind, placebo-controlled, cross over study, 36 healthy adults from Auckland NZ aged 18 to 35 were given either 0 mg of PP (Control) or 525 ± 5 mg of polyphenols per 60 kg of bodyweight from ANC-enriched BC extract or 142 mL of BC fruit juice |
| [32] |
Treat neurological conditions | In a double-blind, placebo-controlled, randomized cross- over study, 8 healthy male aged 20–35 consumed NZ Blackadder juice. Measurements were obtained at baseline 15, 30, 45, 60, 100, 120, 150, 180, 240 min, and 24 h post dose |
| [33] |
Positive affective responses during a self-motivated exercise | In a parallel, randomized controlled study, 40 healthy sedentary male and female participants drank a BC juice (4.8 mg/kg bodyweight) or PLA. After 3- or 5-min intervals on a treadmill, heart rate and exertion (ES) or feeling/mood scores (FS) were measured. Markers were measured pre- and postexercise |
| [34] |
Mood and Attention | In a randomized, double-blind and placebo-controlled crossover design, 9 healthy adults consumed either BC juice (500 mg polyphenols/drink) or PLA. Neuronal activity was determined related to cognitive performance using EEG. |
| [35] |
Exercise Recovery | Healthy adults (32) who exercised daily, rowed for 30 min prior to consumption of BC extract (PLA, 0.8, 1.6, or 3.2, mg/kg total ANC). Blood samples were taken throughout |
| [36] |
Exercise recovery | In 2 double-blind placebo-controlled trials, 18 healthy adults with moderate daily physical activity, consumed BAE (3.2 mg/kg ANC) or PLA 1 h prior to 30 min of rowing exercise for 5 weeks |
| [37] |
Improve cardiovascular function | Fifteen endurance male cyclists were randomly assigned to consume different amounts of BCE for 7 days with a 14-day washout (300, 600, or 900 mg/day). Results for cardiovascular function during supine rest were collected. |
| [38] |
Improved Athletic Performance and Recovery | In a double blind, placebo controlled, randomized design, 13 triathletes with >3 years of experience consumed 6 g of BC powder for 7 days and physiological and cardiovascular responses were obtained. |
| [39] |
Improved Athletic Performance | In a double blind, randomized, crossover design, 14 healthy men consumed BCE (300 mg/day with 105 mg of ANC) or a placebo. After 30 min of cycling and a 16.1 km time-trial, results were collected. |
| [40] |
Improved Athletic Performance and Recovery | In a double-blind, randomized, crossover design, 13 active males consumed BCE (300 mg/day with 105 mg of ANC) or a placebo for 7 days and completed a series of sprints at different speeds with 15 s of low intensity running and 1 min of rest between sprints. |
| [41] |
Improved Athletic Performance | In a double-blind, randomized, crossover design, 18 male climbers consumed BCE supplementation (600 mg/day with 210 mg ANC) or placebo for 7 days. Climbing performance was assessed after 3 climbs. |
| [42] |
Diabetes | In a randomized, double-blind, crossover trial, 14 men and 9 post-menopausal women consumed a BC extract drink with 150, 300, or 600 mg of total ANC before a high-carbohydrate meal or the PLA. Plasma glucose, insulin, GIP, GLP-1, Plasma 8-isoprostane F2α, and arterial stiffness was measured at 0 and 120 min. |
| [44] |
Reduce acute endothelial dysfunction caused by smoking | In a randomized, double-blind trial on young, healthy male smokers (13) and nonsmokers (11), the effects of FMD and skin temperature were tested after no supplement, 50 mg BCA, or 50 mg BCA plus Vit E. |
| [45] |
Reduce arterial stiffness and blood pressure | In a randomized, double-blind, placebo-controlled, crossover design study, fourteen older adults aged 73.3 ± 1.7 years took either a 7-day course of placebo or two capsules of NZBC extract (each 300 mg capsule contains 35% BC extract) followed by a washout period of 28 days and then switched trials after. Carotid-femoral pulse-wave velocity and central blood pressure were measured. |
| [47] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalski, R.; Gustafson, E.; Carroll, M.; Gonzalez de Mejia, E. Enhancement of Biological Properties of Blackcurrants by Lactic Acid Fermentation and Incorporation into Yogurt: A Review. Antioxidants 2020, 9, 1194. https://doi.org/10.3390/antiox9121194
Kowalski R, Gustafson E, Carroll M, Gonzalez de Mejia E. Enhancement of Biological Properties of Blackcurrants by Lactic Acid Fermentation and Incorporation into Yogurt: A Review. Antioxidants. 2020; 9(12):1194. https://doi.org/10.3390/antiox9121194
Chicago/Turabian StyleKowalski, Rebecca, Erika Gustafson, Matthew Carroll, and Elvira Gonzalez de Mejia. 2020. "Enhancement of Biological Properties of Blackcurrants by Lactic Acid Fermentation and Incorporation into Yogurt: A Review" Antioxidants 9, no. 12: 1194. https://doi.org/10.3390/antiox9121194
APA StyleKowalski, R., Gustafson, E., Carroll, M., & Gonzalez de Mejia, E. (2020). Enhancement of Biological Properties of Blackcurrants by Lactic Acid Fermentation and Incorporation into Yogurt: A Review. Antioxidants, 9(12), 1194. https://doi.org/10.3390/antiox9121194